
Distributed and Parallel Computing Issues in Data
Warehousing �Invited Talk��

Hector Garcia�Molina� Wilburt J� Labio� Janet L� Wiener� Yue Zhuge
Stanford University

fhector�wilburt�wiener�zhugeg�cs�stanford�edu
http���www�db�stanford�edu�warehousing�warehouse�html

Abstract

A data warehouse is a repository of data that has been extracted and integrated

from heterogeneous and autonomous distributed sources� The warehouse data is used

for decision�support or data mining� In this paper we illustrate some of the challenges

in distributed and parallel computing faced by such systems� Our examples come from

research done in the Stanford WHIPS Project�

� Introduction

A data warehouse is a repository of data that has been extracted and integrated from het�
erogeneous and autonomous distributed sources� For example� a grocery store chain might
integrate data from its inventory database� sales databases from di�erent stores� and its
marketing department�s promotions records� The store chain could then� ��	 
nd out how
sales trends di�er across regions of the country or world� ��	 correlate its inventory with
current sales and ensure that each store�s inventory is replaced in keeping with its sales�
�	 analyze which promotions lead to increased product sales� For example� the store chain
might discover that its salsa sells better in Texas than in California� move its salsa inventory
to Texas and increase salsa promotions there� and consequently increase its overall sales and
revenue� Furthermore� the freed shelf space in California could be used for a popular product
there� perhaps organic tofu� also increasing sales and revenue�

The goal of this paper is to give an overview of data warehousing� focusing on the
opportunities for distributed and parallel computing� As we will see� a warehousing system
is naturally distributed� collecting data from many sources� The warehouse itself� where the
data is concentrated� often has many processors and disks� Furthermore� since records from
multiple databases are typically combined at the warehouse� it must handle massive amounts
of data� requiring parallel processing whenever possible� For example� Sagent Technology�

�This research was funded by Rome Laboratories under Air Force Contract F���������C�����	 by the
Massive Digital Data Systems 
MDDS� Program sponsored by the Advanced Research and Development
Committee of the Community Management Sta�	 and by Sagent Technologies	 Inc
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Figure �� Warehouse architecture

whose product is used to construct data warehouses� typically builds warehouses of ��� Gb
or more for its customers ���� and Walmart�s data warehouse contains �� Tb ����

To illustrate some of the distributed and parallel computing challenges� we will describe
some of the research done by the Stanford WHIPS Project �WareHousing Information Project
at Stanford	� The problems illustrated include how to keep warehouse data �consistent� with
the distributed and autonomous sources� and how to recover from crashes during the initial
warehouse load� a process that may involve many distributed components� However� before
surveying our WHIPS work� we will give a brief overview of data warehousing and the overall
challenges it presents�

� Data warehousing

In Figure �� we show the generic architecture used to create and query a data warehouse�
There are several di�erent components in this architecture� which we now describe starting
from the bottom�

� Sources contain the raw data to be integrated� Sources may be relational databases�
IMS� IDMS� or other legacy databases� or text 
les�

� For each source� a source�speci
c data extractor retrieves the desired source data and
converts it into a uniform relational format� Generally� each data extractor is tightly
coupled to its source�

� Integration software transforms the data into the warehouse format� Integration com�
ponents may perform arbitrary transformations of the extracted tuple sequences� in�
cluding byte reordering� relational project� select� and join operations that merge data
from several sources� inexact duplicate elimination and other data scrubbing opera�
tions� adding timestamps and other metadata� and complex aggregate computations
like computing a running total�

� The data warehouse stores the data�
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� Query and analysis software allows user clients to query arbitrary subsets of the ware�
house data� visualize it� display it in spreadsheets� and run data mining queries like
the ones illustrated earlier�

� Data marts receive replicated copies of portions of the warehouse data� e�g�� that a
department will use to make local decisions� For example� the grocery store chain�s
California headquarters might have a data mart containing all inventory data but only
California sales data�

The warehouse itself may be a relational database� tuned speci
cally as a warehouse� or it
may use a specialized data model� In general� warehouse applications di�er from traditional
database applications in several key features� First� the quantity of data is often much larger�
Second� while traditional databases are tuned for short update transactions �one customer
buys a cartful of groceries	� a data warehouse is tuned for long�running queries �
nd all
products that sold more than � million items today	� Third� traditional databases usually
contain only the current state of the world �today�s inventory	� A data warehouse is likely
to archive many previous states and add temporal information such as timestamps� The
previous states are necessary for historical queries� e�g�� does barbecue sauce sell better in
June or September� Furthermore� the warehouse may contain precomputed summaries of
the data� such as total sales for the day� month� and year� in addition to the individual sales
records�

In database terminology� the integration software computes materialized views over the
source data� A view is just a named query� A materialized view is a table containing the
query result� In our framework� the warehouse table de
nitions are views over the source
data� During warehouse creation� the software integration operations execute the �query�
over the sources and populate the warehouse table with the result� The table then stores a
materialized view�

Warehouse maintenance occurs after the source data changes� to incorporate those
changes in the materialized view� There are two options for updating the view� ��	 Recom�
putation� The old view contents are discarded and the view de
nition query is re�evaluated
over the new data� ��	 Incremental maintenance� The current view contents and the changes
to the underlying data are used to compute the changes to the view� Both recomputation
and incremental maintenance may occur after each source update or periodically� In the
warehouse context� view maintenance may be simpli
ed if the view is de
ned over copies of
the source data that are also stored in the warehouse� However� these copies must also be
updated�

As mentioned in Section �� data warehousing comprises many computing elements� some
tightly coupled� some geographically distributed� There are many opportunities for dis�
tributed and parallel processing� In particular�

� The sources are distributed� heterogeneous and autonomous�

� The integration software is a separate entity from both the sources and the warehouse�
In addition� the integration software itself can be many individual distributed compo�
nents� In our warehouse prototype at Stanford� for example� we break integration into





many smaller tasks and use a separate CORBA object for each one� Some commer�
cial products� such as Sagent�s Design Studio software� divide integration into many
smaller transformations� each of which can be a separate process� In addition to being
distributed� the integration components can often execute in parallel�

� The warehouse itself may be a parallel database� For example� the data warehouse used
by Walmart is a �� node Teradata database ���� If the warehouse is a conventional
database system� it may still run transactions concurrently�

� Data marts are distributed copies of warehouse data�

� Data warehouse and data mart clients may be distributed geographically over a very
large area� even worldwide�

For many of these components� standard technology can be used� For example� data
marts can be implemented using data replication software� and parallel database software
can be used as a warehouse� Similarly� standard protocols can be used for communication
between the distributed components� However� the speci
c requirements of data warehous�
ing also render some standard distributed database protocols inapplicable� For instance�
two�phase commit between the sources and the warehouse cannot be used to prevent incon�
sistencies as warehouse data is being updated� �The sources are autonomous and may not
export a commit interface� Even if they did� the performance overhead would be prohibitive�	
We address some of these challenges in Section �� First� we overview general challenges in
data warehousing�

� Challenges in data warehousing

Quite a few commercial products are aimed at the data warehousing market� Some examples
include Prism� Sagent� and Apertus to build a data warehouse� Oracle� DB�� Sybase� and
Redbrick to serve as relational data warehouses and Pilot and Essbase as multi�dimensional
warehouses� and Andyne� Brio� and Cognos as client access tools� A much more extensive list
at http���pwp�starnetinc�com�larryg contains hundreds of warehouse�related products�
However� there are numerous issues that these products have yet to address� In particular�
after the warehouse has been initialized with the source data� the sources may continue to
change� These changes need to be propagated to the warehouse as well� We now enumerate
some of the research challenges in creating and maintaining a data warehouse that we are
addressing at Stanford� For a less Stanford�centric overview of data warehousing� see ���� ��
����

� A relational database source may provide triggers or a replication program that will
notify the data extractor of source changes� Other sources are not as capable� Detecting
changes in �at 
le �text	 sources requires examining both old and new copies of the

les� E�cient algorithms are needed to detect changes in �at 
le sources ���� and
legacy sources�
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� Sources may continue to change their data after the warehouse is created� Warehouse
maintenance algorithms are then needed� Both recomputation and incremental view
maintenance are well understood for centralized relational databases �� ��� ��� ���
However� more complex algorithms are required when updates originate from multiple
sources and a�ect multiple views� Otherwise� the warehouse may not contain accu�
rate data� Current commercial systems assume that the sources are quiescent during
maintenance� We describe our approach to on�line warehouse view maintenance in
Section ��

� Summary tables� such as daily total sales or average January sales� are created from
large underlying tables� e�g�� all sales� They require special maintenance algorithms to
avoid rescanning the entire underlying table when there are incremental changes �����

� Warehouse creation and maintenance loads typically take hours to run� Most of the
work occurs in transformations after the data is extracted from the sources and before
it is stored in the warehouse� If the load is interrupted by failures� traditional recovery
algorithms undo the incomplete load� The administrator must then restart the load�
wait the full load time� and hope it does not fail again� A better approach is to resume
the incomplete load� We discuss our load resumption algorithms in Section ��

� In current warehousing systems� maintenance operations usually are isolated from client
read activity� limiting the availability and size of the warehouse� A more e�ective ap�
proach is to maintain multiple logical versions of updated warehouse data� so that
maintenance transactions can run currently with readers� Furthermore� multiple ver�
sions permit the readers� data to remain stable until well�publicized times� E�cient
multi�version algorithms are needed �����

� Most work in view maintenance for data warehousing only considers non�temporal
views� Automatic maintenance of temporal views over nontemporal source relations is
necessary to allow users to ask temporal �historical	 queries using these views� Their
maintenance is further complicated because� due to the dimension of time� a materi�
alized temporal view may need to be updated not only when source relations change�
but also as time advances �����

� Given a data item in a materialized warehouse view� analysts often want to identify
the set of source data items that produced the view item� Algorithms to trace the
lineage of an item from the view back to source data items from multiple sources are
needed ����

So far as we know� none of these areas have been tackled by the current generation of
commercial products� While our ongoing work addresses some of the challenges outlined
above� future research into e�cient policies and algorithms is needed in all of these areas�
In the next sections� we illustrate some of our work� focusing on problems that involve some
form of distributed or parallel computing�
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� Maintaining warehouse data consistency

The data at the warehouse is a derived copy of data at the sources� and hence consistency
is an issue� Because of source autononomy or performance issues� traditional solutions for
maintaining consistency may not be applicable� Instead� we need to develop specialized
solutions that exploit the semantics of warehouse updates to avoid inconsistencies without
requiring sources to lock data or to modify their procedures� In this section we illustrate
these issues and our solutions� We start by showing that even with a single source and a
single warehouse view there can be problems� Then in the following two subsections we
consider multiple sources and multiple views�

��� Autonomous sources

We start in Example � by showing a correct view maintenance scenario for a view de
ned over
a remote autonomous source� Then we will illustrate the potential problems that may arise�
Let the maintenance for each view V be handled by a view manager V in the integration
component�

Example �� Correct view maintenance� Consider a view V� de
ned over two relations
accounts�client�id� stock� num�shares� price�paid� and inquiries�client�id� date� topic� at a
source Portfolios� Let the current �simple	 contents of the relations be as follows�

accounts�
client�id stock num�shares price�paid
��� IBM ���� ����

inquiries�
client�id date topic
��� ������ �price of SGI�

View V� is de
ned as V� � accounts �� inquiries� �The �� operator performs a natural join�
combining tuples that match on the attributes that have the same names�	 Thus� V� initially
contains one tuple� ����� IBM� ����� ����� ������� �price of SGI��� Now suppose an update
U� occurs� A typical relational view maintenance algorithm �such as ��	 will handle U� as
follows�

�� The Portfolio data extractor detects update U� � Insert�inquiries� ����� ������� �price
of ITT��	 and forwards it to the view manager V��

�� Manager V� receives U�� It needs to know which tuples in accounts join with U�� so it
sends query Q� � accounts �� ����� ������� �price of ITT�� to the source extractor�

� The Portfolio extractor evaluates Q� and returns the answer A� � ����� IBM� �����
����� ������� �price of ITT���

�� Manager V� receives A� and adds A� to the warehouse view V��

The 
nal view V� correctly contains two tuples� �

In our next example we will show how the simple maintenance algorithm above can
lead to an incorrect view when there are concurrent updates� However� before proceeding
it is important to note that duplicate tuples must be stored in the materialized warehouse
views� �Conventional relations typically do not store duplicates�	 As a very simple example�
suppose that a view is de
ned over inquiries� but only retains the attributes client�id and
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topic �i�e�� attribute date is projected out	� Suppose that the source relation has two tuples�
����� ������� �price of SGI�� and ����� ������� �price of SGI��� The warehouse view must
store two copies of ����� �price of SGI��� To see why two copies are necessary� consider what
happens when the source deletes tuple ����� ������� �price of SGI��� If there is only one copy�
the view manager will delete the one copy� leaving the view inconsistent� If there are two
copies� on the other hand� one copy can be removed when the deletion is reported� leaving
the other copy� Copies can be tracked in views either by explicitly storing copies� or by
keeping a �count� attribute on a single copy�

Example �� View maintenance anomaly� Consider the same relations and view V� from
Example �� with the same contents for accounts� However� let the initial contents of inquiries
be empty� The view V� is initially empty as well� Suppose there are two updates U� and U�

as follows�

�� The Portfolio data extractor detects update U� � Insert�inquiries� ����� ������� �price
of ITT��	 and forwards it to the view manager V��

�� Manager V� receives U� and sends query Q� � accounts �� ����� ������� �price of ITT��
to the source extractor�

� The extractor detects update U� � Insert�accounts� ����� APP� ���� �����	 and for�
wards it to the view manager V��

�� Manager V� receives U� and sends query Q� � ����� APP� ���� ����� �� inquiries to
the Portfolio extractor�

�� The extractor receives Q� and the source evaluates it on the current base relations�
The resulting answer is A� � ������ IBM� ����� ����� ������� �price of ITT��� �����
APP� ���� ����� ������� �price of ITT��	� which is sent to V��

�� Manager V� receives A� and updates the view to V� � A� � A��

�� The extractor receives Q� and evaluates it to A� � ������ APP� ���� ����� �������
�price of ITT��	� It sends A� to V��

�� Manager V� receives A� and adds it to the warehouse view V�� The view now contains
the tuple ����� APP� ���� ����� ������� �price of ITT�� twice� which in this case is
incorrect� �

The problem in Example � is that Q� is evaluated on a di�erent source state than existed
at the time that U� occurred and caused Q� to be issued� Such view maintenance anomalies
occur when the view manager tries to update a view while the base data at the source is
changing� These anomalies arise in warehousing because the view maintenance is decoupled
from the source updates� Both insertion and deletion updates can cause anomalies�

Previous view maintenance algorithms assume that sources know about the view def�
initions� and can include all relevant information with an update� In the warehouse envi�
ronment� however� sources can be legacy or unsophisticated systems that do not understand
views� When information about an update arrives at the integration component� it may dis�
cover that additional information is needed to update the view� Thus� it may issue queries
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back to the sources� as illustrated in our example� As we saw� these queries are evaluated at
the source later than the corresponding update� so the source may have changed� This de�
coupling between the source data and the view maintenance machinery can lead to incorrect
views�

Traditional distributed database solutions require that the source lock its data �prevent
updates	 during view maintenance� or use timestamps to detect concurrent updates or �stale�
queries� Since we cannot impose such restrictions on the sources� we developed the Eager
Compensating Algorithm �ECA� for view maintenance� ECA modi
es each query sent to
the source by adding compensating queries to o�set the e�ect of concurrent updates� In
Example �� when V� receives U�� ECA will realize that the previously sent query Q� will be
answered in a state after U�� �Otherwise� V� would have received A� before U��	 Therefore�
query Q� is modi
ed to compensate as follows� Q� � ������ APP� ���� ����� �� inquiries	
minus ������ APP� ���� ����� �� ����� ������� �price of ITT��	� The 
rst part of Q� is
unchanged� the second part compensates for the extra tuple that Q� sees� Due to the
compensation� the answer to Q� is empty and the 
nal view is correct�

In ����� we present ECA in detail� de
ne warehouse view consistency formally� and prove
that ECA guarantees consistency for views over one source� We also discuss how view
keys �attributes that can uniquely identify source tuples that contributed to a view tuple	
can simplify processing� Note that the same consistency problems arise whether the views
are traditional select�project�join views� or contain more complex transformations� Any
maintenance transformation that requests information from a source is subject to the same
anomalies�

We note that an alternate solution is to copy all base data at the warehouse� Since the
anomalies only arise when maintaining views with joins over base data� traditional algorithms
can be used to maintain both the copies �which do not have joins	 and the new join views
�over warehouse data	� However� copies impose high overhead both in storage cost and in
maintenance� especially if only a small fraction of the data participates in the view�

��� Multiple sources

Views de
ned over multiple sources pose further maintenance challenges� since it may not
be obvious when new updates from a source impact the processing of previous updates� We
illustrate the new potential anomalies in Example �

Example �� Multiple source anomaly� Consider the earlier relation accounts�client�id�
stock� num�shares� price�paid� at a source Portfolios� Let two additional sources Price�
Earnings and Stocks contain the relations PE�stock� pe� and daily�date� stock� closing�� Let
view V� compute a join over all three relations� Suppose the current �simple	 contents of the
relations are as follows�

accounts�
client�id stock num�shares price�paid
��� IBM ���� ����

daily�
date stock closing

PE�
stock pe
IBM �

View V� is de
ned as V� � accounts �� daily �� pe� View V� is initially empty� Now suppose
updates U� and U� occur� Using ECA or a conventional view maintenance algorithm� the
following scenario may occur�
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�� The Stocks data extractor detects update U� � Insert�daily� �������� IBM� ���	 and
forwards it to the view manager V��

�� Manager V� receives U�� It needs to know which tuples in accounts and PE join with
U�� so it 
rst sends query Q� � accounts �� �������� IBM� ��� to the Portfolio source
extractor�

� The Portfolio extractor evaluates Q� and returns the answer A� � ����� IBM� �����
����� ������� ����

�� Manager V� receives A� and sends Q� � ����� IBM� ����� ����� ������� ��� �� PE to
the Price�Earnings data extractor�

�� The Portfolio extractor detects update U� � Delete�accounts� ����� IBM� ����� �����
and sends it to V��

�� Manager V� receives U�� Since the view is empty� no action is taken for this deletion�
�Since U� includes a key for accounts� there is no need to join the tuple with the other
relations before performing the delete�	

�� The Price�Earnings extractor evaluates Q� and returns A� � ����� IBM� ����� �����
������� ��� �� to V��

�� Manager V� receives A�� the 
nal answer regarding update U�� Since there are no
pending queries or updates� A� is inserted into V�� This 
nal view is incorrect� �

In the above example� the interleaving of the queries for U� with updates arriving from
the sources causes the incorrect view� In ECA� we compensated for the updates that occurred
at the source before the query was processed� With multiple sources� however� we may have
to compensate for updates that occur after the query� if they overlap even the processing of
a previous update�

We propose a new algorithm Strobe in ���� that extends ECA for multiple sources� The
Strobe algorithm keeps track of all updates that occurred at any source while processing
query Q for update U � These updates are then applied to Q�s answer A� before installing A

in the warehouse view�
In the above example� Strobe remembers the update U� until after all processing for U�

is completed� When the 
nal answer for U�� A�� arrives� V� applies the deletion U� to A��
and then correctly inserts nothing into the view V�� In ���� we also rede
ne consistency for
multiple sources and prove that Strobe provides this consistency�

��� Multiple views

Finally� we extend the earlier work to ensure that multiple views are consistent with each
other� which we call the multiple view consistency �MVC	 problem� With MVC� the main�
tenance algorithms presented above are still used to maintain each view� However� some
coordination among views is necessary before updates are propagated to the warehouse� as
Example � demonstrates�
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Example �� Consistency across multiple views� Let V� be de
ned as in Example ��
Let V� be a copy of the inquiries relation� Consider the same contents of the relations and
the same updates as in Example �� When the view manager V� for view V� receives update
U� �an insertion to inquiries	� it sends a query to the Portfolio extractor� Manager V� does
not update V� until it receives the answer to its query� In the meantime� when manager V�
for view V� receives update U� �which also a�ects this view	� it can immediately update V�
since no query needs to be issued� When V� updates the warehouse� V� re�ects update U�

but V� does not� �V� is still waiting for its query answer�	 �

Although both V� and V� are consistent with source states� V� is consistent with a later
state than V�� The two views are not consistent with each other and any client analysis
at the warehouse that uses both views may have incorrect results� The problem could be
avoided by processing updates strictly sequentially� using a variant of the Strobe algorithm�
However� sequential handling does not permit concurrency and limits parallelism in view
maintenance� In a high update environment� sequential handling is unacceptably slow�

Instead� we propose adding another component to the warehouse maintenance architec�
ture� the merge process� shown in Figure �� �The merge process� the view managers and the
coordinator are all part of the data integration component shown in Figure ��	 As updates
arrive from the extractors� they are dispatched by the coordinator to the appropriate view
manager�s	 �whose views are impacted by the update	� The view updates generated by the
managers are forwarded to the merge process� which collects all updates and holds them until
all a�ected views can be updated together� It then forwards a �batch� of the view updates
to the warehouse in a single transaction� When a merge process is used in Example �� both
V� and V� can process their updates concurrently� and any delays incurred while waiting for
queries do not interfere with the other managers� When the merge process receives the V�
update 
rst� it holds it �because it knows that the source update that generated this view
update also a�ects V�	� When the merge process receives the corresponding updates to V��
it then forwards both sets of updates to the warehouse as one transaction�

The full MVC algorithm is more complicated than this example shows� Suppose updates
U� and U� both impact views V� and V�� Suppose that V� processes U� 
rst� Then the merge
process will hold it until it receives the corresponding updates to V�� However� assume further
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that V� sends updates for U� and U� together� Then the merge process must continue to hold
the updates until V� 
nishes processing U�� In general� if the merge process receives updates
for view V� that only partially overlap the view updates received for V�� then it cannot apply
either set immediately� Instead� the merge process must hold both sets of view updates until
it has a set for each of V� and V� that re�ects the same sets of source updates� It can then
install these view updates �although it may still be holding later sets of view updates for V�
or V�	� Further details about the algorithm used by the merge process are in �����

� Resuming failed warehouse loads

Warehouse loading is often performed by a set of distributed cooperating processes� For
example� in Figure  we show how one of our view managers could be implemented by four
processes� T� through T�� We call each process a transform since it takes one or more streams
of tuples� and merges them or manipulates them into another form� Typical transforms sort
data� check for errors� perform joins� 
lter tuples� and compute summaries�

A typical load to create or maintain a data warehouse can range from � to ��� Gigabytes
and take up to �� hours to execute� For example� Walmart�s incremental maintenance load
averages �� Gb per day ���� and Sagent customer maintenance loads vary from ��� to � Gb
nightly or weekly and up to ��� Gb to create the warehouse� If the load is interrupted by
failures� traditional recovery algorithms undo the incomplete load� and rely on the admin�
istrator to restart it� Alternatively� persistent queues ��� or other fault�tolerant logs ��� can
be used to save the data sent from one transform to another� and resend it after a failure�
However� saving all the data persistently imposes a lot of overhead in both time and disk
space�

Our approach is to perform the load without any logging� simply transforming data
and storing it into the warehouse as fast as possible� �Typically� load utilities are used to
enter data into the warehouse� these utilities do not provide any transactional guarantees�	
When any failure occurs� we stop the entire load process� �We do not attempt to restart a
single failed transform� as in distributed process recovery� e�g�� ����	 We analyze the tuples
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that did make it into the warehouse� and we try to infer where the computation was at the
time of the failure� We restart the entire load process� but based on what data had made
it to the warehouse� we try to avoid reading unnecessary data from the sources� or redoing
computations whose results are already in the warehouse�

Example �� Resumption� Figure � shows the transforms used for a particular warehouse
view� In this scenario� data is extracted from the DailyTradeVolume �Trades	 and Price�
ToEarnings �PE	 source relations� The stock trade data is 
rst 
ltered by the Dec��Trades
transform� which only outputs trades from December� ����� The output of this transform is
then sent to both the TotalVolume and PercentVolume transforms� The TotalVolume trans�
form computes the total trade volume over its input� and sends its output to PercentVolume�
The PercentVolume transform then groups the trades by company and 
nds the percent of
the total trade volume contributed by companies whose price�to�earnings ratio is greater
than �� For those companies� it sends a tuple containing the company� price�to�earnings
ratio� and percentage of the trade volume to the warehouse�

For instance� suppose that the total volume of stocks traded in December ���� was �����
The output of the TotalVolume transform will be a single tuple with the value ����� Suppose
that the volume of trades for stock AAA was ���� in December ����� while the volume for
IBM was ����� If the price�to�earnings ratio of AAA was �� while the ratio for IBM was �
then a tuple for AAA will be output by PercentVolume �reporting a percent volume of ����
divided by ����	� while no tuple for IBM will be generated�

company pe percentvol

AAA � ����
INTC � ���
MSN � ����

Figure �� Sequence of tuples stored in the warehouse before the failure

To illustrate the intuition behind our resumption process� suppose that a failure occurs
after the sequence of tuples shown in Figure � is stored in the warehouse� When we redo
the load� we try to avoid redoing the work that lead to the tuples in Figure �� For example�
we may avoid re�extracting from source relation PE the price�to�earning information for
stocks AAA� INTC� and MSN� If PE provides its data in alphabetical order� and this order
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was preserved by the transforms� we can avoid re�reading all PE information up to stock
MSN� The data from Trades does have to be fully read� since we need to recompute the total
volume� However� the output tuples coming out of Dec��Trades and going to PercentVolume
can be 
ltered� e�g�� those tuples that refer to AAA� INTC and MSN can be dropped� �

In summary� our approach is to redo the load after a failure� avoiding repeated e�ort�
We use the warehouse contents to identify which tuples in each transform�s input sequence
have already been processed� and remove them from the input� To do this� we rely on
knowing certain properties of the transforms� e�g�� if they process tuples in order� or if they
map multiple input tuples to a single output tuple� These properties are de
ned in ��� and
can usually be inferred from the transform interface� We do not need to understand exactly
what the transforms do� only their �data �ow� properties� That is� we view transforms as
opaque software modules� whose detailed functionality is unknown to the recovery system�

Our resumption algorithm proceeds in two phases� Once the graph �work�ow	 of trans�
forms used in the load is known� the design phase of the algorithm decides where to place

lters during resumption� A 
lter before a transform removes tuples from the transform�s
input tuple sequence when they �or all the tuples to which they contribute	 are already
stored in the warehouse� These 
lters remain inactive during normal load operation� Af�
ter a failure� the resume phase instantiates the 
lters with the actual tuples already in the
warehouse� Other than instantiating the 
lters and actually removing input tuples� most of
the work is performed only once� in the design phase� The 
lters can then be used multiple
times to resume di�erent loads�

To add a 
lter to a transform�s input� the algorithm must determine that three require�
ments are satis
ed� ��	 There must be a set of common attributes between the transform
input tuples and the warehouse tuples that identi
es exactly the input tuples that contribute
to each warehouse tuple� These are the identifying attributes� ��	 An input tuple is 
ltered
only if all of the tuples to which it contributes are already in the warehouse prior to the
failure� �	 If the 
lter removes a pre
x of input tuples �i�e�� a DiscardPre
x 
lter	� then
the input tuple order at load resumption time must be guaranteed to be the same as it was
during the original load� There is no such requirement if the 
lter removes a subset of the
input tuples �i�e�� a DiscardSubset 
lter	�

In ���� we de
ne the transform properties and 
lter requirements formally� The al�
gorithm computes the 
lter requirements from the properties and decides where 
lters are
feasible� The resumption algorithm also determines when the data extractors can request
only a subset or su�x of their original data from the sources� although we do not discuss
that portion of the algorithm here�

Example � �Continued	� We now apply the resumption algorithm to the scenario il�
lustrated in Figure �� The results are shown in Figure �� During the design phase� the
algorithm assigns the 
lter DiscardPre
x to the PercentV olume input produced by the PE
data extractor� The PE attribute company is a key for both PE and the warehouse and
serves as the identifying attribute� This means that this attribute can be used to identify
exactly which tuples can be ignored during the re�load� Furthermore� assume that the PE
data extractor always produces the input in the same order� Therefore� all three require�
ments for assigning DiscardPre
x are satis
ed� The 
lter DiscardSubset is assigned to the
PercentV olume input produced by transform Dec��Trades� Since company is a key at�
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Figure �� Re�extraction procedures and 
lters assigned

tribute of the warehouse� it is an identifying attribute for the 
lter� The algorithm further
determines that each Dec��Trades tuple contributes to at most one tuple in the output
of PercentV olume� so both requirements for DiscardSubset are satis
ed� However� we as�
sume that Dec��Trades does not produce the input tuples in the same order� so the 
lter
DiscardSubset is assigned rather than DiscardPre
x�

Suppose again that the load fails when the tuples shown in Figure � are stored in
the warehouse� The resume phase begins� The DiscardPre
x 
lter is instantiated with
the last tuple in the warehouse as DiscardPre
x��MSN �	� It scans the tuples until it

nds one with the same company attribute value �MSN	� The 
lter�s output starts with
this tuple� The DiscardSubset tuple 
lter is instantiated with all of the warehouse tuples
as DiscardSubset���AAA�� �INTC�� �MSN ��	� which removes any tuple in its input with a
company attribute value of AAA� INTC� or MSN � In database terms� it performs an anti�
semijoin between its input and the warehouse tuple sequence� All other tuples are output
by the 
lter� �

In ���� we also discuss an extension to our incremental resumption algorithm that uses
logs of a transform�s output to reduce work at resumption time� We discuss both where to
add logs and how to use them e�ectively�

� Parallelizing view maintenance tasks

Warehouse maintenance often requires massive amounts of processing to perform joins� ag�
gregations� index maintenance� and change installation� During maintenance� either the
warehouse is unavailable for querying� or the user queries compete with view maintenance
queries for warehouse resources� Hence� it is important to minimize view maintenance time�
Fortunately� the process of maintaining warehouse views can be divided into �tasks� that
can be done in parallel�

It is a challenging problem to schedule the tasks in parallel� in order to minimize the over�
all execution time� Additional complexity is introduced since there are numerous methods
for maintaining warehouse views� and each method divides view maintenance into di�erent
sets of tasks constrained by di�erent partial orders� In this section we brie�y illustrate some
of the choices ����� Our goal is simply to identify this area as worthy of research� rather than
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to o�er speci
c answers�

Example 
� Parallelization� Suppose that the warehouse maintains two views� V� and
V�� de
ned on source data� The algorithms of Section � are used to maintain these views�
i�e�� periodically a set of tuples to insert and a set of tuples to delete are computed for each
view� Let �V� and �V� be the tuples to insert and delete from V�� and similarly� let �V�
and �V� be the tuples for V��

In addition� there is a view V� de
ned at the warehouse as V� �� V�� The changes to V�
and V� in turn trigger changes to V�� represented by �V� and �V�� After the updates to V�
and V� are computed� there are many ways in which we can do the remaining work� Here
we illustrate two options�

�� Late Evaluation� We defer updating V� and V� until after the changes to V� have been
computed� That is� 
rst we compute the insertions to V�� �V�� as �V� �� V� union
V� �� �V� union �V� �� �V�� We compute �V� is a similar fashion� Finally� we
update all the views� The new value for V� is V� union �V� minus �V�� The other
two views are updated in a similar way�

�� Early Evaluation� We 
rst compute the changes to V� caused by �V� and �V�� then
update V�� and 
nally compute the rest of the changes� �It is also possible to update
V� 
rst� but we do not consider this here�	 That is� we initially compute �V� as
�V� �� V� and �V� as �V� �� V�� These are partial sets since they do not yet re�ect
V� changes� We then update V� to V� union �V� minus �V�� Then we add to �V�
the set V� �� �V�� and similarly compute the deletes �V�� Note that in these last two
computations we use the updated value of V�� As a last step� we update V� and V��

These two schemes di�er not just in the amount of work done� but also in how it can be
parallelized� For example� late evaluation performs more joins� but they can all be done in
parallel because they all use the non�updated states of V� and V�� On the other hand� early
evaluation involves fewer joins� but the ones that use the new V� value cannot be initiated
until after V� is updated� �

In general� it can be shown that if a view joins n tables� n � � compute tasks are
needed by the late installation method� On the other hand� early installation requires only
�n tasks� However� as we observed� these tasks cannot be parallelized as easily since the
method imposes ordering constraints� In addition to these choices� there are numerous ways
to implement early computations� depending on which views are updated 
rst� Performance
is impacted by all these choices� and in addition by other parameters such as the number of
processors available� the size of the views� and the number of tuples that match in the join
operations� Overall� there are a huge number of choices for maintaining the materialized
views at the warehouse� Selecting the best one is important since the di�erences in perfor�
mance can be very signi
cant� We are currently working on an e�cient algorithm with a
good set of heuristics for choosing an early versus late installation method� and then a set
of tasks within the method�
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� Conclusions

Data warehousing presents many new opportunities for distributed and parallel computing�
In this paper we outlined some of the distributed and parallel aspects of creating� maintain�
ing� and querying a data warehouse� We then focused on several new challenges for ware�
house maintenance� First� new algorithms are needed to maintain warehouse consistency
since warehouse maintenance is performed by a set of distributed computing components
that receive data from autonomous sources� Second� new approaches are needed to resume
interrupted warehouse loads� because traditional approaches either have too much overhead
or repeat all of the work� Third� the parallelization of maintenance tasks is an important
research area� since there are many choices and the performance implications are signi
cant�
We hope that by discussing some of these problems� we stimulate more interest in data
warehousing from the distributed and parallel computing community�
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