
INTEGRATED QUERY AND SEARCH OF DATABASES, XML, AND

THE WEB

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Roy Goldman

May 2000

c� Copyright2000 by Roy Goldman

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opinion it

is fully adequate, in scope and in quality, as a dissertation for the

degree of Doctor of Philosophy.

Jennifer Widom (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it

is fully adequate, in scope and in quality, as a dissertation for the

degree of Doctor of Philosophy.

HectorGarcia-Molina

I certify that I have read this dissertation and that in my opinion it

is fully adequate, in scope and in quality, as a dissertation for the

degree of Doctor of Philosophy.

Jeffrey Ullman

Approved for the UniversityCommittee on Graduate Studies:

iii

Abstract

The amount of information available on-line is proliferating at a tremendous rate. Atone extreme,

traditional database systems are managing large amounts of structured, well-understood data that

can be queriedviadeclarative languages suchas SQL. Atthe otherextreme, millions of unstructured

Web pages are being collected and indexed by search engines for keyword-based search. Recently,

XML— the eXtensible Markup Language— has emerged as a simple, practical way to model and

exchange semistructureddataacross the Internet,withoutthe rigidconstraintsof traditional database

systems.

This thesis describes work towards unifying and integrating query techniques for traditional

databases, search engines, and XML. First, we describe our contributions to the LoreDBMS for

managing semistructured data, focusing on ways to enhance systemusability for effective querying

and searching. Next, we discuss algorithms and indexing techniques thatenable effective keyword-

based search over traditional and semistructureddatabases. We then describe how we have migrated

and enhanced our research on semistructured data to support the subtle but important nuances of

XML. Finally, we describe a new platform thatenables efficientcombined querying over structured

traditional databases and existing Web search engines.

iv

Acknowledgments

Above all, I thank my parents for all their love, help, support, and guidance.

I am grateful to my advisor Jennifer Widom for being so supportive and appreciative of my

work and my ideas.

I wouldalso like to thank the othermembers of the Stanford Database Group— especiallyHector

Garcia-Molina, Jason McHugh, Shiva Shivakumar, and Jeff Ullman— for helping me shape and

refine my ideas.

I thank all the Lore developers for helping to build a platform for much of my research: Brian

Babcock, Andre Bergholz, VineetGossain, Kevin Haas, Matt Jacobson, Jason McHugh, Svetlozar

Nestorov, Dallan Quass, Anand Rajaraman, Hugo Rivero, Michael Rys, Raymond Wong, Beverly

Yang, and Takeshi Yokokawa.

Finally, I thank my co-authors: Serge Abiteboul, Sudarshan Chawathe, Arturo Crespo, Hector

Garcia-Molina, Kevin Haas, Qingshan Luo, Jason McHugh, Svetlozar Nestorov, Dallan Quass,

Anand Rajaraman, Hugo Rivero, Narayanan Shivakumar, JeffUllman, Vasilis Vassalos, Suresh

Venkatasubramanian,Jennifer Widom, JanetWiener and Yue Zhuge.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Matrix of Data Representations and Query Techniques. 2

1.1.1 Traditional Databases . 3

1.1.2 Traditional IR Systems and Search Engines 3

1.1.3 Expressive Queries Over Unstructured Data 4

1.1.4 Semistructured Data . 4

1.1.5 Keyword Search Over Semistructured And Structured Databases 5

1.1.6 Combining Database Queries and Keyword Search. 6

1.2 Research Contributions and Thesis Outline. 6

1.2.1 Lore . 6

1.2.2 DataGuides . 7

1.2.3 Interactive Queries and Keyword Search for Semistructured Data 7

1.2.4 Proximity Search. 8

1.2.5 XML . 8

1.2.6 WSQ/DSQ . 9

1.3 Related Work . 9

2 The Lore DBMS for Semistructured Data and XML 11

2.1 ObjectExchange Model (OEM) .. 13

2.2 Lorel Query Language . 14

2.3 System Architecture. 15

vi

2.4 Related Work . 17

3 DataGuides 18

3.1 Chapter Outline . 19

3.2 Foundations .. 20

3.2.1 DataGuides . 20

3.2.2 Existence of Multiple DataGuides. 23

3.2.3 Annotations . 24

3.2.4 Strong DataGuides . 24

3.2.5 Building a Strong DataGuide . 27

3.3 Experimental Performance. 27

3.3.1 Operational Databases . 28

3.3.2 Synthetic Databases . 28

3.4 Incremental Maintenance . 31

3.5 Using DataGuides for Query Formulation. 36

3.6 DataGuides as Path Indexes . 40

3.7 Approximate DataGuides . 45

3.7.1 ObjectMatching. 46

3.7.2 ObjectMatching Experiments. 49

3.7.3 Role Matching . 50

3.7.4 Role Matching Experiments . 51

3.7.5 Summary. 52

3.8 Related Work . 53

3.9 DataGuide Impact . 54

4 Interactive Query and Search of Semistructured Data 55

4.1 Motivating Example . 57

4.2 Query and Search Session Model .. 59

4.3 Keyword Search. 59

4.3.1 Single Keyword Search . .. 59

4.3.2 Ranking Results in Lore . 62

4.4 DataGuide Enhancements . 62

4.5 Inverse Pointers . 63

4.6 Related Work . 65

vii

5 Proximity Search in Databases 67

5.1 Motivating Example . 68

5.2 The Problem . 71

5.2.1 Conceptual Model . 71

5.2.2 Proximity and Scoring Functions. 72

5.3 Lore Implementation . 74

5.4 Computing ObjectDistances 76

5.4.1 Naive Approaches . 77

5.4.2 Precomputing Distances Using “ Self-Joins” 77

5.4.3 Hub Indexing . 80

5.5 Performance Experiments. 84

5.6 Related Work . 87

6 XML Support in Lore, DataGuides, and Proximity Search 88

6.1 XML Background and Comparison With OEM. 88

6.2 Lore's XML Data Model . 90

6.3 Encoding XML in OEM . 93

6.4 Lore's XML Query Language . 94

6.5 DataGuides for XML . 96

6.5.1 Problem Formulation . 98

6.5.2 Algorithms . 99

6.5.3 Experimental Framework and Performance Results. 101

6.6 Proximity Search. 103

6.6.1 Examples . 106

6.7 Related Work . 107

7 WSQ/DSQ: Combined Querying of Databases and the Web 108

7.1 WSQ Overview . 110

7.2 Virtual Tables in WSQ . 111

7.2.1 Examples . 113

7.2.2 Support for virtual tables in existing systems 115

7.3 WSQ Query Processing. 116

7.3.1 Asynchronous Iteration . .. 117

7.3.2 Applicabilityof asynchronous iteration. 121

viii

7.3.3 ReqSync tuple generation or cancellation 122

7.3.4 Handling multiple AEVScans. 123

7.3.5 Query plan generation . 124

7.4 Implementation and Experiments . 131

7.5 Related Work . 134

8 Conclusions and Future Work 136

8.1 Future Work Related to Thesis Contributions. 137

8.1.1 DataGuides (Chapter 3) . 137

8.1.2 Interactive Query and Search (Chapter 4) 138

8.1.3 Proximity Search (Chapter 5). 138

8.1.4 XML Support in Lore (Chapter 6). 139

8.1.5 WSQ/DSQ (Chapter 7) . 139

8.2 Language Integration . 140

8.3 Model Integration . 140

Bibliography 142

ix

List of Tables

3.1 DataGuide performance for operational Lore databases. 28

3.2 DataGuide performance for synthetic databases. 30

3.3 Object-matching ADGs for theDBGroup database 49

3.4 Role-matching ADGs. 51

6.1 Path expression qualifiers. 94

6.2 Functions to produce different interpretations for comparisons. 96

7.1 Experimental results . 133

x

List of Figures

1.1 Query Functionality Matrix . 2

2.1 A sample OEM database . 13

2.2 Lore architecture . 16

3.1 A sample OEM database (same as Figure 2.1) . 20

3.2 A DataGuide for Figure 3.1 . 22

3.3 A source and two DataGuides . 23

3.4 Algorithmto create a strong DataGuide. 26

3.5 Data structures to supportDataGuide maintenance 31

3.6 Algorithmtoupdate a strong DataGuide incrementally. 33

3.7 Insertion of an edge . 34

3.8 Deletion of an edge. 35

3.9 A Java DataGuide . 37

3.10 DataGuide path information 38

3.11 A DataGuide query specification .. 39

3.12 A sample OEM database and its strong DataGuide 46

3.13 An OEM database, its strong DataGuide, and an approximate DataGuide 47

3.14 A sample OEM database, its suffix-matching ADG, and its path-cycle matching ADG 52

4.1 A sample OEM database and its DataGuide . 57

4.2 DataGuide constructed over resultof finding all publications. 58

4.3 An OEM query resultand two potential DataGuides 64

5.1 Results of proximity search over the InternetMovie Database. 70

5.2 Proximity search architecture 71

xi

5.3 A fragment of the movie database relational schema and a database instance as a

graph . 73

5.4 Summary of Stanford Database Group keywordsearches. 76

5.5 “ Self-Join” distance precomputation. 79

5.6 Hub vertices .. 80

5.7 Pairwise distance querying. 82

5.8 Space required with varying K . 85

5.9 Index creation time with varying K . 85

5.10 Total storage with varying scale . 86

5.11 Space ratio vs. number of hubs . 86

5.12 Index creation time vs. number of hubs. 87

5.13 Query time vs. number of hubs . .. 87

6.1 An XML documentand its graph . 92

6.2 Graph representation of XML for DataGuide example 97

6.3 DataGuide for Figure 6.2 . 98

6.4 Comparison of ordered DataGuide algorithms. 103

6.5 Original XML graph . 104

6.6 XML graph transformed for ordered proximity search 105

7.1 Basic WSQ/DSQ architecture . 109

7.2 Query plan forSigs �WebCount . 118

7.3 Asynchronous iteration. 119

7.4 Query plan forSigs �WebPages . 122

7.5 Query plan forSigs �WebPages AV�WebPages Google 123

7.6 Generating the query plan forSigs � WebPages AV � WebPages Google in Fig-

ure 7.5 . 127

7.7 A query plan mixing two dependent joins with a cross-product. 129

7.8 Generating the query plan for query overSigs andCSFie lds 130

xii

Chapter 1

Introduction

With the adventof the World-Wide Web we have seen enormous growth in the amountof informa-

tion available on-line. From datapublished directly from traditional, well-structured databases, to

the huge number of unstructured hand-writtenHTML pages, to the increasing amountofsemistruc-

tured data [Abi97], the Web brings itall together into one giantamalgamation of information.

We can classify online data along a spectrum of how much structure exists in (or is imposed on)

the data. Atone extreme, traditional relational, object-oriented,and object-relationaldatabases store

large amounts of rigidly structured, typed data. Query languages such as SQL and OQL [Cat94]

exploitthe rigid structure imposed on the data to enable expressive,declarative queries. Atthe other

extreme, many HTML pages exhibit little discernible structure, since they are manually-created

documents. In general, it is extremely difficult if not impossible to capture the data relationships

withinunstructuredHTML documents througha traditional database system. Instead, from the field

of information retrieval (IR), effective technologies are available to supportkeyword-basedsearches

over documentdata. Such searches are inherently less precise than SQL queries; as a consequence,

results are often ranked, requiring interaction from a user to focus in on relevantdata. Surprisingly,

despite their similar goals, there has been very little research overlap between the fields of IR and

databases.

To help bridge these two extremes, research and industry havefocused recently on semistruc-

tured data— data thatdoes exhibitsome structure butis either too irregularorchanges too often to be

constrained by the table schemas and/or object classes required by traditionalDBMSs. Semistruc-

tured data models, query languages, and database systems have converged around a graph-based

data representation that combines data and structure into one simple data format [Abi97]. XML

[XML98], which has emerged as a new standard for information interchange across the Web, can

1

CHAPTER1. INTRODUCTION 2

Lore
Proximity
Search

(wrappers)

Proximity
Search

Expressive
Queries

Keyword
Searches

Unstructured

Semistructured

Structured

WSQ/
DSQ

(1) (2)

(4)(3)

(5) (6)

Figure 1.1: Query Functionality Matrix

be seen as one such semistructured data model. Amongmany other interesting research topics,

an important issue is how to query and search a semistructured database effectively. Intuitively,

expressive queries, keyword searches, or some combination of the two could be applied.

1.1 Matrix of Data Representations and Query Techniques

Let us view this spectrum of data representations and query techniques as a matrix, shown in Fig-

ure 1.1. Along one dimension, we have structured, semistructured, and unstructureddata. Along the

other we have expressive declarative queries and simple keyword searches. Two entries in our ma-

trix are already accounted for: structured databases have long supported expressive queries (Entry

1), and unstructureddata has traditionally been searched using keyword-basedIR techniques (Entry

6). As the Web continues to unify all types of data in one medium, itwill be increasingly important

for users to be able to query all data seamlessly with the same techniques. In this thesis, we describe

work thatfills in remaining matrix entries and helps tie them together as well.

Before exploring our contributions in detail, letus consider each of the six entries in our matrix

with respect to a given scenario: querying or searching a collection of data aboutmovies, including

actors, producers, writers, etc.

CHAPTER1. INTRODUCTION 3

1.1.1 Traditional Databases

Entry 1 represents traditional database functionality. We can imagine thatthe movie data is stored in

a relational database, with tables for movies, actors, producers, writers and so on, along with addi-

tional tables (or foreign-key relationships) for relating these elements. Traditional query languages

such as SQL enable expressive queries over this data. As one example, it is a simple matter to

write a query to “ Find all movies made since 1980 thathave grossed more than $100,000 million.”

Note thatan object-orienteddatabase systemalso corresponds to this matrix entry, where instead of

tables we would have classes, and we would use a language such as OQL instead of SQL. Despite

many proven advantages of databasesystems, traditionalDBMSs have some deficiencies. First, we

must be quite certain ahead of time of exactly what kind of data we wish to store. Data must be

entered carefully, conforming to the specific structure laid outahead of time. If we decide over time

to store additional (or different)data in the database, traditional DBMSs are notamenable to rapidly

evolving database structure. Similarly, data demonstratingmany irregularities can also cause prob-

lems for traditional database systems; e.g., for relational systems, NULLs can proliferate and cause

counterintuitive results. Finally, as powerful as SQL is, it is not an easy language for casual users.

While interactive forms can make it easy for users to complete predefined parameterized queries,

SQL has no inherentsupportfor processing keywordsearches over an entire database. Yet the Web

has shown thatkeywordexpressions are an important tool for interactive query sessions.

1.1.2 Traditional IR Systems and Search Engines

At the opposite corner of the matrix, Entry 6 represents traditional information retrievalsystems

and search engines: keyword search expressions over a collection of documents. In our movie

scenario, we could imagine a hand-written (or machine generated) document repository with one

documentper movie, along with perhaps separate documents for the more famous actors, directors,

and producers. This environment places few restrictions on the designers of the data collection:

since all information is simply indocumentform, designers are free to add (oromit)any information

for any film or film industry worker. Designers have complete flexibility to setor change the format

of each documentas well. In IRsystems, searches are based on the presence (or lack of presence) of

keywords. As a simple example, a user could quickly find all documents containing the string“ S tar

Wars” . Results are often ranked based on the system's determination of relevance. For example, a

document containing “ Star Wars” many times might be ranked ahead of a document containing it

only once. As a more complicated example, we could perform aBoolean search to see if Harrison

CHAPTER1. INTRODUCTION 4

Ford and Carrie Fisher starred together in any movies besides the Star Wars series. The search

would be expressed as:“ Harrison Ford” and “ Carrie Fisher” and NOT “ Star Wars” and NOT “ Empire

Strikes Back” and NOT “ Return of the Jedi” .

