Proc. of 4th Int’l Conference on Information and Knowledge Management (CIKM), Nov. 1995

Research Problems in Data Warehousing

Jennifer Widom

Department of Computer Science
Stanford University
Stanford, CA 94305-2140

widom@db.stanford.edu

Abstract

The topic of data warehousing encompasses architec-
tures, algorithms, and tools for bringing together se-
lected data from multiple databases or other informa-
tion sources into a single repository, called a data ware-
house, suitable for direct querying or analysis. In recent
years data warehousing has become a prominent buz-
zword in the database industry, but attention from the
database research community has been limited. In this
paper we motivate the concept of a data warehouse, we
outline a general data warehousing architecture, and
we propose a number of technical issues arising from
the architecture that we believe are suitable topics for
exploratory research.

1 Introduction

Providing integrated access to multiple, distributed,
heterogeneous databases and other information sources
has become one of the leading issues in database re-
search and industry [6]. In the research community,
most approaches to the data integration problem are
based on the following very general two-step process:

1. Accept a query, determine the appropriate set of
information sources to answer the query, and gen-
erate the appropriate subqueries or commands for
each information source.

2. Obtain results from the information sources, per-
form appropriate translation, filtering, and merg-
ing of the information, and return the final an-
swer to the user or application (hereafter called
the client).

We refer to this process as a lazy or on-demandapproach
to data integration, since information is extracted from
the sources only when queries are posed. (This process
also may be referred to as a mediated approach, since the
module that decomposes queries and combines results
often is referred to as a mediator [20].)

The natural alternative to a lazy approach is an eager
or in-advance approach to data integration. In an eager
approach:

1. Information from each source that may be of inter-
est is extracted in advance, translated and filtered
as appropriate, merged with relevant information
from other sources, and stored in a (logically) cen-
tralized repository.

2. When a query is posed, the query is evaluated di-
rectly at the repository, without accessing the orig-
inal information sources.

This approach is commonly referred to as data warehous-
ing, since the repository serves as a warehouse storing
the data of interest.

A lazy approach to integration is appropriate for in-
formation that changes rapidly, for clients with unpre-
dictable needs, and for queries that operate over vast
amounts of data from very large numbers of informa-
tion sources. However, the lazy approach may incur
inefficiency and delay in query processing, especially
when queries are issued multiple times, when informa-
tion sources are slow, expensive, or periodically unavail-
able, and when significant processing is required for the
translation, filtering, and merging steps. In cases where
information sources do not permit ad-hoc queries, the
lazy approach is simply not feasible.

In the warehousing approach, the integrated infor-
mation is available for immediate querying and analysis
by clients. Thus, the warehousing approach is appro-
priate for:

e clients requiring specific, predictable portions of
the available information

o clients requiring high query performance (the data
is available locally at the warehouse), but not nec-
essarily requiring the most recent state of the in-
formation

e environments in which mnative applications at
the information sources require high performance
(large multi-source queries are executed at the
warehouse instead)

e clients wanting access to private copies of the in-
formation so that it can be modified, annotated,
summarized, and so on, or clients wanting to save
information that is not maintained at the sources
(such as historical information)



Data
Warehouse

@Vrapper/ M onitor) @Vrapper/

Moni tor)

Wrapper/Monitor

Figure 1: Basic architecture of a data warehousing system

The lazy and warehousing approaches are each vi-
able solutions to the data integration problem, and each
is appropriate for certain scenarios.! The database re-
search community has focused primarily on lazy ap-
proaches to integration. In this paper we consider re-
search problems associated with the warehousing ap-
proach.

2 Industrial Perspective

Before considering the research problems associated
with data warehousing, we note that there has been
great interest in the topic within the database industry
over the last several years [12]. Most leading vendors
claim to provide at least some “data warehousing tools,”
while several small companies are devoted exclusively to
data warehousing products. Despite rapid advances in
commercial data warehousing tools and products, most
of the available systems are relatively inflexible and lim-
ited in their features. We believe that a truly general,
efficient, flexible, and scalable data warehousing archi-
tecture requires a number of technical advances, out-
lined below.

