Plato Royalty Lecture Series Proposal for 2001-2

Plus ca Change, Plus c'est la Même Chose -- the more things change, the more they are the same

Kate Cunningkham, John Cushing, Judy Cushing, Sherri Shulman

In the "high tech computing" world, change seems constant -- new and faster hardware, new web sites, new operating systems, new applications, new programming languages. It is sometimes said that a programmer needs to relearn "everything" every five years. This colloquium will aim to dispell this myth, pointing out that a "real" education in computer science is not the same thing as technical training in "coding" or "system administration" or "web development" (which do evaporate). Some problems (often the most interesting ones) are universal, sometimes manifesting themselves differently (and are hard to recognize) and sometimes not. The colloquium will examine classic and universal problems of computer science, in light of current technology and of the historical context in which they have appeared. We aim to investigate how to recognize these problems as they resurface, and how to initiate appropriate (sometimes surprizingly non-technology-based!) solutions.

In addition to enriching the curriculum of the programs which the organizers teach (Student Originated Software and Data to Information, the colloquium will help build a community of students across levels (from introductory to advanced) and across "colleges" (from the full time to the part time "college"). We will also invite high school (working with Louis Nadelson of Olympia High School) and community attendance, to interest Olympia's information technology and computing professionals in the College,and hope to dispell the myth that Evergreen does "not do science". The organizers will actively engage the part time students taught by Barry Tolnas (and others as interest evolves) to join us. Speakers will be brought to campus for a full 24 hours, and visits to both the full time and part time classes will be arranged. If the colloquium is in the spring, we will also involve the "freshman" programs Concepts of Computing and Neal Nelson's Algebra to Algorithms.

Below are some of the universal problems we might address:

· Writing software is still hard, and for many of the same reasons now as in 1970. Two sides of this problem involve 1) identifying and communicating customer (user) needs, and 2) writing error-free programs. How can we involve stakeholders of a system in its design? Can we write functional specifications (in English) that can be understood both by programmers and users? Can we write formal (precise) specifications in a natural language (English) or must we design new languages for this purpose?

· The Web will get anyone all the information they really need (and more). But, how can we assure that the information is what we want? How do we organize the information into useful chunks? How can we eliminate duplicate information, masquarading as different data items? Just getting the data is never enough, anyway; we still need to know what it means.

· The Web and education. Real (old fashioned) universities mean people have to disrupt their lives, their schedules to go to class. Why not just have people meet "on line"? In what ways is web-based education alike and in what ways is it different from traditional Computer Assisted Instruction (CAI)?

· The web and science communities. Scientists, who typically collaborate world-wide, were the first to use the web. William Wulf proposed 10 years ago that the web be used to build "collaboratories" -- communities of scientists using laboratories (over the web) at a distance. What has worked well in these efforts, and what has been difficult?

· The web, computer games and virtual reality. We can now make computer games ever so much better because we can create new games that involve more several non-co-located players! And, the players can interact in virtual space! What interesting computer science is there in writing games? Potential speaker OGI faculty; What can be done now that could not be done before with web-based games, and what problems face these developers.

· Why a good algorithm matters. Using an algorithm that would take forever to finish execution in 1950 will still take forever. Using an algorithm that would take 10,000 years in 1975 will still take 20 years in 2001.

· Every new increment of processing power opens new problem domains – these are often tractable but computationally difficult problems, such as weather prediction, language translation or cryptogrphay. These typically require brute force but clever algorithms. The horizon keeps moving out and limits are st by the nature of the problem.

· Very high level programming languages (aka programmable specifications, or domain specific languages).

· User Interface

· Centralized/Decentralized -- oscillations between the conception of computers as self-contained systems used by one person at a time (as in, "I got an hour on the IBM7090 to run my problem" and "personal computers") and the conception of computers as places where people share resources (ala timesharing in the '70s and the net now).

· Security & Privacy vs. Convenience.

· Cryptography

· The computer industry – where does the innovation come from.