1.1.3 Expressive Queries Over Unstructured Data

Considering matrix Entry 5, we note thatin general it is inherently difficultor impossible to support

expressive queries over unstructured data sources. As explained in Section 1.1.2, in a collection

of unstructured documents about movies, there are no restrictions on structure, and the document

designer has no tools for explicitly designating the semantics of the document's textual content.

Our example query in Section 1.1.1 to find the high-grossing movies of the 80s and 90s would be

impossible to execute directly over the documents (without making assumptions about document

structure), since it requires some semantic understanding of the numbers and textappearing in each

document.

When structural patterns do exist in documents,wrappers can be used over the unstructured

data to expose the documents as richer structures [AK97, CDSS98, HGMC�97, PGGMU95, RS97].

This approach is inherently brittle since itmust be based on assumptions about the composition of

documents that may have been generated without any guaranteed constraints. Further, it may be

difficult to mold a large collection of (potentially varied) documents into the rigid data models of

traditional DBMSs.

1.1.4 Semistructured Data

As a resultof the inherentproblems discussed in Section 1.1.3, over the last few years research and

industry have developed semistructured data models, languages, and systems. XML is a prime

example of a semistructured data model. XML supports a hierarchical model that allows data

and structure to be mixed in one simple format, without the rigid constraints of a relational or

object-oriented schema. While HTML usestags to specify presentation, XML uses tags to indicate

meaning. In our movie scenario, document designers could explicitly assign structural tags to the

different documentelements to enable expressive queries. For example, the year in which a movie

was created could be bracketed by�YEAR� and�/YEAR� tags. Similarly, we could designate

the gross revenue for each movie withina documentalong with basic information such as the movie

title. Ata high level, semistructured data adds enough structure to enable expressive queries, while

still avoiding the rigidity of traditionalDBMSs.

CHAPTER1. INTRODUCTION 5

To enable users to manage and query semistructured data, we have built theLore database man-

agement system [MAG�97]. The primary query interface to Lore isLorel, an OQL-like language

for issuing declarative queries over a semistructured database [AQM�97]. In our matrix, Lore

addresses Entry 3. There aremany interesting research issues associated with managing and query-

ing semistructured data. One issue we will focus on in particular is how we handle the fact that

semistructured databases do notinclude an explicit, predetermined schema. Withoutsome informa-

tionaboutthe tags in a database and theirnesting pattern, itmay be difficultto formulate meaningful

queries.

1.1.5 Keyword Search Over Semistructured And Structured Databases

Keyword-basedsearch is very useful for unstructureddocuments, and often is the only way to query

such data. Keyword search also can be very useful over more structured data, since it is inherently

simple for users to masterandoften is sufficientfor the task athand. However,some IRconcepts and

algorithms mustbe reconsidered in a database setting. In particular,proximity search benefits from

a new approach in a database setting. Traditionally, proximity search in IR systems is implemented

using the “ near” operator. If we search our document collection for“ Harrison Ford” near “ Carrie

Fisher” , we are looking for documents where those two names appear “ close” to each other, where

closeness is measured by textual proximity. In this sense, proximity search is a relatively simple,

“ intra-object” operation: we measure proximity along a single dimension (text) in each document.

Now, suppose that we have fully migrated our movie document collection to XML. Each movie

mightbegin with a�MOVIE� tag, followed by nested tags for thatmovie's actors, producers, etc.

In this setting,we wantto accountfor “ structural proximity” in the database, while textual proximity

may notbe relevant. For example, if Harrison Ford andCarrie Fisher both star in the same movie,

then they will both be subelements of a specific�MOVIE� element. In the textual representation,

however, there may be many other actors lexically in between these actors. Similarly, we may find

that the last actor listed for some movie X is textually close to the first actor listed for an adjacent

movie Y— butthis doesn'tmean that the two actors are related in any way. Thus, we need to extend

the notion of proximity search to handle the structure inherent in a semistructured database. This

work fills in Entry 4 in our matrix.

As we will see in Chapter 5, algorithms and techniques for performing proximity search over

a graph-structured (semistructured) database are applicable to a traditional relational or object-

oriented database as well. We can (logically) translate a relational database into a graph based

on the schema and on primary/foreign key relationships. (Details are given in Chapter 5.) We can

CHAPTER1. INTRODUCTION 6

then use our proximity search techniques to measure the distance between database elements based

on the graph representation. Viewing an object-oriented database as a graph is of course even sim-

pler. By combining proximity search with traditional indexing techniques for identifying tables or

attribute values thatcontain given keywords,we can provide keyword-basedsearch (and browsing)

for traditional databases. Thus, our work on proximity search applies to matrix Entry 2 as well.

1.1.6 Combining Database Queries and Keyword Search

Beyond filling out the different matrix entries, integrating query and search over the Web requires

strong interoperation between different types of systems. One case we focus on is the integration

of Entries 1 and 6. Traditional database systems for structured data are very different from (and

incompatible with) IR-based Web search engines thatindex millions of unstructured (and unrelated)

HTML documents for keyword-based searches. Yet there aremany cases where it makes sense to

query both kinds of systems at once. In our movie scenario, we may want to leverage the vast

amount of information in Web pages to supportexpressive queries over a local structured database

like the one described in Section 1.1.1. For example, we might want to rank all Star Wars actors

by how often their names appear on the Web. We could use the structured database to accurately

determine all of the Star Wars actors, and then we combine this data with results from a set of

Web searches to compute our final result. Such functionality requires tightcoupling between very

different systems, and optimal execution requires that we take advantage of the fact that existing

Web search engines are designed to handlemany searches concurrently.

1.2 Research Contributions and Thesis Outline

1.2.1 Lore

In Chapter 2, we introduceLore [MAG �97], a database management system developed bymany

people from scratch at Stanford specifically to support semistructured data. Originally, Lore was

designedsolely to supporta datamodel calledOEM, forObjectExchange Model. InOEM, structure

anddataare combined into asimple,graph-basedobjectmodel. Atomic data is stored in leaf objects,

and relationships are indicated via textually labeled directed edges between objects. The primary

query interface to Lore is Lorel [AQM�97], a declarative query language based on OQL [Cat94].

Chapter 2 serves as a basis for later chapters and is primarily a summary of work done by the many

contributors to the Lore projectsince 1995. The work in this thesis related to Lore focuses primarily

CHAPTER1. INTRODUCTION 7

on research issues related to a user's perspective of the system.

1.2.2 DataGuides

In traditional database management systems, the schema defining the structure of the data is fixed.

For a given relational database, a fixed set of tables and their attributes guide all query construc-

tion. Similarly, declared classes guide queries in object-orientedDBMSs. But in a semistructured

database, the schema is not declared ahead of time. Rather, structure and data are mixed into one

simple data format. Further, the structure may be irregular and may change often andsignificantly

over time. Withoutthe guidance provided by a separate schema, a user may notbe able to construct

meaningful queries, and a query may become less useful if the structure of the data changes. To ad-

dress these issues, in Chapter 3 we describe a novel database feature called theDataGuide [GW97].

A DataGuide is aconcise, accurate structural summary of asemistructureddatabase. The DataGuide

is generated dynamically from the database, and is modified dynamically as the database structure

evolves. In many ways, the DataGuide serves the role of “ schema” in a semistructured database:

it is a valuable tool for guiding query formulation, and it can be used for query optimization as

well. The DataGuide also can be used within a graphical user-interface for interactive specifica-

tion of Lorel queries. Note that the DataGuide never restricts the data— it always conforms to the

structure in the database. Our discussion in Chapter 3 includes formal DataGuide definitions and

gives algorithms for DataGuide construction and maintenance. Performance results for DataGuide

construction are given. We also show how the DataGuide can be used as an index to improve query

processing performance.

For certain databases, DataGuide construction can be prohibitively expensive. In these situ-

ations, we may want to relax our definition of a DataGuide for better performance. Hence, in

Chapter 3 we also describeApproximate DataGuides, which can be smaller and require shorter

construction times than exact DataGuides. Despite the relaxed definition, we show that approxi-

mate DataGuides are still useful inmanyscenarios.

1.2.3 Interactive Queries and Keyword Search for Semistructured Data

DataGuides make it easier for a user to explore structure and pose queries over a semistructured

database. Users familiar with searching and exploring the Web are comfortable with an iterative

CHAPTER1. INTRODUCTION 8

process of searching, querying, and exploring. In Chapter 4, we formalize an approach and intro-

duce associated techniques that enable a user to query and search a semistructured database itera-

tively, each time focusing in towards data of interest. In this chapter we explain how the system

supports keyword-based searches, and we also discuss how to build DataGuides dynamically, in

order to summarize query results and enable formulation of further refining queries.

1.2.4 Proximity Search

As described earlier, the IR notion of proximity search should take on a different meaning when

applied to a database with some structure. While traditional proximity search is a relatively simple

operation performed along a single dimension (text), applying proximity search to databases is a

more difficult problem. In a semistructured database, for example, data is decomposed intomany

small nesteddataobjects orelements. We can view such adatabase as a graphof dataelements, with

edges representing relationships between these elements. We can weight these edges as well, ac-

cording to the “ strength” of the semantic relationships— wherea smallerweighton an edge indicates

a stronger bond between the two elements it connects. In this setting, we can measure proximity as

the shortest graph distance between data. Similarly, we can view any relational or object-oriented

database as a graph of interrelated data elements as well. In a relational system, these elements

might be attribute values, tuples, or tables, related by containment or by primary/foreign key con-

straints. In Chapter 5 we discuss proximity search in databases in detail. We develop a framework,

algorithms, and a new indexing technique that supports proximity search over any semistructured

or structured database. We then demonstrate how we have integrated proximity search into Lore to

support interesting interactive searches over databases.

1.2.5 XML

XML is emerging as a new standard for data interchange across the Internet. XML is a text-oriented

language that implies a data model very similar to the semistructured data models proposed by

researchers, including the OEM model we use in Lore. However, there are differences between

XML and OEM, many of which come from XML's heritage as a document language rather than a

data model. For example, representing graph structure today in XML is hardly elegant. Perhaps

the moststriking difference is thatan XML documenthas an inherentordering among its elements.

In contrast, OEM and most other semistructured data models assume that subobjects are always

unordered. That is, an object can have a set of subobjects, not a list. In Chapter 6 we discuss the

CHAPTER1. INTRODUCTION 9

migration of the Lore system to an XML-based data model, focusing particularly on the impact of

an ordered data model on DataGuides and proximity search.

1.2.6 WSQ/DSQ

Finally, in Chapter 7 we describe our work on integrating keyword-based search with structured

database queries. We call this work WSQ/DSQ, pronounced “ wisk-disk.” WSQ/DSQ stands for

Web-Supported (Database) Queries/Database-Supported (Web) Queries. From the WSQ angle, we

use the results of Web searches to enhance and augment queries over traditional databases. From

the DSQ angle, we can use knowndata relationships in a traditional database to help guide users as

they search, and explain search results in terms of well-understood data. Ourfocus in this thesis is

on WSQ. We show how we can model any Web search engine throughvirtual tables— tables that

“ look” like normal tables to a query processor butwhose tuples are actually dynamically computed

rather than physically stored in the database. Through this abstraction, reading tuples from our vir-

tual tables corresponds to issuing Web searches. Further, we can use selection and join conditions

on ourvirtual tables to parameterize the searches. This approach providesa powerful mechanismfor

integrating Web search results with queries over a relational DBMS. Unfortunately, the latency for

each call to a Web search engine is extremely high. A traditional database query processor will sit

idle during each call, resulting in extremely inefficientWSQ queries. Since existing Web search en-

gines can processmany concurrentrequests effectively, the traditional approach is notmakinggood

use of available resources. Hence, we introduce a new query processing technique calledasyn-

chronous iteration that allows a conventional query processor to issuemany concurrent searches

with low overhead. This technique is a general one, applicable tomany information integration

scenarios.

1.3 Related Work

In this section we discuss some work that is broadly related to the main contributions of this thesis.

Specific, more detailed discussions of related work are provided in each chapter.

Overviews of traditional database systems and query languages can be found inmany sources

(e.g., [UW97], [GMUW00]), while [Sal89] provides a thorough overview of the field of infor-

mation retrieval, the technologymany modern Web-based search engines are based on. Proximity

search in IR systems is discussed in [Sal89], and to our knowledge we were the first to introduce

IR-style proximity search into databases.

CHAPTER1. INTRODUCTION 10

The fieldof semistructureddatahas seenaflurry of innovationover the lastfew years. Semistruc-

tured data models and query languages are discussed in [Abi97,Bun97, PGMW95]. Databasesys-

tems for managing semistructured data are described in [MAG�97, FFLS97].XML [XML98] has

emerged as a standard format for interchanging semistructured data, and much of the original re-

search on semistructured data has migrated to supportXML [DFF�99a, GMW99]. In general, our

work on DataGuides is complementary to the basic data models, query languages, and systems that

have been designed for semistructured data; DataGuides are general enough to apply to any graph-

based data model with unconstrainedschema. DataGuides were inspired by initial work atStanford

on representative objects [NUWC97]. Using DataGuides as an interactive query tool is related to

the seminal work on Query By Example [Zlo77]. DataGuides have since been cited as springboards

for improved path indexing [MS99] and XML compression [LS00].

Our work on integrating Web search engines with traditional database systems is related in

overall motivation to a large body of work on information integration, including the creation and

optimization of query plans over external sources with varying query processing capabilities, e.g.,

[HKWY97, LRO96, Mor88, RSU95, YLGMU99]. Our specific work of integrating document

repositories with a structured database is superficially related to work in [CDY95] and [DM97],

though as we discuss in Chapter 7, ourwork turns out to be quite differentsince it is focused specif-

ically on using existing Web search engines.

Chapter 2

The Lore DBMS for Semistructured

Data and XML

This chapter provides an overview ofLore, a database management system designed specifically

for managingsemistructured data, such as data encoded in XML. Lore was built from scratch at

Stanford University over the past five years, and it is a complete prototype multi-user database

system. As a research platform, Lore has enabled much of our specific work on DataGuides and

proximity search. This chapter serves to provide a setting for this work— describing the Lore data

model, theLorel query language, and the overall system architecture.

Lore was conceived to address several drawbacks of traditional relational or object-oriented

database systems. These systems require all data to adhere to an explicitly specified, rigid schema.

In some scenarios, this constraint may be too restrictive: data for a desired application may be

irregular and thus not conform to a rigid schema. Further, it may be difficult to decide in advance

on a single, correct schema. The structure of the data may evolve rapidly, data elements may

change types,or data notconforming to the previous structure may be added. In traditional database

systems, modifying the schema may have huge implications— often requiring data to be migrated

wholly to the new structure, and requiring application code to be rewritten. We call data with

irregular or fast-changing structuresemistructured data— see [Abi97] for further discussion.

The semistructured data managed by Lore is notconstrained by a schema, and the data may be

irregular or incomplete. In general, Lore attempts to take advantage of structure where itexists, but

Lore also handles irregular data as gracefully as possible.

Lore was designed to store and query data nativelyaccording to a simple objectmodel called the

ObjectExchange Model (OEM), introducedoriginally in theTsimmis projectatStanford [PGMW95].

11

CHAPTER2. THE LORE DBMS FOR SEMISTRUCTURED DATA AND XML 12

In 1998, asXML (theeXtensible Markup Language) emerged, we noticed an obvious similarly be-

tween XML's nested, tagged structure and OEM. In Chapter 6, we will discuss how we migrated

Lore to support XML; until that chapter, all of our discussions are in terms of OEM, a some-

whatsimpler model. Regardless, there is a straightforward two-way conversion between OEM and

XML— hence, all of our contributions to improve the management of OEM data are applicable to

the management of XML as well.