The importance of data warehousing in the commer-
cial segment appears to be due to a need for enterprises
to gather all of their information into a single place for
in-depth analysis, and the desire to decouple such anal-
ysis from on-line transaction processing systems. An-
alytical processing that involves very complex queries
(often with aggregates) and few or no updates—usually
termed decision support—is one of the primary uses of
data warehouses, hence the terms data warehousing and
decision support often are found together, sometimes
interchanged.? Since decision support often is the goal
of data warehousing, clearly warehouses may be tuned
for decision support, and perhaps vice-versa. Neverthe-
less, decision support is a very broad area, so we focus
this paper specifically on research issues associated with
the warehousing approach to integration.

1 Another promising and relatively unexplored approach to infor-
mation integration is a hybrid approach, in which some information
is stored in a centralized repository while other information is fetched
on demand, e.g., [21].

2Other relevant terms include data mining, on-line analytical pro-
cessing (OLAP), and multidimensional analysis, which we view as
refinements or subclasses of decision support.

3 Architecture of a Data Warehousing System

Figure 1 illustrates the basic architecture of a data ware-
housing system. The bottom of the diagram shows
the information sources. Although the traditional disk
shapes connote conventional database systems, in the
general case these sources may include non-traditional
data such as flat files, news wires, HTML and SGML
documents, knowledge bases, legacy systems, and so
on. Connected to each information source is a wrap-
per/monitor. The wrapper component of this module is
responsible for translating information from the native
format of the source into the format and data model
used by the warehousing system, while the monitor com-
ponent is responsible for automatically detecting chan-
ges of interest in the source data and reporting them to
the integrator.

When a new information source is attached to the
warehousing system, or when relevant information at
a source changes, the new or modified data is propa-
gated to the integrator. The integrator is responsible
for installing the information in the warehouse, which
may include filtering the information, summarizing it,
or merging it with information from other sources. In
order to properly integrate mnew information into the
warehouse, it may be necessary for the integrator to
obtain further information from the same or different
information sources. This behavior is illustrated by the
downward dashed arrows in Figure 1.

The data warehouse itself can use an off-the-shelf
or special purpose database management system. Al-
though in Figure 1 we illustrate a single, centralized
warehouse, the warehouse certainly may be implemen-
ted as a distributed database system, and in fact data
parallelism or distribution may be necessary to provide
the desired performance.

The architecture and basic functionality we have de-
scribed is more general than that provided by most
commercial data warehousing systems. In particular,
current systems usually assume that the sources and
the warehouse subscribe to a single data model (nor-
mally relational), that propagation of information from
the sources to the warehouse is performed as a batch
process (perhaps off-line), and that queries from the in-
tegrator to the information sources are never needed.



4 Research Problems

Based on the general architecture for data warehous-
ing described in Section 3, we now outline a number
of research problems that arise from the warehousing
approach.

4.1 Wrapper/Monitors

The wrapper/monitor components illustrated in Figure 1
have two interrelated responsibilities:

1. Translation: Making the underlying information
source appear as if it subscribes to the data model
used by the warehousing system. For example, if
the information source consists of a set of flat files
but the warehouse model is relational, then the
wrapper/monitor must support an interface that
presents the data from the information source as
if it were relational. The translation problem is
inherent in almost all approaches to data integra-
tion—both lazy and eager—and is not specific to
data warehousing. Typically, a component that
translates an information source into a common

integrating model is called a translator or wrapper
[3, 20].°

2. Change detection: Monitoring the information
source for changes to the data that are relevant to
the warehouse and propagating those changes to
the integrator. Note that this functionality relies
on translation since, like the data itself, changes to
the data must be translated from the format and
model of the information source into the format
and model used by the warehousing system.

One approach is to ignore the change detection issue
altogether and simply propagate entire copies of rele-
vant data from the information source to the warehouse
periodically. The integrator can combine this data with
existing warehouse data from other sources, or it can re-
quest complete information from all sources and recom-
pute the warehouse data from scratch. Ignoring change
detection may be acceptable in certain scenarios, for
example when it is not important for the warehouse
data to be current and it is acceptable for the ware-
house to be off-line occasionally. However, if currency,
efficiency, and continuous access are required, then we
believe that detecting and propagating changes and in-
crementally folding the changes into the warehouse will
be the preferred solution.

In considering the change detection problem, we have
identified several relevant types of information sources:

e Cooperative sources: Sources that provide trig-
gers or other active database capabilities [19], so
that notifications of changes of interest can be pro-
grammed to occur automatically.

o Logged sources: Sources maintaining a log that
can be queried or inspected, so changes of interest
can be extracted from the log.