Lorel, for Lore language, is the declarative query language thatwe designed for Lore. Lorel is

as an extension ofOQL, theObjectQuery Language [Cat94, BDK92]. Lorel augments OQL with

extensive type coercion and powerful path expressions for effectively querying semistructured data.

OEM and Lorel are reviewed briefly in this chapter; for details see [AQM�97].

Building a database system that accommodates semistructured data has required us to rethink

nearly every aspect of database management. While the overall architecture of the system is rela-

tively traditional, a number of components are particularly interesting and unique.

First, query processing introduces a numberof challenges. One obvious difficulty is the absence

of a schema to guide the query processor. In addition, Lorel includes a powerful form of navigation

based on path expressions, which requires the use of automata and graph traversal techniques inside

the database engine. The indexing of semistructured data and its use in query optimization is an

interesting issue, particularly in the contextof the automatic type coercion providedby Lorel. While

some of our DataGuide will work touch on query processing and optimization, these topics are

covered in more detail in [MW99c, MW99b, MW99a, MWA �98].

With respect to Lore, the focus of the work in this thesis has been on several fronts:

� DataGuides replace traditional database schemas in Lore. A DataGuide enables users to

browse the structure of a Lore database, it can be very helpful for formulating meaningful

queries, and it is used for several internal features of the database system. DataGuides are

described in detail in Chapter 3.

� We have integrated our work onproximitysearch in databases into Lore, supporting effective

keyword-based search of Lore databases. We describe our model for sessions of interactive

queries and keyword-based searches in Chapter 4. Proximity search is described in detail in

Chapter 5.

� We designed an Application Programming Interface (API) that makes it easy for anyclient

program to connect to and interactwith a Lore database.

CHAPTER2. THE LORE DBMS FOR SEMISTRUCTURED DATA AND XML 13

Restaurant

Name

5

Restaurant Bar

Name
Entree Entree

EntreePhone

Chili's

6

Burger

7

555-1234

9

Darbar

10

Lamb
Curry

11

Beef
Curry

4

Rose &
Crown

8

Smith

ManagerOwner

3

1

2

Figure 2.1: A sample OEM database

To showcase these features, we also developedaWeb-based user interface to the Lore systemvia

our API. For several years, this interface has enabled online users to search, query and browse Lore

databases interactively. Screenshots from our user interface appear in the chapters on DataGuides

and proximity search.

In the rest of this chapter, we summarize the Lore data model, the Lorel query language, and

Lore's overall architecture. We end the chapter with a discussion of work related to Lore.

2.1 Object Exchange Model (OEM)

In its original design, Lore managed only OEM data. OEM is a very simple data model. In essence,

an OEM database can be thought of as a directed, labeled graph. In OEM, each object contains

an object identifier (oid) and a value. A value may be atomic or complex. Atomic values may be

integers, reals, strings, images, programs, orany otherdata considered indivisible. A complex OEM

value is a collectionof 0 or more OEM subobjects,each linkedto the parentviaa descriptive textual

label. Note thata single OEM objectmay have multiple parentobjects and cycles are allowed. For

more details on OEM and its motivationsee [AQM�97, PGMW95].

Figure 2.1 presents a very small sample OEM database, representing a portion of an imaginary

eating-guide database. Each object has an integer oid. Our database contains one complex root

objectwith three subobjects: twoRestaurants and oneBar. EachRestaurant is a complex object.

The Bar is atomic, containing the string value “Rose & Crown” . EachRestaurant has an atomic

Name . TheChili's restauranthas atomic datadescribing itsPhone number and one availableEntree .

We can see thatthe database structure is irregular, since restaurantDarbar, with twoEntrees, doesn't

CHAPTER2. THE LORE DBMS FOR SEMISTRUCTURED DATA AND XML 14

include any phone number information. Finally, we see that OEM databases need not be tree-

structured— Smith is theOwner of one restaurantandManager of the other.

In many ways, OEM is a “ common denominator” among data models, since almost any data

model can be encoded in a graph-based representation. For example, mappings from other data

models into a graph-based model are used to show the wide applicability of our work in proximity

search (Chapter 5). Chapter 6 describes the differences between OEM and its more popular relative,

XML.

2.2 Lorel Query Language

Lorel is the declarative language used to query andupdate Lore databases. Lorel is based on OQL,

with extensions for rich path expressions, and for extensive coercion— both between atomic types

and between singletons and sets. We present several demonstrative examples of Lorel. As an

extremely simple one:

Select DB.Restaurant.Entree

returns in Figure 2.1 all entrees served by any restaurant, the set of objectsf6, 10, 11g. (Lorel

assumes thatevery database has one or more incoming labels thatwe refer to throughoutthe thesis

asentry points; in this case we assumeDB is an entry point to object1.)

As another simple example, we may requestthe names of all restaurants thatserve burgers:

Select DB.Restaurant.Name

Where DB.Restaurant.Entree =“ Burger”

In our example database, the answer to this query isf5g. Notice that the above queries do not

haveFrom clauses— in these cases, we assume thatall paths are examined from theDB entry point.

Further, common prefixes repeated in the query (e.g.,DB.Restaurant) are required to match to

identical paths during query processing. Alternatively, we could rewrite the above query as:

Select R.Name

From DB.RestaurantR

Where R.Entree =“ Burger”

In this case, theFrom clause iterates over allDB.Restaurantobjects, assigning each toR in turn for

use by theWhere andSelect clauses.

CHAPTER2. THE LORE DBMS FOR SEMISTRUCTURED DATA AND XML 15

To help deal with the semistructured nature of the data, Lorel supports “wildcards” within

queries that match to labels during query processing. For example, the following query finds all

Restaurantobjects thathave an atomic subobjectthatcontains “ Smith” (independentof the incom-

ing label).

Select DB.Restaurant.Name

Where DB.Restaurant.% grep “ Smith”

In our example database,f5, 9g is the result to this query.

To further assist in querying semistructured data, Lorel supports regular expression operators

within path expressions:

Select DB.Restaurant(.%)*.(Manager j Owner)

In this query, we are looking forManager or Owner objects reachable along any path of 0 or more

labels following anyDB.Restaurant. If we replace the* with a+ in the above query, we require at

leastone label to be traversed between theRestaurantand theManager orOwner objects. In Lorel,

(.%)*can be abbreviated syntatically using the special symbol#.

Lorel is a rich language, including an expressioncalculator, subqueries,existential and universal

quantification, aggregation, and updates. We have given only a few very simple examples here to

set the stage for our reported results. See [AQM�97] for a full presentation of Lorel.

2.3 System Architecture

The basic architecture of the Lore system is depicted in Figure 2.2.

Access to Lore is through a variety of applications or directly via the Lore ApplicationProgram

Interface (API) mentioned earlier.

The Query Compilation layer consists of the parser, preprocessor, query plan generator, and

query optimizer. The parser accepts a textual representation of a query, transforms it into a parse

tree, and then passes the parse tree to the preprocessor. The preprocessorhandles the transformation

of the Lorel query into an OQL-like query. A logical query plan is generated from the transformed

query and then passed to the query optimizer. The query optimizer uses statistics about the database

and knowledge aboutwhat types of indexes are available to select an efficientphysical plan for the

query. The physical plan is then sent to the Data Engine layer.

The Data Engine layer houses the OEM object manager, physical query operators, tools for

CHAPTER2. THE LORE DBMS FOR SEMISTRUCTURED DATA AND XML 16

Physical
Storage

External,
Read-only

Data
Sources

Query Compilation

Data Engine

Results

Non-Query
Requests

DataGuide
Manager

Physical
Operators

Object
Manager

External Data
Manager

Query
Optimizer

Logical
Query Plan
Generator

PreprocessingParsing

HTML/Java
GUI

Textual
Interface

API

Applications

Lore
SystemQueries

Statistics
Manager

Index
Manager

Lock Manager Logging

Figure 2.2: Lore architecture

concurrency control and recovery, and various utilities such as a statistics manager for query opti-

mization and an external data manager for integration of external semistructured data. The query

operators execute the generated query plans. The objectmanager functions as the translation layer

between OEM and the low-level file constructs. It supports basic primitives such as fetching an

object, comparing two objects, performing simple coercion, and iterating over the subobjects of a

complex object. In addition, some performance features, such as a cache of frequently accessed

objects, are implemented in this component.

The index manager creates and maintains several differentkinds of Lore indexes, including the

indexes for keywordand proximity search. The DataGuide manager is responsible for building and

maintaining DataGuides and is discussed in detail in Chapter 3.

Lore is a product of many months of work by many people. Within the contextof Figure 2.2,

our specific contributions have been related to DataGuides, the HTML/Javauser interface, the Lore

API, and specialized indexes for keyword-basedsearch.

CHAPTER2. THE LORE DBMS FOR SEMISTRUCTURED DATA AND XML 17

2.4 Related Work

The Lore projectstarted as a componentwithin Stanford'sTsimmis project[PGMW95, PGGMU95,

PAGM96, PGMU96], which studied the integration of heterogeneous data sources. Originally,Lore

was intended to be used as a cache of OEM data during query processing in Tsimmis. Lore quickly

evolved into its own research projectas we became more interested in themany facets of managing

semistructured data.

There have been several other research projects studying the management of semistructured

database. At the University of Pennsylvania, researchers proposedUnQL [BDHS96], a power-

ful query language for semistructured data, based on a data model similar to OEM. While no

prototype system using UnQL has been made available, the language has influenced the design

of Lorel over time. At AT&T, researchers have developedStrudel, a system designed to sim-

plify Web-site managementand Web-page generation that includes its ownStruQL query language

[FFLS97, FFK�99, FLS98]. Some of the Strudel team later contributed to the query language and

data model forXML-QL [DFF �99b], perhaps the first work on semistructured data done entirely

in the context of XML. As XML has gathered more and more attention worldwide, several com-

mercial products have become available for managing XML data. These products are described in

Chapter 6, which discusses Lore's migration to supportXML.

Chapter 3

DataGuides

In a traditional relational or object-oriented database management system, the data is formally sep-

arated from the specification of itsschema, or structure. For example, in a relational database about

movies, the database schema would specify several tables (e.g., Movies, Actors, Directors, Writ-

ers) and their attributes (e.g., the attributes of the Actors table might include Name, Birthdate, and

Birthplace). The database schema mustbe specified completely before any data can be loaded into

the system. A schema serves two importantpurposes:

� A schema, in the form of either tables and their attributes (for relational systems) or class hi-

erarchies (for object-oriented systems), enables users to enforce andunderstand the structure

of the database, and to form meaningful queries over it.

� The DBMS query processorrelies on the schema to devise efficientplans for computing query

results.

Without a schema, both of these tasks become significantly harder. Although it may be possible

to browse a small database manually, in general forming a meaningful query is difficult without a

schema or some kind of structural summary of theunderlying database. Further, a lack of informa-

tion about the structure of a database can cause a query processor to resort to exhaustive searches.

As introduced in Chapter 2, semistructured data does not have an explicitly declared schema.

To address the challenges faced by users and systems when a schema is not present, we intro-

duceDataGuides: dynamically generated and maintained structural summaries of semistructured

databases. Our work is cast in the contextof the Lore system (Chapter 2). However, our contribu-

tions are applicable to any graph-based model for semistructured data, including XML.

This chapter makes several contributions:

18

CHAPTER3. DATAGUIDES 19

� We give a formal definition of DataGuides as concise, accurate, and convenient summaries

of semistructured databases. Further, we motivate and definestrong DataGuides, which are

well-suited for implementation and exploitationwithin aDBMS for semistructured data.

� We provide algorithms to build strong DataGuides and keep them consistentwhen theunder-

lying database changes.

� We show how to store sample values and other statistical information in a DataGuide.

� We demonstrate how DataGuides have been integrated successfully into Lore. DataGuides

are vital to Lore's user interface: users depend on the DataGuide to learn about the structure

of a database so they can formulate meaningful queries. In addition, users may specify and

submitqueries directly from the DataGuide.

� We explain how a query processor can use a strong DataGuide to optimize query execution

significantly, focusing on using a DataGuide as apath index.

� Because fully accurate DataGuides can be expensive to compute and store in the worstcase,

we describeApproximate DataGuides, which relax partof the DataGuide definition. Approx-

imate DataGuides can be significantly cheaper to compute and store, yet they still are useful

in many situations.

3.1 Chapter Outline

Section 3.2 provides the motivation and formal definition for DataGuides, along with an algorithm

for constructing a DataGuide from a database. In Section 3.3 we presentexperimental results show-

ing the time and space required to build and store typical DataGuides. Section 3.4 presents an in-

cremental algorithm for DataGuide maintenance in response to database modifications. Section 3.5

describes how DataGuides are used in practice to browse structure and guide query formulation

through a graphical interface to the Lore system. In Section 3.6 we see how a strong DataGuide can

improve query processing in Lore, especially when used as a path index. In Section 3.7 we explain

how we can relax the DataGuide definition to generate “ approximate” DataGuides thatare still use-

ful in manyscenarios, butare less expensive to compute than fully accurate DataGuides. Finally,we

conclude the chapter with a short discussion of related work and the impact of DataGuides on the

field of semistructured data. In Chapter 4 we will discuss how we can use DataGuides to enhance

CHAPTER3. DATAGUIDES 20

Restaurant

Name

5

Restaurant Bar

Name
Entree Entree

EntreePhone

Chili's

6

Burger

7

555-1234

9

Darbar

10

Lamb
Curry

11

Beef
Curry

4

Rose &
Crown

8

Smith

ManagerOwner

3

1

2

Figure 3.1: A sample OEM database (same as Figure 2.1)

interactive query and search sessions, and in Chapter 6 we will revisitDataGuides in the contextof

XML. Some of the work reported in this chapter was published initially in [GW97] and [GW99].

3.2 Foundations

In this section we motivate and define DataGuides and theirproperties, and we provide an algorithm

for building them. We use the OEM data model as described in Chapter 2. DataGuides for XML

are discussed in Chapter 6.

3.2.1 DataGuides

Consider Figure 3.1, the sample OEM database we introduced in Chapter 2. Itserves as a basis for

multiple examples throughoutthis chapter.

We now give several definitions useful for describing an OEM database and subsequently for

defining DataGuides.

Definition 3.2.1 (label path) A label path of an OEM objecto is a sequence of one or more dot-

separated labels,l �.l�.� � �.ln, such that we can traverse a path ofn edges (e � � � � en) from o where

edgeei has labell i. �

In Figure 3.1,Restaurant.Name andBar are both label paths of object 1. In Lorel (Chapter 2),

queries are based on label paths. For example, in Figure 3.1, a Lorel query mightrequest the values

of all Restaurant.Entree objects thatsatisfy agivencondition. (Withoutloss of generality,we ignore

for now the fact thatLorel label paths require an incoming label as indicated in Section 2.2.)

CHAPTER3. DATAGUIDES 21

Definition 3.2.2 (data path) A data path of an OEM object denoted by oido is a dot-separated

alternating sequence of labels and oids of the forml �.o�.l�.o�.� � �.ln.on such that we can traverse

from o a path ofn edges (e � � � � en) throughn objects (x � � � � xn) where edgee i has labell i and

objectx i has oido i. �

In Figure 3.1,Restaurant.2.Name.5 andBar.4 are data paths of object1.

Definition 3.2.3 (instance) A data pathd is aninstance of a label pathl if the sequence of labels in

d is equal tol. �

Again in Figure 3.1,Restaurant.2.Name.5 is an instance ofRestaurant.Name andBar.4 is an in-

stance ofBar.

Definition 3.2.4 (target set) In an OEM objects, atargetsetof a label pathl is a sett of oids such

thatt =fo j l �.o�.l�.o�.� � �.ln.o is a data path instance oflg. That is, a target sett is the set of all

objects thatcan be reached by traversing a given label pathl of s. We writet � T s(l). We say thatl

reaches any elementoft, and likewise each elementoft is reachable via l. �

For example, the target set ofRestaurant.Entree in Figure 3.1 isf6, 10, 11g. Note that two dif-

ferent label paths may share the same target set. Setf8g, for instance, is the target set of both

Restaurant.Owner andRestaurant.Manager.

We are now ready to define a DataGuide, intended to be aconcise, accurate, andconvenient

summary of the structure of a database. Hereafter, we refer to a database thatwe summarize as the

source database, or simply thesource. We assume a given source database is identified by its root

object. To achieveconciseness, we specify that a DataGuide encodes every unique label path of a

source exactly once, regardless of the number of times itappears in thatsource. To ensureaccuracy,

we specify that a DataGuide encodes no label path that does not appear in the source. Finally, for

convenience, we require that a DataGuide itself be an OEM object so we can store and access it

using the same techniques available for processing OEM databases. The formal definitionfollows.

Definition 3.2.5 (DataGuide) A DataGuide for an OEM source objects is an OEM objectd such

thatevery label path ofs has exactly one data path instance ind, and every label path ofd is a label

path ofs. �

Figure 3.2 shows a DataGuide for the source OEM database shown in Figure 3.1. Using a

DataGuide, we can check whether a given label path of lengthn exists in the original database by

CHAPTER3. DATAGUIDES 22

12

Restaurant

Name

Entree

15 16 17

Phone

Bar

1413

18

Owner

19

Manager

12

Figure 3.2: A DataGuide for Figure 3.1

considering at mostn objects in the DataGuide. For example, in Figure 3.2 we need only examine

the outgoing edges of objects 12 and 13 to verify that the pathRestaurant.Owner exists in the

database. Similarly, if we traverse the single instance of a label pathl in the DataGuide and reach

some objecto, then the labels on the outgoing edges ofo represent all possible labels that could

ever follow l in the source database. In Figure 3.2, the five different labeled outgoing edges of

object 13 represent all possible labels that ever followRestaurant in the source. Notice that the

DataGuide contains no atomic values. Since a DataGuide is intended to reflect the structure of a

database, atomic values are unnecessary. Later wewill see how special atomic values, when added

to DataGuides, can play an important role in query formulation and optimization. Note that every

targetsetin a DataGuide is a singletonset. Recalling Definition3.2.4, a targetsetdenotes all objects

reachable by a given label path. Since any label path in a DataGuide has justone data path instance,

the targetsetcontains only one object— the lastobjectin thatdata path.

A considerable theoretical foundation behind DataGuides can be found in [NUWC97], which

proved that creating a DataGuide over a source database is equivalentto conversion of a nondeter-

ministic finite automaton (NFA) to a deterministic finite automaton (DFA), a well-studied problem

[HU79]. When the source database is a tree, this conversion takes linear time. However, in the

worst case, conversion of a graph-structured database may require time (and space) exponential in

the number of objects and edges in the source. Despite these worst-case possibilities, experimen-

tal results reported in Section 3.3 are encouraging, indicating that for typical OEM databases, the

running time is very reasonable, and the resulting DataGuides aresignificantly smaller than their

sources. Unfortunately,we know of no work thatworks to identify quickly those NFAs thatmay or

may notrequire exponential time or space to be converted to equivalentDFAs.

CHAPTER3. DATAGUIDES 23

3

1

2

A B

C

5

C

6

D

8

D

9

18

19

B

C

20

21

A

D

13

11

12

A B

C

14

C

15

D

16

D

17

4

B

C

7

D

10

(a) (b) (c)

Figure 3.3: A source and two DataGuides

3.2.2 Existence of Multiple DataGuides

From automata theory, we know thata single NFA may have many equivalentDFAs [HU79]. Sim-

ilarly, as shown in Figure 3.3, one OEM source database may have multiple DataGuides. Fig-

ures 3.3(b) and (c) are both DataGuides of the source in Figure 3.3(a). Each label path in the source

appears exactly once in each DataGuide, and neither DataGuide introduces any label paths that do

not exist in the source. Figure 3.3(c) is in factminimal: the smallest possible DataGuide, in terms

of total number of nodes. (Well-known state minimization algorithms can be used to convert any

DataGuide into a minimal one [Hop71].) Given the existence of multiple DataGuides for a source,

it is important to decide what kind of DataGuide should be built and maintained in a semistruc-

tured database system. Intuitively, a minimal DataGuide might seem desirable (as suggested by

[NUWC97]), furthering our goal of having as concise a summary as possible. Yet, as we now

explain, a minimal DataGuide is not always best. First, incremental maintenance of a minimal

DataGuide can be very difficult. In Figure 3.3(a), suppose we add a new child object to 10, via the

labelE. To correctly reflect this source insertion in Figure 3.3(b), we simply add a new objectvia

labelE to object 17. But to reflect the same insertion in the minimal DataGuide in Figure 3.3(c),

we must do more work in order to somehow generate the same DataGuide as our updated version

of Figure 3.3(b), since it now is the minimal DataGuide for the source. In general, maintaining a

minimal DataGuide in response to a source update may require much of the original database to be

reexamined. The nextsubsectiondescribes a second significantproblem with minimal DataGuides.

CHAPTER3. DATAGUIDES 24

3.2.3 Annotations

Beyond using a DataGuide to summarize the structure of a source, we maywish to keep additional

information in a DataGuide. For example, consider a source with a label pathl. To aid query

formulation, we might want to present to a user sample database values that are reachable vial.

(Such a feature is very useful in OEM, since there are no constraints on the type or format of

atomic data.) As another example, we may wish to provide the user or the query processor with the

statistical odds than an object reachable vial has any outgoing edges with a specific label. Finally,

for query processing, directaccess through the DataGuide to all objects reachable vial can be very

useful, as will be seen in Section 3.6. The following definition covers all of these examples.

Definition 3.2.6 (annotation) In a source databases, given a label pathl, a property of the set of

objects thatcomprise the target set ofl in s is said to be anannotation of l. That is, an annotation

of a label path is a statementabout the setof objects in the database reachable by thatpath.�

A DataGuide guarantees that each source label pathl reaches exactly one objecto in the

DataGuide. Objecto seems like an ideal place to store annotations forl, since we can access all

annotations ofl simply by traversing the DataGuide's single data path instance ofl. Unfortunately,

nothing in our definition of a DataGuide prevents multiple label paths from reaching the same ob-

ject in a DataGuide, even if the label paths have different target sets in the source. Referring to

Figure 3.3(c), we see that label pathsA.C andB.C both reach the same object. Thus, if we store an

annotation on object20, we cannotknow if the annotation applies to label pathA.C, label pathB.C,

or both. In the DataGuide in Figure 3.3(b), however, we have two distinctobjects for the two label

paths, so we can correctly separate the annotations. Next, we formalize DataGuide characteristics

thatenable unambiguous annotation storage.

3.2.4 Strong DataGuides

We define a class of DataGuides thatsupports annotations as described in the previous subsection.

Intuitively, we are interested in DataGuides where each set of label paths that share the same (sin-

gleton) target set in the DataGuide is exactly the set of label paths that share the same target set in

the source. Formally:

Definition 3.2.7 (strong DataGuide) Consider OEM objectss andd, whered is a DataGuide for a

sources. Given a label pathl of s, letT s(l) be the targetsetofl in s, and letT d(l) be the (singleton)

target set ofl in d. LetL s(l) =fm j T s(m) =T s(l)g. That is,L s(l) is the set of all label paths in

CHAPTER3. DATAGUIDES 25

s that share the same target set asl. Similarly, letL d(l) =fm j T d(m) =T d(l)g. That is,L d(l) is

the setof all label paths ind thatshare the same target set asl. If, for all label pathsl of s, L s(l) =

Ld(l), thend is astrong DataGuide fors. �

For example, Figure 3.3(c) is not a strong DataGuide for Figure 3.3(a). The source target set

Ts(B.C) is f6, 7g, and the DataGuide target setT d(B.C) is f20g. In the source,L s(B.C) is fB.Cg,

since no other source label paths have the same target set. In the DataGuide, however,L d(B.C)

is fB.C, A.Cg. SinceL s(B.C) �� L d(B.C), the DataGuide is not strong. Figure 3.3(b) is a strong

DataGuide. Next, we prove thata strong DataGuide is sufficient for storage of annotations.

Theorem 3.2.1 Suppose d is a strong DataGuide for a source s. If an annotation p of some label

path l is stored on the objecto reachable via l in d, then p describes the targetset in s of each label

path thatreaches o. �

Proof: Suppose otherwise. Then there exists some label pathm that reacheso, such thatp incor-

rectly describes the targetsetofm ins. Therefore,T s(l) �� T s(m), since we know by Definition3.2.6

thatp is a valid property ofT s(l). We reuse the notation from the definition of a strong DataGuide:

letL d(l) denote the set of label paths in d whose target set isT d(l), and letL s(l) denote the set of

label paths in s whose targetsetisT s(l). By construction,L d(l) contains bothl andm. By definition

of a strong DataGuide,L d(l) =L s(l). Thereforel andm are both elements ofL s(l). But this means

thatT s(m), the target set ofm in s, is equal toT s(l), a contradiction toT s(l) �� T s(m), derived

above. �

We also prove thata strong DataGuide induces a straightforwardone-to-one correspondence be-

tween source targetsets and DataGuide objects. This property is useful for incremental maintenance

(Section 3.4) and query processing (Section 3.6).

Theorem 3.2.2 Suppose d is a strong DataGuide for a source s. Given any target set t of s, t is

by definition the targetset of some label path l. Compute T d(l), the targetset of l in d, which has a

single elemento. LetF describe this procedure, which takes a source targetset as inputand yields

a DataGuide object as output. In a strong DataGuide, F induces a one-to-one correspondence

between source targetsets and DataGuide objects. �

Proof: We show thatF is (1) a function, (2) one-to-one, and (3) onto. (1) To showF is a function

we prove that for any two source target setst andu, if t =u thenF (t) =F (u). t is the target set

of some label pathl, andu is the target set of some label pathm, sot =T s(l) andu =T s(m). If

CHAPTER3. DATAGUIDES 26

MakeDataGuide: algorithm to build a strong DataGuide over a source database
Input: o, the oid of the rootof a source database
Effect: dg is set to be the rootof a strong DataGuide foro

targetHash =global empty hash table, to map source targetsets to DataGuide objects
dg =global oid

MakeDataGuide(o)f
dg =NewObject()
targetHash.Insert(fog, dg)
RecursiveMake(fog, dg)

g

RecursiveMake(t1, d1)f
p =setof�label, oid�children pairs of each object in t1
foreach (unique label l in p)f

t2 =setof oids paired with l in p
d2 =targetHash.Lookup(t2)
if (d2 !=nil) f

add an edge from d1 to d2 with label l
g elsef

d2 =NewObject()
targetHash.Insert(t2,d2)
add an edge from d1 to d2 with label l
RecursiveMake(t2, d2)

g g g

Figure 3.4: Algorithmto create a strong DataGuide

t =u, thenl andm are both elements ofL s(l), the set of label paths ins that shareT s(l). Sinced

is strong,L s(l) =L d(l). Thereforem is also an element ofL d(l), T d(l) =T d(m), and their single

elements are equal. HenceF (t) =F (u). (2) We show thatF is one-to-one using the same notation

and a symmetrical argument. IfF (t) =F (u), by construction we know thatT d(l) =T d(m). l andm

are therefore both elements ofL d(l), and by definition of a strong DataGuide are also elements of

Ls(l). ThereforeT s(l) =T s(m), i.e., t =u. (3) Finally, we see that the accuracy constraint of any

DataGuide (Section 3.2.1) guarantees thatF is onto. Any object ind must be reachable by some

CHAPTER3. DATAGUIDES 27

label pathl thatalso exists (and therefore has a targetset) ins. �

If a DataGuide is notstrong, itmay be impossible to find a one-to-one correspondence between

source targetsets and DataGuide objects. For example, Figure 3.3(a) contains seven different target

sets, each corresponding to one of the label pathsA, A.C, A.C.D, B, B.C,B.C.D, and the empty path.

Since Figure 3.3(c) has only 4 objects, we cannothave a one-to-one correspondence.

3.2.5 Building a Strong DataGuide

Strong DataGuides are easy to create. In a depth-first fashion, we examine the source target sets

reachable by all possible label paths. Each time we encounter a new targetsett for some pathl, we

create a new objecto for t in the DataGuide— objecto is the single elementof the DataGuide target

set of l. Theorem 3.2.2 guarantees that if we ever seet again via a different label pathm, rather

than creating a new DataGuide object we instead add an edge to the DataGuide such thatm will

also refer too. A hash table mapping source target sets to DataGuide objects serves this purpose.

The complete algorithm is specified in Figure 3.4. Note that we must create and insert DataGuide

objects intotarge tHash before recursing, in order to preventa cyclic OEM source from causing an

infinite loop. Also, since we compute targetsets to constructthe DataGuide, we can easily augment

the algorithm to store annotations in the DataGuide.

3.3 Experimental Performance

As described in Section 3.2.1, computing a DataGuide for a source is equivalent to converting a

nondeterministic finite automaton into an equivalent deterministic finite automaton. For a tree-

structured source, this conversion always runs in linear time, and the size of the DataGuide is

boundedby thesize of the source. Yetfor an arbitrary graph-structuredsource, creating aDataGuide

may in the worstcase require exponential running time and could feasibly generate a DataGuide ex-

ponentially larger than the source. Needless to say, we were very concerned about the potential for

exponential behavior, and as far as we know no research has tried to formalize automaton charac-

teristics that lead to better or worse behavior.

In this section, we show that formany classes of OEM databases, experimental performance re-

sults are very encouraging. We begin by discussing performance on two operational OEM databases

that, although admittedly are relatively small, require very little time for DataGuide creation and

CHAPTER3. DATAGUIDES 28

Database Source Source Unique Height DataGuide DataGuide DataGuide
objects links labels objects links time(secs)

Sports (Tree) 3,095 3,094 41 5 75 74 1.37
DBGroup (Graph) 947 1,102 32 – 138 168 1.52

Table 3.1: DataGuide performance for operational Lore databases

yield DataGuides significantly smaller than the source. We then describe further experiments con-

ducted on synthetic OEM databases. For a wide range of parameters, we find that many large

graph-structured databases still yield good performance. All measurements were taken running the

Lore system (Chapter 2) on a Sun Ultra 2 with 256MB RAM.

3.3.1 Operational Databases

We first consider two medium-sized databases used in Lore. One is a tree, and the other is a graph

withsignificantdatasharing. Our tree-structureddatabase contains asnapshotof data imported from

a large Web site covering many differentsports (www.espn.com), with the OEM database following

the structure of the menus and links at the site. While the overall structure is quite regular, data for

each sportdiffers significantly. We captured only asmall portionof the Web site, building a database

with about3,000 objects and links, 40 unique labels, and a maximum heightof 5. Building a strong

DataGuide requires 1.37 seconds, and the DataGuide contains 75 objects and 74 links.

Our second operational database contains information about the Stanford Database Group, de-

scribing the group's members, projects, andpublications. (We will see this database again through-

out the thesis.) The database uses extensive data-sharing (graph structure). As an example, a single

group member might be reachable as a member of one or more projects and as an author of any

number of publications. The graph also contains numerous cycles; for example, each group mem-

ber reachable by a link from a projectalso has links to all projects he or she works on. The version

of the database used in the experiments in this chapter contains about 950 objects and 1,100 links,

with 32 unique labels. Building a strong DataGuide takes 1.52 seconds; the resulting DataGuide

has 138 objects and 168 links. Performance for both databases is summarized in Table 3.1.

3.3.2 Synthetic Databases

To further study performance, we generated numerous large synthetic databases, both trees and

graphs, with and withoutcycles. For tree-structured databases we have the following parameters.