3 Most commercial data warehousing systems assume that both the
information sources and the warehouse are relational, so translation
is not an issue. However, some vendors do provide wrappers for other
common types of information sources.

¢ Queryable sources: Sources that allow the wrap-
per/monitor to query the information at the
source, so that periodic polling can be used to de-
tect changes of interest.

e Snapshot sources: Sources that do not provide
triggers, logs, or queries. Instead, periodic dumps,
or snapshots, of the data are provided off-line, and
changes are detected by comparing successive
snapshots.

Each type of information source capability provides
interesting research problems for change detection. For
example, in cooperative sources, although triggers and
active databases have been explored in depth, putting
such capabilities to use in the warehousing context still
requires addressing the translation aspect; similarly for
logged sources. In queryable sources, in addition to
translation, one must consider performance and seman-
tic issues associated with polling frequency: If the fre-
quency is too high, performance will degrade, while if
the frequency is too low, changes of interest may not be
detected in a timely way. In snapshot sources, the chal-
lenge is to compare very large database dumps, detect-
ing the changes of interest in an efficient and scalable
way [13]. An important related problem in all of these
scenarios is to develop appropriate representations for
the changes to the data, especially if a non-relational
model is used [4].

Finally, we note that a different wrapper/monitor
component is needed for each information source, since
the functionality of the wrapper/monitor is dependent
on the type of the source (database system, legacy sys-
tem, news wire, etc.) as well as on the data provided
by that source. Clearly it is undesirable to hard-code
a wrapper/monitor for each information source partic-
ipating in a warehousing system, especially if new in-
formation sources become available frequently. Hence,
a significant research issue is to develop techniques and
tools that automate or semi-automate the process of
implementing wrapper/monitors, through a toolkit or
specification-based approach [16].

4.2 Integrator

Assume that the warehouse has been loaded with its ini-
tial set of data obtained from the information sources.
(The task of setting up and loading the data warehouse
is discussed in Section 4.5 below.) The ongoing job of
the integrator is to receive change notifications from the
wrapper/monitors for the information sources and re-
flect these changes in the data warehouse; see Figure 1.

At a sufficiently abstract level, the data in the ware-
house can be seen as a materialized view (or set of views),
where the base data resides at the information sources.
Viewing the problem in this way, the job of the inte-
grator is essentially to perform materialized view mainte-
nance [9]. Indeed, there is a close connection between
the view maintenance problem and data warehousing
[15]. However, there are a number of reasons that con-
ventional view maintenance techniques cannot be used,
and each of these reasons highlights a research problem
associated with data warehousing:

e In most data warehousing scenarios, the views stored
at the warehouse tend to be more complicated than con-
ventional views. For example, even if the warehouse and



the information sources are relational, the views stored
in the warehouse may not be expressible using a stan-
dard relational view definition language (such as SQL)
over the base data. Typically, data warehouses may
contain a significant amount of historical information
(e.g., the history of stock prices or retail transactions),
while the underlying sources may not maintain this in-
formation. Hence, warehouse views may not be func-
tions of the underlying base data as traditional views
are, but rather functions of the history of the under-
lying data. Relevant areas of research here certainly
include temporal databases [18], as well as work on ef-
ficient monitoring of historical information [5].

e Data warehouses also tend to contain highly aggre-
gated and summarized information [7]. Although in
some cases aggregations may be describable in a con-
ventional view definition language, the expressiveness
of aggregates and summary operators in such languages
are limited, so more expressive view definition languages
may be needed. Furthermore, efficient view mainte-
nance in the presence of aggregation and summary in-
formation appears to be an open problem [7, 17].

e The information sources updating the base data gen-
erally operate independently from the warehouse where
the view is stored, and the base data may come from
legacy systems that are unable or unwilling to partic-
ipate in view maintenance. Most materialized view
maintenance techniques rely on the fact that base data
updates are closely tied to the view maintenance ma-
chinery, and view modification occurs within the same
transaction as the updates. In the warehousing envi-
ronment it is generally the case that:

— The system maintaining the view (the integrator)
is only loosely coupled to the systems handling the
base data (the information sources).

— The underlying information sources do not par-
ticipate in view maintenance but simply report
changes.

— Some sources may not provide locking capabilities,
and there are almost certainly no global transac-
tions.