CHAPTER3. DATAGUIDES 29

� Height, or number of levels, in the tree.

� For each level in the tree, the number of unique labels on outgoing edges (labels per level).

The sets of labels corresponding to different levels are disjoint.

� Maximum number of outgoing edges from any non-leaf (fan-out).

� Whether to use maximum fan-out for each object (full) or to simulate irregular structure by

varying randomly the number of outgoing edges of any object from zero to the maximum

fan-out (irregular).

For graph-structured synthetic databases we modify and supplement the above tree parameters as

follows.

� Height is defined as the longest path in a breadth-first traversal from the root of the graph.

Leveln includes all objects whose shortestpath from the roothasn edges.

� Fan-out no longer is sufficient to specify the number of objects at a level, sincemany edges

of one level may point to the same object. Hence, a new parameter is the maximum number

of objects per level, as an integer to be multiplied by the level number. Until this number is

exceeded, every edge from the previous level points to a different object. When the limit is

reached, all remaining edges are evenly distributed among existing objects in the level.

� Rather than sending all outgoing edges to objects in the nextlevel, any proportionof outgoing

edges (backlink frequency) may be redirected to objects in previous levels; here we always

redirectedges to objects a fixed number of levels (backlink level) above the current level.

The results discussed below are captured in Table 3.2. We begin by summarizing the perfor-

mance for two tree-structured databases. A large full tree with only one label per level provides

an extreme example of how a DataGuide can be very small when compared to the source. DB1,

a full tree with a fan-out of 8, height of 5, and one label per level, contains 37,449 objects. The

strong DataGuide contains only 6 objects, and building it takes 11.3 seconds. As a larger example,

we builtDB2, which has an irregular edge distribution with a maximum fan-out of 8, heightof 12,

and 2 labels per level. The tree contains 329,176 objects. It takes 127.3 seconds to build a strong

DataGuide with 1,802 objects. Next,we describe several graph-structureddatabases. We begin with

a regular, cycle-free graph, and then progress to more intricate examples. In DB3, each non-leaf

has 10 outgoing edges, with two labels per level. There are 12 levels of objects, with a maximum of

CHAPTER3. DATAGUIDES 30

DB Tree Source Source Hgt Labs Fan- Full Objs Bklink DG DG DG
No ? Objects Links per out ? per Freq/ Objects Links Time

Lvl Lvl Lvl (secs)

1 Y 37,449 37,448 5 1 8 Y – – 6 5 11.3
2 Y 329,176 329,175 12 2 8 N – – 1,802 1,801 127.3
3 N 37,111 311,111 12 2 10 Y 500 – 156 288 123.1
4 N 26,700 93,151 12 2 10 N 500 – 3,074 3,073 712.6
5 N 11,134 44,346 5 4 80 N 2000 10/2 198 720 22.6
6 N 4,524 13,151 8 4 10 N 200 10/0 14,326 29,101 78.5
7 N 3,108 6,787 8 4 10 N 200 15/3 8,736 16,805 36.2

Table 3.2: DataGuide performance for synthetic databases

500 objects in level 1, 1,000 in level 2, 1,500 in level 3, and so on. The source database has 37,111

objects and 311,111 links. The DataGuide has 156 objects and 288 links, requiring 123.1 seconds

to create. Next, we introduce irregularity in the number of outgoing edges from each object. This

irregular version, DB4, is expectedly smaller, with 26,700 objects and 93,151 links. The irregular-

ity results in more time for DataGuide creation and a larger DataGuide: 712.6 seconds, with 3,074

objects and 3,073 links.

For the remaining databases we introduce backlinks, which clearly can complicate DataGuide

performance. We begin with DB5, which has relatively shallow height(5) butlarge breadth, with 80

outgoing edges per objectand up to 2,000 objects on level 1, 4,000 on level 2, etc. Every tenth edge

is a backlink to an object two levels closer to the root. The database has 11,134 objects and 44,346

links, and it yields good performance: 22.6seconds to build the DataGuide, which has 198 objects

and 720 links. In practice, we expectmany databases tofollow this style, generally structured as a

wide butreasonably shallow tree with some cycles and links for data-sharing.

For our nextexamples, we reduce the breadth and significantly increase the height; we cut fan-

out to 10, reduce objects per level to at most200 times the level number, and increase height to 12.

InDB6, we make every tenth edge a link to anotherobjectatthe same level. While the time required

to create the DataGuide is still reasonable, we see that the DataGuide has become larger than the

source. Keep in mind that even if larger than the source, the properties of any strong DataGuide

make it useful for schema browsing and query optimization, as we will discuss in Sections 3.5

and 3.6. In DB7, we have fewer backlinks but allow them to point to objects three levels closer to

the root. Performance is similar, with fast creation time buta DataGuide larger than the source.

While it is impossible to explore all possible graphs, our results categorize performance for a

significant range of databases. In summary, we see that as expected, performance for any tree is

CHAPTER3. DATAGUIDES 31

Source DataGuide

Target Set

targetHash

objectHash

TargetOf

Figure 3.5: Data structures to supportDataGuide maintenance

good. Acyclic graphs with repetitive structure do not cause problems in common situations. For

relativelyshallow graphs with a large number of outgoing edges perobject, cycles do notpose much

of a problem either. For much deeper graphs, however, cycles can cause DataGuides to be larger

than the source. While the examples presented here yield reasonable performance, the potential

does certainly exist for very poor performance. Many unconstrained backlinks in deep graphs,

for instance, can cause significant problems— to the point of exhausting system resources during

DataGuide construction. This problem is discussed in detail in Section 3.7, where we propose

a relaxation of the DataGuide definition that provides better performance andyields a structural

summary that is still useful inmany situations.

3.4 Incremental Maintenance

If a DataGuide is to be useful for query formulation and especially optimization, we must keep it

consistent when the source database changes. In this section we address how toupdate a strong

DataGuide to reflect insertions or deletions of edges in the source. Note thatupdates to atomic

values do notaffect the DataGuide. We modify the DataGuide creation algorithm in Figure 3.4 for

incremental maintenance. First, we list changes to the algorithm's data structures, as summarized

in Figure 3.5.

� As we constructtargetsets in the DataGuide algorithm(in variablest1 andt2, Figure 3.4), we

store them within the database as auxiliary OEM objects.

� We make persistentthetarge tHash table, whichmaps source targetsets to DataGuide objects.

CHAPTER3. DATAGUIDES 32

� For each DataGuide object,we add an edge connecting itto its corresponding targetset(guar-

anteed to existby Theorem 3.2.2). The edge has the special labelTargetOf.

� In parallel, we build an additional persistenthash table,objectHash, to map a source objecto

to all DataGuide objects thatcorrespond to targetsets containingo.

Our algorithmupdates the DataGuide in response to any number of edge insertions or deletions

on the source. Each edge can be written asu.l.v, indicating an edge from objectu to objectv viathe

labell. We refer tou as the update point, and we are notconcerned with whether the edge represents

an insertion or a deletion. (When adding an edge,v may or may notalready exist in the database.)

Note that the algorithm can handle the insertion of a complete subgraph directly, given anupdate

pointconnecting the new graph to the existing database.

The first step of the algorithm is to identify all DataGuide regions that might be affected by

the changes: for eachupdate pointu, we useobjectHash to find every DataGuide object whose

corresponding source target set containsu. Each such DataGuide object is a “ sub-DataGuide”

thatdescribes the potential structure of any objectin the corresponding source target set (including

one or more of the update points). The updates may affect each such sub-DataGuide, so we must

reexamine all of them, relying ontarge tHash to avoidexcessive recomputation. The algorithmturns

out to be only a slightly modified version of the DataGuide creation algorithm from Figure 3.4. In

fact, the newRecurs iveMake algorithm can and should be used to build the initial DataGuide to

ensure that the data structures are built correctly. The algorithm is presented in Figure 3.6. Lines

thatare different from the original RecursiveMake algorithm are numbered and emphasized.

The HandleUpdate algorithm is very simple, usingobjectHash to identify all sub-DataGuide

objects thatmightneed to beupdated. The modifications toRecurs iveMake are as follows. Line (1)

checks to make sure that the exact edge we wish to add does not already exist. In truth this check

is only an optimization, since the two lines following the check would simply remove and re-add

thatedge. Line (2) removes old DataGuide edges thatare no longer correct: a change in target sets

may cause a DataGuide edge to point to a new object. Lines (4)– (7) simply maintainobjectHash

and theTargetOf links when new objects are added to the DataGuide.� Line (8) performs the same

function as line (2). To preserve DataGuide accuracy, line (9) removes DataGuide edges with labels

no longer represented in the source due to edge deletion. The edge removal in lines (2), (8), and (9)

may result in detached subgraphs in the DataGuide. In Lore, garbage collectionperiodically deletes

any unreachable objects. We mustat the same time remove obsolete references from the persistent
�Similar lines also mustbe added to the MakeDataGuide function in Figure 4 to correctly store root information.

CHAPTER3. DATAGUIDES 33

HandleUpdate: algorithm to build a strong DataGuide over a source database
Input: U , a setof edge updates, each of the formu.l.v (and global variables below)
Effect: The global DataGuide dg correctly reflects allupdates to the source

targetHash =global persistenthash table, mapping source targetsets to DataGuide objects
objectHash=global persistenthash table, mapping source objects to DataGuide objects
dg =global oid of the rootof a strong DataGuide

HandleUpdate(U)f
foreach (update pointu in U)f

foreach (DataGuide objectd in objectHash.Lookup(u))f
RecursiveMake(TargetOf(d), d)

g g g

RecursiveMake(t1, d1)f
p =setof�label, oid�children pairs of each objectin t1
foreach (unique label l in p)f

t2 =setof oids paired with l in p
d2 =targetHash.Lookup(t2)
if (d2 !=nil) f

(1) if an edge does notalready existfrom d1 to d2 with label lf
(2) if d1 has an outgoing edge with label l, remove it

add an edge from d1 to d2 with label l
(3) g

g elsef
d2 =NewObject()
targetHash.Insert(t2, d2)

(4) foreach (oid o in t2)f
(5) objectHash.Append(o,d2)
(6) g
(7) TargetOf(d2) =t2
(8) if d1 has an outgoing edge with label l, remove it

add an edge from d1 to d2 with label l
RecursiveMake(t2, d2)

g
g

(9) remove any outgoing edges of d1 (other than TargetOf) with a label not in p
g

Figure 3.6: Algorithmtoupdate a strong DataGuide incrementally

CHAPTER3. DATAGUIDES 34

1

2

A
B

C

4

D

6

8

9

B

C

11

13

A

D

10

8

9

A B

C

11

C

12

D

13

D

14

3

C

5

D

7

(a)
Source

(b)
 Original DataGuide

(c)
Updated DataGuide

B

A

1

Figure 3.7: Insertion of an edge

hash tables.

Next, we trace two examples to demonstrate the algorithm.

EXAMPLE 3.4.1 Figure 3.7 shows one of the trickier cases for insertion. Figure 3.7(a), without

the dashedB edge between objects 1 and 3, is our original source, and Figure 3.7(b) is a strong

DataGuide for this source (withTargetOf links omitted). Suppose we insert theB edge.Handle-

Update is called with the argumentf1.B.3g, and 1 is the soleupdate point. DataGuide object 8

corresponds to the only targetset thatobject1 is a partof. Hence, we callRecurs iveMake with f1g

as the initial target set and 8 as the initial DataGuide object. As in the original algorithm, we ex-

amine the children of all objects in the initial source targetset, label by label. Suppose we consider

children via labelA first. The target sett� is f2, 3g. From our persistenttarge tHash, we see that

object9 corresponds to this set. Line (1) catches the fact thatan edge from 8 to 9 with the labelA

already exists, so no additional work is required for that label. Proceeding to examine children via

labelB, we see that the targetset is now alsof2, 3g. Hence we add a new edge from 8 to 9 with the

labelB. Before doing so, we remove the existingB edge, as specified by line (2) inRecurs iveMake .

The detached subgraph is garbage collected, and the final result is the strong DataGuide shown in

Figure 3.7(c).

Notice that deleting the edge we just inserted would regenerate a DataGuide equivalentto Fig-

ure 3.7(b). After the deletion, the target setofA remainsf2, 3g, but the target set ofB is nowf2g.

Hence, theB edge from 8 to 9 is removed, and recursive calls toRecurs iveMake generate a new

DataGuide path from the root forB.C.D. �

CHAPTER3. DATAGUIDES 35

1

2

A

C

5

D

8

3

A

C

9

B

(a)
Source

(b)
 Original DataGuide

(c)
Updated DataGuide

4

C

7

F

10

B

11

12

A

C

14

D

16 17

13

C

15

F

18

B

E E

11

12

A

C

14

D

16

13

C

15

F

18

B

6

E

1

Figure 3.8: Deletion of an edge

EXAMPLE 3.4.2 We now demonstrate how the algorithm handles deletion in a case where we

must recompute multiple sub-DataGuides. Figure 3.8(a), including the dashedE edge from 6 to

9, is our source. Note that object 6 is in two target sets,f5, 6g for A.C, andf6, 7g for B.C.

Figure 3.8(b) is the original strong DataGuide. Suppose we delete theE edge. Because object6 is

in two targetsets, we mustreconsider two sub-DataGuides,objects 14 and 15. Consider14 first. We

call Recurs iveMake with target setf5, 6g and object 14 as arguments. The target set for children

via labelD is 8, which already corresponds to object16, so no change is made. There are no other

children to consider, and line (9) of the algorithm will remove the obsoleteE edge from object14.

Calling Recurs iveMake for target setf6, 7g and object 15, we eliminate the otherE edge in the

same manner, and object17 is garbage collected. The final result is in Figure 3.8(c). �

The work required to maintain the DataGuide depends entirely on the structural impact of the

updates. For example, inserting a new leaf into a tree-structured database requires only one target

set to be recomputed (and one new object added to the DataGuide). At the other extreme, in a

graph-structured databases extensive sharing may cause many sub-DataGuides to be recomputed

after an update. Regardless, keeping accurate targetset data prevents any excessive recomputation:

recursion is halted whenever a target set lookup intarge tHash is successful, indicating that the

sub-DataGuide corresponding to that targetset is already correct.

CHAPTER3. DATAGUIDES 36

3.5 Using DataGuides for Query Formulation

Withoutsome notion of the structure of a database, formulating queries can be extremely difficult.

The user is limited to an ad-hoc combination of browsing the entire database, issuing exploratory

queries, and guesswork. Since DataGuides provide concise, accurate, and up-to-date summarizing

information about the structure of a database, they are very useful for query formulation. In this

section we demonstrate the value of DataGuides in the contextof a Java-based Web user interface

we have created for Lore. From the interface, a user can interactively explore the DataGuide to aid

formulation of Lorel queries. Further, the DataGuide enables end-users to specify a large class of

queries in a “ by example” style, withoutany knowledge of the Lorel query language.

In all of our examples we refer to a medium-sized database we have built describing members,

projects, andpublications of the Stanford Database Group, first introduced in Section 3.3. The

database mirrors much of the information available on the Database Group Web site, and in fact

contains links to many of our site's home pages, images, andpublications. Once a connection to the

database is made, the user is presented with an HTML page framing a Java DataGuide, as shown in

Figure 3.9.

The user can explore the DataGuide by clicking on thearrows (triangles), which expand or

collapse complex objects within the DataGuide. Immediately,we see how the DataGuide guides the

specification of path expressions used in Lorel queries: every validpath expressionmustbegin with

theDB Group label, followed byGroup Member, Project, or Publication. Expanding a DataGuide

complex object lists all potential subobject labels that are found in the database, and we never see

two subobjects with the same label. Therefore, we can determine whether any given label path of

lengthn exists in the database by clicking on at mostn-1 DataGuide arrows. In contrast, when

browsing a semistructured database directly, we may have to examinemanylike-labeled objects

before finding one with a specific outgoing label.

While the DataGuide is useful for deducing validpath expressions,values in the database at this

pointremain a mystery. A user interested in locating all group members from Nevadadoesn'tknow

if Original Home for someone from Las Vegas would be stored as “Las Vegas, NV” , “ Nevada” , or

“ Nevada, USA” . One option is to use Lorel's pattern matching features [AQM�97] to write a query

that attempts to encompass all possible formats, but in many cases a better approach is to examine

sample values from the database. As described in Section 3.2.3, we can effectively store such

sample values as annotations in the DataGuide. In Figure 3.9, notice that a diamond accompanies

every label, corresponding to a distinctlabel path from the root. Clicking on the diamond brings up

CHAPTER3. DATAGUIDES 37

Figure 3.9: A Java DataGuide

CHAPTER3. DATAGUIDES 38

Figure 3.10: DataGuide path information

a dialog box such as the one shown in Figure 3.10, which was obtained by clicking on the diamond

next to theOriginal Home label.

The top portion of the dialog box identifies the path expression and shows two DataGuide an-

notations: the total number of database objects reachable by that path expression, and a list of

sample values. A fixed number of values are chosen arbitrarily from the database, although clearly

there is room to be more sophisticated here. Annotations are stored as speciallymarked children of

DataGuide objects that are interpreted by the user interface. They are computed during DataGuide

creation and maintenance by simple extensions to the algorithm in Figure 3.4.

The other elements in the dialog box allow users to specify queries directly from the DataGuide

without writing Lorel, in a style reminiscent of Query By Example [Zlo77]. As shown, a user

can click a button to select a path for the query result. Further, value-filtering conditions may be

specified using common comparison and boolean operators, as well as custom operators such as

the UNIX utility grep and the SQL functionlike . (These comparisons correspond to Lorel “ where”

CHAPTER3. DATAGUIDES 39

Figure 3.11: A DataGuide query specification

conditions, but users need not be aware of that fact.) The on-screen DataGuide isupdated to re-

flect any query specifications, highlighting diamonds for selected path expressions and displaying

filtering conditions next to the corresponding label. Figure 3.11 shows the DataGuide after a user

has specified to select all students in the group that are originally from Nevada or New York and

have been atStanford for more than two years. (The like predicate will satisfy anyPhD Student or

Masters Student.) When the userclicks the Go button from Figure 3.11, the Javaprogram generates

a Lorel query equivalentto the DataGuide query specification, and sends it to Lore to be processed.

Lore returns query results in HTML, using a hierarchical format thatis easy to browse and navigate:

like-labeled objects are grouped together, and complex objects are represented as hyperlinks. At

any point the user may return to the DataGuide to modify the original query or submita new one.

DataGuide queries can specify any Lorel querywithsimple path expressions (no path wildcards,

recall Section 2.2) and “ where” clauses thatare conjunctive with respect to unique path expressions.

Also, all value comparisons must be made against constants. It would not be difficult to expand

the expressive power of DataGuide queries; e.g., adding disjunctions across path expressions, path

wildcard specifications, and variables to enable joins.

On a larger scale, we believe that there is much opportunity for blurring the distinction be-

tween formulating a query and browsing a query result, in the spirit of PESTO [CHMW96]. For

example, suppose that instead of supplying justa few sample values, the dialog box for each path

expression always displayed all values. Then clicking on a diamond answers the simple query to

find all values reachable by a given path. Furthermore, by integrating the query processor with our

DataGuide maintenance algorithms, we could quickly respond to a filtering condition specified in

the DataGuide by updating the DataGuide and its valuelists to reflect thatcondition. For example,

suppose the user specified the condition in Figure 3.11 onPos ition first, restricting the query to only

CHAPTER3. DATAGUIDES 40

consider students. It may be that the database has noResearch Inte res t data for any such group

members, so thatpath could be removed temporarily from the DataGuide. More importantly, click-

ing on the diamond next toOriginal Home would now display sample values from the homes of

students only. In the same manner, restrictingYears At Stanford would evaluate the entire desired

query, since clicking on the diamonds for labelsunderGroup Member would only display data that

matched our query conditions. At that point, it may be desirable to revert to the current model of

result browsing, allowing a user to examine one by one the group members thatsatisfied the query.

As one step in this direction, Chapter 4 describes how we can generate special DataGuides over

query results to improve interactive query sessions.

The DataGuide-drivenuser interface describedhere is accessible to thepublic viathe Lore home

page on the Web, athttp://www-db.stanford.edu/lore.

3.6 DataGuides as Path Indexes

In this section we discuss how the information maintained by a strong DataGuide can be used to

speed up query processing significantly for a broad class of Lorel queries. Essentially, a strong

DataGuide can also serve as apath index. While path indexes have been studied for traditional

object-oriented systems, e.g., [BK89, CCY94, KM92], their use in a semistructured environment

had not been addressed prior to our work. In particular, creating and maintaining a path index

without a fixed schema may be quite difficult, yet we can conveniently use strong DataGuides to

address the problem. As shownin Section3.4 for incremental maintenance, each objectin the strong

DataGuide can have a link to its corresponding targetset in the source. Hence, in time proportional

to the length of a label path, we can use the DataGuide to locate all source objects reachable via that

path, independent of the size of the source. (Of course, to examine all of these objects takes time

proportional to the size of the target set.) In this analyze a sequence of sample query executions to

show the benefits of having fast access to targetsets during query processing.

All of our query processing comparisons are based on the number of objects examined. We use

a very simple cost model thatassigns a uniform cost to every objectexamination since, in general,

it is difficult to make guarantees about clustering in a graph-based modellike OEM; each object

examination may therefore require a random disk access. In Lore, the value of a complex object is

a sequence of�label, oid� pairs representing its subobjects [MAG�97], so time spent to examine

only the labels and oids of those subobjects is included in the costof examining the complex object

itself. For some queries, we need to find parents of an OEM object. Parent pointers need not be

CHAPTER3. DATAGUIDES 41

stored explicitly within the database; Lore, for example, instead uses a hash-based index to map an

objecto and a labell to all parents that reacho via l [MAG �97]. For simplicity, we assume that

examining an objectyields thatobject's parents atno additional cost.

EXAMPLE 3.6.1 We begin by tracing a very simple Lorel query over a sample database, showing

how the DataGuide can reduce dramatically query executioncost. Suppose we wish to execute

the following Lorel query (recall Chapter 2) over a database with structure similar to the Stanford

Database Group database described in Section 3.5. It finds allGroup Member publications in Troff

format.

Select DB Group.Group Member.Publication.Troff

The result is a set of oids. For this example, let us consider an extreme database that has one

DBGroup objectcontaining 10,000 group members(among other objects). EachGroupMember has

an average of 100Publications , butonly oneTroff subobjectis reachable along the path specified in

the query. (Assume for now that the database contains 100,000 totalTroff publications, even though

only one is reachable along the path of interest.) Without any a priori knowledge of the structure

of the database, a query processor would be forced to examine eachGroupMember, in turn each

Publication of eachGroupMember, and finally return everyTroff object of each suchPublication.

We see that, in addition to the root and theDBGroup object, the query processor must examine

1,000,000 objects. If instead we attempt to begin query processing by using a straightforward index

to identify any objectwith an incomingTroff label, we will need to examine 100,000 objects.

In this example, the query resultis exactly the objects in the targetsetofDBGroup.GroupMember.

Publication.Troff. To find the targetset, we simply traverse the path from the rootof the DataGuide,

and we know there is only one such path. Hence, we need examine only six objects to find the result:

the DataGuide root, theDBGroup object, theGroupMember, thePublication, theTroff object, and

the objectcontaining the path's targetset. (As in Section 3.4, the objectin the DataGuide reachable

by DBGroup.GroupMember.Publication.Troff includes as partof its value aTargetOf link to a special

objectwhose children are all objects in the path's targetset.)

Note thatwhen traversing the DataGuide, we may find thata path does notexist. For this query

and many others, such a finding guarantees that the query result is empty. This type of optimization

works with any DataGuide (notnecessarily a strong one) and was in fact suggested by [NUWC97].

�

EXAMPLE 3.6.2 We now show a somewhatmore interesting query. Suppose we wish to find the

CHAPTER3. DATAGUIDES 42

publication years of some of the group's olderpublications:

Select DB Group.Group Member.Publication.Year

Where DB Group.Group Member.Publication.Year� 1975

This query is similar to the previous example but introduces a filtering condition. For such condi-

tions Lore can use a B-tree [Com79] basedvalue index (Vindex) that takes a label, operator, and

value and returns the set of oids of objects that satisfy the given value constraint and have the

specified incoming label [MAG�97]. Note that this index is based only on the last label in a la-

bel path to an object. Using the DataGuide, we can compute the intersection between the set of

objects returned by the Vindex on (Year,�, 1975) and the target set of the full label path,DB-

Group.GroupMember.Publication.Year. Because the DataGuide algorithm in Figure 3.6 constructs

each target set in one step (and never modifies a target set), we can typically expect target sets to

be stored contiguously on disk. Further, since oids returned by the Vindex are stored efficiently

in a B-tree, we expect computation of this intersection to be fast, with few additional random disk

accesses.

We now specify a sample database for analyzing the performance of both this query and Exam-

ple 3.6.3 below. While the numbers are contrived in this particular database, they are representative

of the size and structure of databases we are likely to encounter in practice. Suppose the pathDB-

Group.GroupMember.Publication.Year has a target setY of 20,000 objects. Assume 1,000 of these

objects satisfy the value constraint, each reachable via a singlePublication along that path. Also,

suppose that these 1,000 Year objects are referenced by 1,000 otherPublications along the path

DBGroup.Project.Publication.Year, and that 9,000 otherYear objects with value less than 1975 are

reachable from 9,000 morePublications on that same path. Hence, a Vindex lookup on (Year,�,

1975) returns 10,000 objects, pointed to by 11,000 differentPublications .

To process the query using the DataGuide, we firstexamine 5 DataGuide objects to find the oid

identifyingY . Next, we retrieve the 10,000 valid oids from the Vindex and intersect them with the

20,000 oids of Y to compute the result. Now consider processing the query withoutthe DataGuide.

A “ top-down” exploration that does not use the Vindex would need to examine the values of all

20,000 objects in Y, and as in the previous example we might examinemanyGroupMember or

Publication objects thatdo noteven have the appropriate subobjects. Alternatively, Lore can build a

query plan to take advantage of the Vindex by traversing “ bottom-up” to identify objects reachable

by valid paths [MAG �97]. In this example, for each objecto returned by the Vindex, the system

CHAPTER3. DATAGUIDES 43

would find all objects that have aYear link to o, check to see which of those objects have incom-

ing links with the labelPublication, and so on up to the root until it can determine whether or not

the object is indeed reachable via the label pathDBGroup.GroupMember.Publication.Year. To be-

gin processing our example, we first examine all 10,000 objects returned by the Vindex to find the

11,000Publications with links to those objects. Next, we must find the parents of all 11,000Publi-

cation objects as well. Hence, processing the query “ bottom-up” requires at least21,000 objects to

be examined. �

EXAMPLE 3.6.3 Suppose we now wish to find the actual olderpublications:

Select DB Group.Group Member.Publication

Where DB Group.Group Member.Publication.Year� 1975

LetP denote the targetsetof the “ select” path andY the targetsetof the “ where” path, both found

by traversing a single data path in the DataGuide. As mentioned in Example 3.6.1, if either path

does notexistthen the query result is empty. Otherwise, we proceed as in Example 3.6.2 to intersect

oids inY with the set of oids returned by the Vindex to identify candidateYear objects,Y �. Next,

we examine all objects inY � to find the setP � of (parent) objects that haveYear links to objects

in Y �. SinceP � may include objects not in the query result, we intersect the oids ofP � andP to

compute the final resultR.

As before,Y has 20,000 objects. We assume each Publication has a singleYear, soP has

20,000 objects as well.Y �, essentially the query result from the previous example, has 1,000

objects. Because of data-sharing,P � contains 2,000 objects. In addition to the work required from

the previous example to computeY �, we need to examine the 1,000 objects inY � to find the parent

objects inP �, and we must intersectP andP � to findR. Hence, the total costusing the DataGuide

is 1,000 expensive objectexaminations, plus the relatively small costs involved in retrieving 10,000

oids from the Vindexand performing two oidsetintersections: one between the 10,000 oids returned

by the Vindex and the 20,000 oids inY , and the other between the 20,000 oids inP and the 2,000

oids inP �. In comparison, a top-down approach without the Vindex or DataGuide would again

have to examine at least 20,000 objects. Similarly, as in the previous example, combining the

Vindex with parent traversal would retrieve 10,000 oids from the Vindex and then examine at least

21,000 objects. �

The three examples illustrate how the DataGuide can be used to speed up common queries

significantly. DataGuides have been integrated into Lore's cost-based query optimizer [MW99c]:

CHAPTER3. DATAGUIDES 44

the optimizerautomatically considers using aDataGuide path index as one of the potential strategies

available for query evaluation. (Note that using a DataGuide path index is not necessarily always

the bestapproach for evaluating a query, since we may need objects bound along a given path.)

The path index techniques we have described also apply to queries with more sophisticatedpath

expressions. For example,

Select DB Group(.Group Member j .Project)?.Publication

selectsPublications either directly underDB Group (since the? makes the other labels optional)

or underGroupMembers or Projects . Because the DataGuide is an OEM object, we can reuse the

same code thathandles such constructs over data to find targetsets of such paths in the DataGuide.

DataGuides also can be used to expand wildcards and regular expressions during query compi-

lation. For example, consider the query:

Select DB Group(.%)?.Publication

Recall from Section 2.2 that% matches any label, and the? indicates that the label is optional.

During query compilation, by consulting the DataGuide we could determine quickly all paths

that satisfy the wildcard and regular expression in the current instance of the database. In this

example, the query processor might use the DataGuide to conclude thatDB Group.Publication,

DB Group.Group Member.Publication, andDB Group.Project.Publication are the only paths that

could satisfy the query. By expanding such wildcards and regular expressions at compile time,

we guarantee thatwewill visit(at runtime) a subsetof the objects thatwould have been visitedwith

the original path expression, regardless of execution strategy. See [MW99a] for more details.

On a related note, Lore includes aquery warning system thatuses the DataGuide to warn users

whenaLorel query includes pathexpressions thatdo notexistin the currentinstance of the database.

One of the design goals of Lorel was to ensure thata given query can still return valid results even

if some of the path expressions it refers to are not matched in the database. Hence, the warning

system is a way to give a query writer feedback about invalidpaths withouthalting query execution

and returning an expliciterror. For example, consider the query:

Select DB Group.Project.#.Hobby

If the query is run ata pointwhen the onlyHobby objects in the database are reachable via the path

DB Group.Group Member.Hobby, then the query will return a warning that the specified path does

notcurrently exist— a conclusion drawn by consulting the DataGuide.

CHAPTER3. DATAGUIDES 45

3.7 Approximate DataGuides

As explained in Section 3.3, our algorithm for DataGuide construction performs well inmany situ-

ations for both tree-structured and graph-structured databases. However, we have seen examples of

highly cyclic databases that result in very poor performance. For example, we have a 4MB database

for which DataGuide creation runs for several hours without terminating; we explain the cause of

the problem in Section 3.7.1.

For many DataGuide uses, an “ approximate” summary of the database's structure can still be

beneficial, yetmuch cheaper to compute. We defineApproximate DataGuides (ADGs), which relax

certain aspects of the DataGuide definition. An ADGallows some inaccuracy yetretains properties

thatmake ituseful innumerous situations. This sectionpresents two general approaches for building

ADGs, describing algorithms and experimental results.