In this scenario, certain “anomalies” arise when attem-
pting to keep views consistent with base data (see [22]),
and algorithms must be used that are considerably more
complicated than conventional view maintenance algo-
rithms.

e In a data warehouse, the views may not need to be
refreshed after every modification or set of modifica-
tions to the base data. Rather, large batch updates
to the base data may be considered, in which case effi-
cient view maintenance techniques may involve different
algorithms than are used for conventional view mainte-
nance.

e In a data warehousing environment it may be neces-
sary to transform the base data (sometimes referred to
as data scrubbing) before it is integrated into the ware-
house. Transformations might include, for example, ag-
gregating or summarizing the data, sampling the data
to reduce the size of the warehouse, discarding or cor-
recting data suspected of being erroneous, inserting de-

fault values, or eliminating duplicates and inconsisten-
cies.

Finally, we note that although integrators can be
based purely on the data model used by the warehous-
ing system, a different integrator still will be needed
for each data warehouse, since a different set of views
over different base data will be stored. As with wrap-
per/monitors, it is desirable not to require that each
integrator be hard-coded from scratch, but rather to
provide techniques and tools for generating integrators
from high-level, nonprocedural specifications. This gen-
eral approach is standard practice in conventional view
maintenance, however there are a number of interesting
problems in adapting it to data warehousing, discussed
in the next section.

4.3 Warehouse Specification

In the previous section we drew an analogy between
maintenance of a data warehouse and materialized view
maintenance. We also indicated that it is useful to pro-
vide capabilities for specifying integrators in a high-level
fashion, rather than implementing each integrator from
scratch. Hence, in an ideal architecture, the contents
of the data warehouse are specified as a set of view
definitions, from which the warehouse updating tasks
performed by the integrator and the change detection
tasks required of the wrapper/monitors are deduced au-
tomatically.

For conventional view maintenance, algorithms have
been developed to automatically generate active data-
base rules for maintaining SQL-defined views [2]. Each
rule is “triggered” by the notification of an update that
may affect the view, and the rule modifies the view ap-
propriately. A similar approach may be applied to data
warehousing if a rule-driven integrator is used. Each in-
tegrator rule is triggered by a change notification (possi-
bly of a specific type) from a wrapper/monitor. Similar
to the view maintenance rules, integrator rules must
update the warehouse to reflect the base data updates.
However, in the warehousing scenario, rules may need
to perform more complicated functions, such as fetching
additional data from sources using remote queries [22]
and “scrubbing” the data (as described in Section 4.2).
Despite the additional complexity of rules in the ware-
housing environment, it still should be possible to au-
tomatically or semi-automatically generate appropriate
rules from the warehouse (view) specification.

Thus, the research challenge in realizing the ideal
architecture is to devise a warehouse specification lan-
guage, rule capabilities, wrapper/monitor interfaces,
and appropriate algorithms to permit developers of a
data warehousing system to generate the integrator and
the relevant change detection mechanisms automati-
cally. We self-servingly note that this approach is be-
ing pursued by the WHIPS data warehousing project at
Stanford [11].

4.4 Optimizations

In this section we outline three optimizations that can
improve the performance of the architecture described
Section 3: filtering irrelevant modifications at the sour-
ces, storing additional data at the warehouse for “self-



maintainability,” and efficiently managing multiple ma-
terialized views.

441 Update Filtering

We have said that all data modifications at a source
that may be relevant to the warehouse are propagated
to the integrator by the wrapper/monitor. Returning
to our view maintenance analogy and considering the
relational case as an example, we would propagate all
inserts, deletes, and updates on any relation that par-
ticipates in a view at the warehouse. A number of pa-
pers have been devoted to the topic of determining when
certain modifications are guaranteed to leave a view un-
changed, e.g., [14]. Related techniques allow distributed
integrity constraints to be checked at a single site when
certain types of modifications occur [10]. We believe
that these classes of techniques can be adapted to data
warehousing, whereby as many changes as possible are
filtered at the source rather than propagated to the in-
tegrator.