Recall our definition of a DataGuide (Definition 3.2.5), which has two requirements: (1) every

label path in the source database exists exactly once in the DataGuide; (2) every label path in the

DataGuide exists in the source database. Quite simply, an ADG drops the second requirement

that all DataGuide paths must exist in the original database. Therefore an ADG may have “ false

positives” butnever “ false negatives” concerning the existence of database paths.

Letus reconsider five of the DataGuide uses described earlier in this chapter:

� Query Formulation: As described in Section 3.5, exploring an interactive DataGuide can be

very useful for learning the structure of the database and formulating meaningful queries.

A user exploring an ADG may see paths that do not actually exist in the database. If he

formulates an unfiltered query over one of these “ false paths,” the query resultmay be empty,

whereas the same query over an accurate DataGuide will always return at leastone matching

object.

� Statistics: As mentioned inSection3.2.3, we can associate statistical informationwithdatabase

label paths by annotating DataGuide nodes with values. We can still associate statistics with

every ADG object, hence we can store statistics for every rooted path in the database. How-

ever, some statistics may be based on a superset of the actual objects reachable along that

path.

� Path Index: An index is expected to be exact, so using an ADG as a path index, as described

in Section 3.6, is not feasible.

CHAPTER3. DATAGUIDES 46

DB

A

B
C C

D

A

B
C

Database Strong
DataGuide

Figure 3.12: A sample OEM database and its strong DataGuide

� Path Expressions: In Section 3.6 we explained how we can use the DataGuide to expand

wildcards and regular expressions at compilation time. Using an ADG, we may expand to a

supersetof valid path expressions. Such an expansion will notaffect the correctness of query

results, but itmay degrade efficiency [MW99a].

� Warnings: Using the DataGuide for query warnings was also described in Section 3.6. The

system may fail to warn the user that certain path expressions do not exist, but it will never

incorrectly warn thata valid path does notexist.

We propose several strategies for building effective ADGs. In each case, we identify “ similar”

portions of the DataGuide and merge them. Itis this merging process thatmay introduce superfluous

paths. We see itas a requirement thatall merging occur during construction— rather than as a post-

processing step— because constructing a (regular) DataGuide is exactly the performance bottleneck

we are trying to avoid. We discuss two general approaches to approximation:

� ObjectMatching: This approach is based on the hypothesis that two label paths in a database

are “ similar” if the sets of objects reachable via those paths are similar, i.e., they have a

significantintersection.

� Role Matching: For this class of approximation,we decide whether two label paths are similar

based on the paths themselves, withoutregard to the objects they reach.

3.7.1 Object Matching

Recall from Section 3.2.1 that the target set of a path is the set of all objects reachable via that

path. In a strong DataGuide, each DataGuide objectcorresponds to the target set of all label paths

that reach that DataGuide object. Two label paths in the DataGuide point to the same DataGuide

CHAPTER3. DATAGUIDES 47

DBGroup

52 x GroupMember 18 x Project

38 x ProjectMember

52 x Name

...

...

...

...

DBGroup

Name

ProjectMember

Project

GroupMember

DBGroup

Name

ProjectMember

Project

GroupMember

Fax
NameFax Fax

...

...

(a) (b) (c)

Figure 3.13: An OEM database, its strong DataGuide, and an approximate DataGuide

object if and only if the targetsets of both label paths are exactly the same in the original database.

Figure 3.12 shows a small database and its strong DataGuide. Notice that pathsA.B andA.C in

the DataGuide point to the same object because the target sets ofA.B andA.C are the same in the

database. The pathA.D gets its own object in the DataGuide because its target set is different from

the others.

The algorithm presented in Figure 3.4 creates a strong DataGuide by performing a depth-first

explorationof the database, building up targetsets of the label paths visited. Each targetsetis stored

in a hash table. Each time the graph explorationgenerates a targetset, the algorithmchecks the hash

table to see if that target sethas already been discovered. If not, then a DataGuide object is created

for that specific target set, the target set is added to the hash table (along with its corresponding

DataGuide object), and the new object is linked into the DataGuide according to the path used to

reach the target set. If, on the other hand, we have already seen the target set, then we can find its

corresponding DataGuide object, and we add an edge in the DataGuide to thatexisting object.

Suppose that instead of requiring target sets to be exactly equal before equating their corre-

sponding DataGuide objects, we instead allow DataGuide paths to point to the same object when

their targetsets are “ almost” equal. In doing so, we may introduce DataGuide paths thatdo notexist

in the database (false positives).

Consider Figure 3.13(a). Compare the target sets ofDBGroup.GroupMember (52 objects) and

DBGroup.Project.ProjectMember (38 objects). Because the target sets are not identical, each will

correspond to a different strong DataGuide object. Note that allGroupMembers have aName ,

and one who is not aProjectMember also has aFax. Figure 3.13(b) is the strong DataGuide for

Figure 3.13(a).

CHAPTER3. DATAGUIDES 48

Suppose that when comparing the target sets for theGroupMembers andProjectMembers , we

merged the corresponding DataGuide objects because of their significantintersection. We thenbuild

the “ sub-DataGuide” over the union of theGroupMembers and theProjectMembers . This case is

shown in Figure 3.13(c). Performing the merge of DataGuide objects can introduce false paths: in

our case the ADG incorrectly suggests thatat leastoneProjectMember has aFax.

This object-matching approach to DataGuide approximationintroducesmany interestingissues:

� How do we define whether two sets are “ similar” ? One simple criterion (used in the remainder

of this section) is to consider two setsX andY similarwhenjX�Y j /max�jX j, jY j� is above

some thresholdt.

� How does the DataGuide construction algorithm change? Again, we need to make our ap-

proximations during construction rather than reducing a constructed (full) DataGuide. This

on-line approach unfortunately gives some importance to the way we traverse the original

database to construct target sets. For example, we may decide that setsX andY are similar

enough to merge them intoZ. At this point, the original sets disappear. Suppose we then

encounter another setW . W may be similar toX , but not to the newly created setZ. If we

would have traversed the database differently,W andX may have been merged. In addition,

we may want to limit the number of times any given (original) target set can participate in a

merge operation in an effort to bound the difference between a target set and the final object

set it is a part of. Suppose that we have already constructed the “ sub-DataGuide” for some

targetsetX . If we encounter some targetsetY thatwe decide is similar toX , there are two

possible scenarios for the algorithm: ifY is a subset ofX we can simply merge the ADG

objects and halt further processing ofX , since we know thatY cannot introduce any new

paths that were not considered when processingX . On the other hand, ifY is not a subset,

it is necessary to continue by examining the “ union” of the substructure of objects inX with

those inY . We can reuse our incremental DataGuide maintenance algorithms (Figure 3.6) to

minimize the amountof redundantwork.

� How do we efficiently decide whether two sets are similar? Recent work has shown that we

can efficiently determine whether two sets have a high percentage of elements in common

[BGMZ97]. But the decision becomes more expensive as the threshold similarity percentage

drops, since we cannotdisqualify a potential match as quickly.

CHAPTER3. DATAGUIDES 49

Similarity Threshold Objects Edges False Paths

100% (Strong) 273 366 -
95% 241 308 0
90% 214 256 2
80% 200 241 6
70% 170 238 9
50% 117 140 9
30% 115 140 9
15% 110 138 9
1% 65 124 21

Table 3.3: Object-matching ADGs for theDBGroup database

3.7.2 Object Matching Experiments

For our experiments, we focused on the size and accuracy of the ADGs rather than absolute speed

of construction, since for this work we used a simple, untuned B-tree-based data structure for com-

puting setsimilarity.

We begin by testing the objectmatching approach overa larger versionof theDBGroup database

used in Section 3.3. This version contains about 3600 objects and 4200 edges. The database is

highly cyclic, and while the overall structure is regular there aremany “ islands” of irregularity and

incompleteness. The first row of Table 3.3 shows the size of the strong DataGuide. The remaining

rows show the different ADG sizes for varying similarity threshold percentages. Quantifying the

level of approximation is a challenge. As one simple metric, we counted howmany false paths

appear in the ADG but not in the strong DataGuide. Using depth-first search, once we determine

thata pathp is false, we do notcontinue to countpaths for whichp is a prefix, since of course they

will be false as well.

Next, we attempted to analyze a 4MB subsetof the InternetMovie database (www.imdb.com),

a highly cyclic semistructureddatabase with information aboutmovies, actors, directors, producers,

writers, etc. The database has about 60,000 objects and 95,000 edges. Unfortunately, our strong

DataGuide algorithm did not terminate before exhausting resources: because of certain kinds of

database cycles, the algorithm generatedmany very long paths (over1000 labels) withoutfinding a

repeated target set. We were hopeful that the ADG would perform better, but unfortunately we hit

the same problem. The algorithm generated toomany small, nearly disjointtarget sets thatdid not

merge. Thus, while object-matching ADGs are efficient and effective when the number of target

CHAPTER3. DATAGUIDES 50

sets is manageable, the algorithm still is too expensive for certain larger, cyclic databases.

3.7.3 Role Matching

Rather than approximating DataGuides based on target sets, another approach is to merge Data-

Guide objects based on label paths (roles). More formally, we consider building ADGs based on

Booleanpath merging functions. If such a functionM�p �, p�� returnsTrue for label pathsp � and

p�, then pathsp � andp � will point to the same ADG object. We discuss two possible merging

functions.

Suffix Matching

In basicsuffix matching, the merging functionM�p �, p�� returnsTrue if and only if the last labels

of p� andp � are the same. This approximation restricts the ADG to have one object per label.

Figure 3.14(a) shows a sample database fragment, and its suffix-matching ADG is shown in Fig-

ure 3.14(b). Note thata suffix-matching ADGis essentially the same as the1-Representative Object

described in [NUWC97], the original Stanford paper on which DataGuides were based.

The suffix-matching ADG is straightforward to characterize. While we can create it with a

merging variantof the DataGuide construction algorithm, a simpler method is just to build a hash

table: for each labell, we store information about all of the labels that directlyfollow l in the

database. For the final step, we can construct the ADG by identifying the root label and walking

what is essentially an adjacency-listgraph representation inside the hash table. Construction time is

at worstquadratic in the size of the database, since building the hash table requires examination of

all paths of length 2.

The suffix-matching ADG is very effective when each label consistently identifies the “ same

type” of object. As one example where it could be problematic, consider ourDBGroup database,

where theAuthor label is used to identify both the authors of group publications and authors of

members' favorite books. The suffix-matching ADG implies that Asimov, Salinger, and Kerouac

may have Stanford email addresses! To help alleviate such problems, a natural extension to this

approach is to match suffixes of length 2, 3, ork. As described in [NUWC97], we can generalize

the hash-table approach tok-length suffixes, and that paper also proposes several algorithms for

building more compact representations.

CHAPTER3. DATAGUIDES 51

Database Approximation Objects Edges False Paths

DBGroup Suffix 102 134 240
DBGroup Path-cycle 240 317 3
Movies Suffix 38 63 -
Movies Path-cycle 76 96 -

Table 3.4: Role-matching ADGs

Path-cycle Matching

As an alternative to matching suffixes of a particular length, we consider a different path merging

function that specifically addresses DataGuide performance problems caused by cyclic databases.

Note thata strong DataGuide can have cycles itself when target sets are repeated along a path. But

for larger databases, experience shows thatpaths grow to giant lengths before reaching an identical

targetset. As mentioned in Section 3.7.1, the problem persists even when we are willing to settle for

similar target sets. Hence, we encode in a path merging function the following heuristic: if we see

a specific label more than once along a path from the root, we assume thatwe have hita “ semantic”

cycle and we merge the paths. For example, inourDBGroup database, suppose thatatsome pointwe

create an ADGobjectfor the pathDBGroup.Paper. As we continue to explore this path, we create a

new ADGobjectforDBGroup.Paper.Author, butwhen we encounterDBGroup.Paper.Author.Paper

we assume that seeingPaper again indicates a schema cycle. Hence, we point back to the ADG

object forDBGroup.Paper. This path-cycle matching ADG is shown in Figure 3.14(c); note that

this approach avoids the suffix-merging problem of combining paper authors with group members'

favorite authors.

Within our merging function framework, the path-cycle matching functionM�p �, p�� returns

True if and only if p � is a prefix ofp � (orp � is a prefix ofp �) and the last labels ofp � andp � are the

same.

3.7.4 Role Matching Experiments

For our experiments we modified the depth-first object-matching algorithm to merge ADG objects

instead based on either suffixes or path-cycles. Table 3.4 shows experimental results for both types

of approximations on theDBGroup andMovies databases introduced in Section 3.7.2. Again, the

false paths column is in comparison to the strong DataGuide, which we were unable to generate for

theMovies database.

CHAPTER3. DATAGUIDES 52

DBGroup

GroupMember

(a) (b) (c)

Author

Paper

Author

Favorite

DBGroup

GroupMember

FavoritePaper Paper

Paper

Author
Author

DBGroup

FavoritePaper

Paper
Author

Author

GroupMember

Email
Email Email

Figure 3.14: A sample OEM database, its suffix-matching ADG, and its path-cycle matching ADG

Note that the suffix approximation produced numerous false paths for theDBGroup database,

many of which were due to theAuthor label problem described in Section 3.7.3. Using suffixes

of length 2 would fix the problem for this database. Another interesting fact is that the smallest

DBGroup object-matching approximation from Section 3.7.2 is actually smaller than the suffix-

matching ADG, due to the fact that the database has many objects serving multiple roles (e.g.,

members as authors, projectmembers, advisors, etc.). As could be expected, in both databases the

path-cycle approximation is significantly larger than the suffix match. Perhaps the most striking

results are the tiny sizes of the role matching approximations for theMovies database, given thatwe

could noteven build the strong DataGuide (or the object-matching approximation)for this database.

3.7.5 Summary

Since the space of possible semistructured databases is enormous and varied, it is difficultto choose

the best approximation for every situation. Nonetheless, we can summarize the best and worst

features of strong DataGuides and the Approximate DataGuides introduced in this section.

� Strong DataGuides: Strong DataGuides are always accurate and can be used as a path in-

dex, something for which we cannotuse ADGs. For tree-structured, acyclic, or smaller cyclic

databases, strong DataGuides usually perform well. For larger cyclic databases, itmay be bet-

ter to use an ADG. For path indexing, [MS99] proposes a graph-based path indexing structure

that relaxes the DataGuide (and ADG) constraintof a database label path existing only once

CHAPTER3. DATAGUIDES 53

in the index. (It would be interesting to explore this approach in general, although for some

DataGuide uses we do depend on a path existing only once, such as for the user interface.)

� ObjectMatching: This approach approximates a DataGuide based on objects having multiple

incoming paths. Hence, it is an approximation for graph-structured databases only; for trees,

a strong DataGuide is generated. An adjustable threshold lets the level of approximation be

tuned. Unfortunately, however, the algorithm can still be prohibitively expensive for large,

cyclic databases.

� Suffix Matching: The best feature of suffix matching is its predictable construction perfor-

mance. The algorithm also is notbiased to rooted paths— itprovides information aboutpath

suffixes wherever they may appear in a database. Unfortunately, this approximationcan yield

skewed summaries and statistics if labels are used in different ways throughout a database.

We can increase the suffix length thatwe match to increase accuracy, althoughdoing so makes

the algorithm more expensive.

� Path-cycle Matching: This approximation addresses problems caused by cyclic data without

bias to paths of any specific length. Unfortunately, it is difficult to characterize just how

computationally expensive this approach is.

Ultimately, the “ best” ADG may depend on the database we are summarizing. Further, it may

be possible to combine some of the above techniques, such as path-cycle and objectmatching.

3.8 Related Work

DataGuides were inspired by initial work at Stanford onRepresentative Objects [NUWC97]. This

work proposed the importance of summarizing semistructured data via a NFA-to-DFA conversion.