4.4.2 Self-maintainability

When the integrator receives a change notification, in
order to integrate that change into the warehouse the
integrator may need to fetch additional data from the
same or different sources. (As a simple example, if the
warehouse joins two relations R and S, and there is a
notification of an insert to relation R, then the inserted
tuple must be joined with the contents of relation S.) Is-
suing queries to sources can incur a processing delay, the
queries may be expensive, and such queries are the basis
of the warehouse maintenance “anomalies” alluded to in
Section 4.2 [22]. Even worse, when information sources
are highly secure or when they are legacy systems, ad-
hoc queries may not be permitted at all. Consequently,
it may be desirable to ensure that, as much as possible,
queries to the sources are not required in order to keep
the warehouse data consistent.

In view maintenance, when additional queries over
base data are never required to maintain a given view,
then the view is said to be self-maintainable[1, 8]. Most
views are not fully self-maintainable. However, self-
maintainability can be ensured by storing additional
data at the warehouse. For example, in the extreme
case, all relevant data from the sources is copied to the
warehouse, and views can be recomputed in their en-
tirety if necessary. It appears to be an open research
problem to determine the minimum amount of extra
information needed for self-maintainability of a given
view. Also interesting is to balance the cost of main-
taining extra data at the warehouse against the cost of
issuing queries to the sources.

4.4.3 Multiple View Optimization

Data warehouses may contain multiple views, for exam-
ple to support different types of analysis. When these
views are related to each other, e.g., if they are defined
over overlapping portions of the base data, then it may
be more efficient not to materialize all of the views, but
rather to materialize certain shared “subviews,” or por-
tions of the base data, from which the warehouse views
can be derived. When applicable, this approach can re-
duce storage costs at the warehouse and can reduce the

effort required to integrate base data modifications into
the warehouse. However, these savings must be bal-
anced against slower query response at the warehouse,
since some views may not be fully materialized.

4.5 Miscellaneous

We briefly note a few other important issues that arise
in a data warehousing environment.

¢ Warehouse management: We have focused pri-
marily on problems associated with the “steady
state” of a data warehousing system. However,
issues associated with warehouse design, loading,
and metadata management are important as well.
(In fact, it is these problems that have received
the most attention from a large segment of the
data warehousing industry to date.)

¢ Source and warehouse evolution: A warehous-
ing architecture must gracefully handle changes to
the information sources: schema changes, as well
as the addition of new information sources and the
removal of old ones. In addition, it is likely that
clients will demand schema changes at the ware-
house itself. All of these changes should be han-
dled with as few disruptions or modifications to
other components of the warehousing system as
possible.

e Duplicate and inconsistent information: As in
any environment involving multiple, heterogene-
ous information sources, there is the likelihood of
encountering copies of the same information from
multiple sources (represented in the same or dif-
ferent ways), or related information from multiple
sources that is inconsistent. Earlier, we described
the “scrubbing” of data from single sources. In
addition, it is desirable for the integrator to scrub
multi-source data, in order to eliminate duplicates
and inconsistencies as much as possible.

e Outdated information: A feature of data ware-
houses is that they may contain historical informa-
tion even when that information is not maintained
in the sources. Nevertheless, in many cases it is
undesirable to keep information “forever.” Tech-
niques are needed for specifying recency require-
ments in a warehousing environment, and for en-
suring that outdated information is automatically
and efficiently purged from the warehouse.

5 Conclusions

In the area of integrating multiple, distributed, het-
erogeneous information sources, data warehousing is a
viable and in some cases superior alternative to tra-
ditional research solutions. Traditional approaches re-
quest, process, and merge information from sources
when queries are posed. In the data warehousing ap-
proach, information is requested, processed, and merged
continuously, so the information is readily available for
direct querying and analysis at the warehouse.
Although the concept of data warehousing already
is prominent in the database industry, we believe there



are a number of important open research problems, de-
scribed above, that need to be solved to realize the flex-

ible,

powerful, and efficient data warehousing systems

of the future.

Acknowledgements

Thanks to Hector Garcia-Molina for recognizing the im-
portance of data warehousing and introducing me to

the topic, to the members of the

WHIPS data ware-

housing project at Stanford (including Joachim Ham-
mer, Wilburt Labio, Brian Lent, Dallan Quass, and Yue
Zhuge), and to Elena Baralis, Stefano Ceri, Sudarshan
Chawathe, Ashish Gupta, Venky Harinarayan, Yannis
Papakonstantinou, and Dallan Quass for helpful com-
ments on an initial draft of this paper.

References

(1]

J.A. Blakeley, N. Coburn, and P.-A. Larson. Up-
dating derived relations: Detecting irrelevant and
autonomously computable updates. ACM Transac-
tions on Database Systems, 14(3):369-400, Septem-
ber 1989.

S. Ceri and J. Widom. Deriving production rules
for incremental view maintenance. In Proceedings
of the Seventeenth International Conference on Very
Large Data Bases, pages 577-589, Barcelona, Spain,
September 1991.

S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The Tsimmis project: Integration of
heterogeneous information sources. In Proceedings
of 100th Anniversary Meeting of the Information Pro-
cessing Society of Japan, pages T-18, Tokyo, Japan,
October 1994.

S. Chawathe, A. Rajaraman, H. Garcia-Molina,
and J. Widom. Change detection in hierarchically
structured information. Technical report, Dept.
of Computer Science, Stanford University, 1995.
Available by anonymous ftp to db.stanford.eduin
file pub/chawathe/1995/tdiff2-0.ps.

J. Chomicki. History-less checking of dynamic in-
tegrity constraints. In Proceedings of the Fighth Inter-
national Conference on Data Engineering, pages 557—
564, Phoenix, Arizona, February 1992.

IEEE Computer. Special Issue on Heterogeneous Dis-
tributed Database Systems, 24(12), December 1991.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data Cube: A relational operator generalizing
group-by, cross-tabs and sub-totals. /TFEE Transac-
tions on Knowledge and Data Engineering, 1995. To
appear.

A. Gupta, H.V. Jagadish, and 1.S. Mumick. Data
integration using self-maintainable views. Tech-
nical memorandum, AT&T Bell Laboratories,
November 1994.

A. Gupta and [.S. Mumick. Maintenance of ma-
terialized views: Problems, techniques, and ap-
plications. IFEF Data Fngineering Bulletin, Special

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Issue on Materialized Views and Data Warehousing,
18(2):3-18, June 1995.

A. Gupta and J. Widom. Local verifica-
tion of global integrity constraints in distributed
databases. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages
49-58, Washington, D.C., May 1993.

J. Hammer, H. Garcia-Molina, J. Widom,
W. Labio, and Y. Zhuge. The Stanford Data Ware-
housing Project. IEFFE Data Engineering Bulletin,
Special Issue on Materialized Views and Data Ware-
housing, 18(2):41-48, June 1995.

W.H. Inmon and C. Kelley. Rdb/VMS: Develop-
ing the Data Warehouse. QED Publishing Group,
Boston, Massachussetts, 1993.

W. Labio and H. Garcia-Molina. Efficient snapshot
differential algorithms in data warehousing. Tech-
nical report, Dept. of Computer Science, Stanford
University, 1995. Available by anonymous ftp to
db.stanford.eduin file pub/labio/1995/window.ps.

A. Levy and Y. Sagiv. Queries independent of up-
dates. In Proceedings of the Ninetenth International
Conference on Very Large Data Bases, pages 171-181,
Dublin, Ireland, August 1993.

D. Lomet and J. Widom, editors. Special Issue
on Materialized Views and Data Warchousing, IEEE
Data Engineering Bulletin 18(2), June 1995.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,
and J. Ullman. A query translation scheme for
rapid implementation of wrappers. In Proceedings
of the Fourth International Conference on Deductive
and Object-Oriented Databases, Singapore, December
1995.

R. Ramakrishnan, K.A. Ross, D. Srivastava, and
S. Sudarshan. Efficient incremental evaluation of
queries with aggregation. In Proceedings of the Inter-
national Logic Programming Symposium, pages 204—

218, 1994.

M.D. Soo. Bibliography on temporal databases.
SIGMOD Record, 20(1):14-24, March 1991.

J. Widom and S. Ceri. Active Database Systems:
Triggers and Rules for Advanced Database Process-
ing. Morgan Kaufmann, San Francisco, California,
1995.

G. Wiederhold. Mediators
of future information systems.
25(3):38-49, March 1992.

G. Zhou, R. Hull, R. King, and J.-C. Franchitti.
Data integration and warehousing using H20. /EFFE
Data FEngineering Bulletin, Special Issue on Material-

ized Views and Data Warchousing, 18(2):29-40, June

1995.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance in a warehousing en-
vironment. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages
316-327, San Jose, California, May 1995.

in the architecture

IFEFE Computer,