A representative object is defined as a function that can answer schema discovery questions about

objects in a semistructured database. A DataGuide is an effective implementationof what is defined

as aFull Representative Object. Work in [NUWC97] also focuses on enabling schema discov-

ery when only considering paths of lengthk. Such functions are calledk-Representative Objects

(k-ROs). A k-RO may describe a superset of the label paths that exist in the source, therefore vio-

lating theaccuracy constraintof our DataGuide definition. Indeed, as mentioned in Section 3.7.3,

a suffix-matching Approximate DataGuide is equivalentto the implementation of a1-RO suggested

in [NUWC97].

CHAPTER3. DATAGUIDES 54

Related work from [NAM98] gives algorithms for finding “ approximate typings” of semistruc-

tured databases based on patterns of incoming and outgoing edges. In comparison, we are less

concerned with extracting a set of object types; rather, our goal is to provide a structural summary

thatallows a semistructured database system (or a user of one) to quickly extract information about

label paths in the database.

Inotherrelatedwork, [BDFS97] describes how we can definegraphschemas for graph-structrured

databases. However, their perspective is more traditional, since they assume that the database must

still adhere to the schema, and they provide algorithms for testing whether a database adheres to

a given schema. In contrast, DataGuides always conform to the database. However, choosing an

effective Approximate DataGuide can be thoughtof as fitting a “ good” graph schema to an existing

database ata particular moment in time.

3.9 DataGuide Impact

Since their introduction in 1997, DataGuides have become recognized as a core concept within

the field of semistructured data. For example, a recent book about semistructured data aimed at

the mainstream technical community has numerous references to DataGuides [ABS99]. Further,

DataGuides have served as a springboard for research outside Stanford, including the following

projects.

� As mentioned in Section 3.7.5, Milo and Suciu have developed a new path indexing scheme

that is related to our approach from Section 3.6, but takes advantage of a relaxed DataGuide

definition to offer better performance [MS99].

� Liefke and Suciu leverage DataGuides to improve the performance of theirXML compression

tool, XMill [LS00].

� MiroWEB, a data integration projectat the University of Versailles, cites DataGuides as the

basis for their interactive query browser [BCSYDN�99].

Chapter 4

Interactive Query and Search of

Semistructured Data

In this chapter we focus on the end-user's perspective of searching and querying a semistructured

database. As more and more semistructured data is made available over the Web, it is important to

enable casual Web users to interact effectively with the data. In Chapter 2 we introduced the Lorel

query language for semistructured data. While Lorel is a powerful declarative language,like SQL it

is too complicated for a casual end user to master. It is possible to handle certain queries by having

users fill in hard-coded forms, but this approach by nature limits query flexibility. In Chapter 3

we showed how an interactive DataGuide simplifies the process of formulating a certain class of

queries over a semistructured database. Still, even with a DataGuide, such an approach to querying

semistructured data does not take into account two importantcharacteristics of typical Web users:

� Users are comfortable initiating a search with simple keywords.

� Users find it natural to explore the results of an initial search, perhaps refining their search

criteria iteratively until the desired information is found.

In this chapter we presenta model for interactive query and search sessions over semistructured

data that addresses these two points. First, we explain how we can implement searches based on a

single keyword over a semistructured database. (To support searches based on multiple keywords,

we rely on ourproximity search techniques, described in detail in Chapter 5.) Second, to enable

users to refine a search, we want to expose and summarize the structure of the database “ surround-

ing” any query result. To create such a summary, we build dynamically and present to the user a

55

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 56

DataGuide thatsummarizes paths not from the database root(as in Chapter 3), but instead from the

objects returned in the query result. A user can then repeat the process by submitting a query from

this “ focused” DataGuide or specifying additional keywords,ultimately locating the desired results.

In the contextof the query functionality matrix from Chapter1, the contributions of this chapter,

along with Chapter 5 on proximity search, fill in Entry 4: enabling keyword-based search over

semistructured databases (Section 1.1.5).

Ourdiscussions in this chapter are again in the contextof theLore project(Chapter 2), involving

OEM, Lorel, and DataGuides (Chapter 3). However, our results are applicable to other similar

graph-based data models (e.g., [BDHS96]), as well as to XML [XML98].

In the restof the chapter, Section 4.1 presents a simple motivatingexample to illustrate why new

functionality is needed in a semistructured database systemto support interactive query and search.

Our session model is described in Section 4.2, followed by three sections covering the new required

technology:

� Keyword search (Section 4.3): Efficient data structures and indexing techniques are needed

for quickly finding objects in a semistructured database that match keyword search criteria.

While we may borrow heavily from well-proven information retrieval (IR) technology, the

new context of a graph database is sufficiently different from a simple set of documents to

warrantnew techniques.

� DataGuide enhancements (Section 4.4): Computing a DataGuide over each query result can

be very expensive,so we have developednew algorithms for computing and presenting Data-

Guides piecewise, computing more of the DataGuide as needed.

� Inverse pointers (Section 4.5): To fully expose the structural context of a query result, it is

crucial to exploitinverse pointers (pointers to an object's parents) when creating the Data-

Guide for the result, browsing the data, and submitting refining queries. While support for

inverse pointers may seem straightforward, the major proposed models for semistructured

data are based on directed graphs, and inverse pointers have not been considered in the pro-

posed query languages [AQM�97, BDHS96, FFLS97]. Similarly, proposed query languages

for XML also do notsupport inverse pointers [DFF�99a, RLS98].

Many of the contributions of this chapter were firstpublished in [GW98].

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 57

DBGroup

Member

Member

Project

Publication

Title Year Publication

1

r

2 3 4

5 6 7

Name

8

Publication

9

Name

10

Title Year

11 12

Title Year

13 14

RelDB

OLTP OLAP

Jones1977

1987 1997

Warehousing

Project

Figure 4.1: A sample OEM database and its DataGuide

4.1 Motivating Example

In Figure 4.1, consider a sample OEM database along with its DataGuide, as explained in Sec-

tion 3.5. In this example,Publication objects appear in the database along several different paths:

directly underDBGroup, underDBGroup.Memberobjects,andunderDBGroup.Projectobjects. The

DataGuide reflects a user-specified query to select allprojectpublications from 1997. The equiva-

lentLorel query is:

Select DBGroup.Project.Publication

Where DBGroup.Publication.Year =1997

The result of this query is a singleton set containing object 10. More specifically, when a query

returns a result, a new object is created in the database with an incoming labelAnswer, and all

objects in the query resultare then made children of theAnswer. � The newAnswer edge is available

as an entry point(as introduced inSection 2.2) into the database for successive queries,and the label

for the children ofAnswer is deduced from the query— in this case,Publication.

Now suppose a userwishes to find allpublications from 1997, aseemingly simple query. (Recall

thatour DataGuide query only found publications associated with projects.) It is possible to write a

Lorel query with wildcards to find this result, but as discussed above, casual users will notwant to
�Lorel queries may create more complicated object structures as query results, but for presentation pur-

poses we do not consider such queries in this chapter; the approach and results in this chapter can easily be
generalized.

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 58

Year

Publication

YearTitle

Figure 4.2: DataGuide constructed over resultof finding all publications

enter a textual Lorel query. Suppose the user tries to use the DataGuide to locate the information.

Even in this simple case, there are numerous paths to all of the publications; in a larger database the

situationmay be much worse. While the DataGuide does a good jobof summarizing paths from the

root, a user may be interested in certain data independentof the particular topology of a database.

In this situation, a typical Web user would be comfortable entering keywords: “ Publication,”

“ 1997,” orboth. Suppose for now the usersearches for “ Publication” to getstarted. (We will address

the case where the user searches for “ 1997” momentarily, and we discuss the issue of multiple

keywords in Section 4.3.) If the systemgenerates a collection of allPublication objects, the answer

is objectsf2, 8, 10g, again identified by the new edgeAnswer. While this initial result has helped

focus our search, we really only wanted thePublication objects from 1997. One approach would be

to browse all of the objects in the result, butin a realistic large database this may be difficult. Rather,

we dynamically generate a DataGuide over the answer, as shown in Figure 4.2. Notice now that

even thoughTitle andYear objects were reachable along numerous paths in the original DataGuide,

they are consolidated in Figure 4.2. As shown in the DataGuide, the user canmarkPublication for

selection and enter a filtering condition forYear to retrieve all 1997publications. Getting the same

result in the original DataGuide would have required three selection/filtering condition pairs, one

for each possible path to aPublication.

The above scenario motivates the need for efficient keyword search, and for efficient (online)

DataGuide creation over query results. Next, we show how these features essentially force a system

to support inverse pointers aswell. Suppose the user had typed “ 1997” rather than “ Publication.”

This time, the answer in our sample database is the singleton setf14g, and the DataGuide over the

result is empty since the result is justan atomic object. This example illustrates that the user needs

to see the area “ surrounding” the resultobjects, not justtheir subobjectstructure as encapsulated by

the DataGuide. Givena setof objects, we can use inverse pointers to presentthe “ surrounding area”

to the user; for example, we can give contextto a specificYear objectby showing that it is the child

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 59

of aPublication object. By exploring both child and parent pointers of objects in a query result, we

can create a more descriptive DataGuide.

4.2 Query and Search Session Model

Recall that our model is developed in the context of users interacting with Lore (Chapter 2). We

define a Loresession over an initial databaseD �, with rootr and initial DataGuideG ��r�, as a

sequence ofqueries q �, q�, � � �, qn. A query can be a “ by example” DataGuide query, a keyword

search, or, for advanced users, an arbitrary Lorel query. The objects returned by each queryq i are

accessible via a complex objecta i with entry pointAnswer i . After each query, we generate and

present a DataGuideG i�ai� over the result, and users can also browse the objects in each query

result. Perhaps counterintuitive to the notion of narrowing a search, we do not restrict the database

after each query. In fact, the databaseD will grow monotonically after each queryq i. After q i,

Di � Di�� � ai. Essentially, each DataGuide helps focus the user's nextquery withoutrestricting

the available data. In the following the three sections, we discuss three technologies that enable

efficient realization of this model of interaction: keywordsearch, dynamic DataGuides, and inverse

pointers.

4.3 Keyword Search

Defining and implementing keyword search over a semistructured database is a new problem. We

begin by discussing how we can process a search based on a single keyword, and then we touch

on the issue of how we handle ranked results. Chapter 5 focuses on new approaches for supporting

searches over multiple keywords.

4.3.1 Single Keyword Search

In the IR arena, a search for a keyword typically returns a listof documents containing the specified

keyword. In a semistructured database, pertinent information is found both in atomic values of

type string (hereafter called “ textobjects”) and in labels on edges. Thus, itmakes sense to identify

both textobjects containing the specified keyword, and objects with incoming labels matching the

keyword. For example, if a user enters “ Publication,” we would like to return all objects pointed

to by aPublication edge, along with all textobjects with the word “ Publication” in their data. This

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 60

approach is similar in spirit to the way keyword searches are handled by Yahoo! (yahoo.com).

There, search results contain both thecategory andsite matches for the specified keywords.

Often, results to keyword searches are ranked according to some scoring function. For now,

we assume that results of keyword searches are unranked; we will address the issue of ranking in

Section 4.3.2.

While a keyword search over values and labels is expressible as a query in Lorel, we need to

ensure speedy execution of keywordsearches, so it is worthwhile to consider them as a special case.

Since the number of unique labels in a database is typically small, we can use a naive search to find

the labels that contain a given keyword; then, we can use a simple inverted-list index to identify

all objects with a given incoming label. In contrast, locating atomic text objects that contain an

arbitrary keyword expression is a larger challenge: we effectively need to build a full-text search

engine thatcan match keywordexpressions to database objects.

Rather than build our own specialized full-text search engine, we decided to leverage work in

traditional text search engines, which match keywords to documents. In particular, we decided

to integrate the Glimpse [MW93] search engine to provide full-text indexing supportwithin Lore.

Givenacollectionof documents, Glimpse builds indexes thatenable fastregularexpressionsearches

over those documents, including simple keyword searches. The resultof a Glimpse search is a set

of �document identifier, offset� pairs, identifying the positions in documents thatmatch the search

expression. Our task was to exploitthis interface to provide the somewhatdifferentkeyword-search

functionality we needed in Lore.

Given the interface to Glimpse, we want to map a Lore keyword search into a Glimpse search,

and translate Glimpse's results into a collection of Lore OIDs that represent the matching database

objects. Atone extreme, we could map each Lore objectinto a separate file, butthis approach could

easily overwhelm the file system. At the other extreme, we could map the entire Lore database

into a single file, along with additional information associating database objects with their positions

within the file. Of course, another option is to partition the database objects across any number of

files. Some initial experiments indicated that Glimpse was just as effective processing one large

file as it was with more, smaller files. Hence, we developed our prototype by dumping each Lore

database into a single file for Glimpse to index.

In more detail, the following steps explain how we create the Glimpse-based text index for a

Lore database.

� We create one textfileGlimpseData thatwill contain a sequential dump of all textobjects in

a Lore database.

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 61

� We create one text fileGlimpseMap to serve as a map that allows us to translate Glimpse

search results back into Lore OIDs.

� We traverse the entire Lore database. For each atomic text objecto, we first output to

GlimpseMap a record containing the current length ofGlimpseData (representing theoff-

set of the data foro) and the OID ofo. Next, we output toGlimpseData the entire text of

o.

� We build an ISAM [Wag73] indexGlimpseIndex on top ofGlimpseMap thattakes as inputan

offsetinputOffset, and returns the OID associated with the largest offset inGlimpseMap less

than or equal toinputOffset.

� We deleteGlimpseData; it is notneeded since Glimpse builds its own indexes and any offsets

returned as search results can be mapped to OIDs via ourGlimpseIndex overGlimpseMap.

(In our implementation ofGlimpseIndex we mustkeepGlimpseMap.)

Glimpse takes as input a search expression. While Glimpse supports expressions containing

more than one keyword, we have developed our own technology for effectively handling searches

of multiple keywords across a database, as we will discuss in Chapter 5. Thus, we restrict our use

of Glimpse to only single keywords.

After Glimpse processes its inputkeyword, we take the following steps to translate Glimpse's

results into a setof matching Lore OIDs.

� First, we passkeyword to Glimpse.

� If Glimpse returns no “ hits,” then of course the result is empty. Otherwise, Glimpse returns a

setof file offsets representing matches. (All matches are from the singleGlimpseData file, so

document identifiers can be ignored.)

� For each returned offset, we useGlimpseIndex to translate the offset into a matching OID.

We keep track of the OIDs of all objects thatmatchkeyword. If one objectmatcheskeyword

more than once, we maintain that information aswell.

� By default, Lore and OEM are set-based, so the final step of generating a query result is to

produce a setof matching objects. While Glimpse results are not ranked, we discuss ranking

briefly in Section 4.3.2.

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 62

With this approach, we leverage both the functionality and performance of an existing special-

ized search engine. We do have the overhead at index creation time of dumping the data into a

text file, and at runtime we have some overhead of a system call to Glimpse and additional index

lookups. Still, this approach allows Lore to be loosely coupled with Glimpse and incorporate future

improvements or bug fixes to Glimpse. Further, it would require minimal effort to port our tech-

niques to any other search engine that returns the file offsets of search expression matches within

a document. If a search engine only returns matching document IDs, then we would need to map

each database object to its own file. Alternatively, we could map multiple objects to a file, using

search engine results as justthe firstphase of identifying potentially relevantobjects.

4.3.2 Ranking Results in Lore

In environments that support keyword-based or other types of “ fuzzy” search, ranking is an of-

ten critical component of the results. Through some kind of scoring function, system-generated

rankings help a user sift throughmany potential matches andfocus on the most important data.

Typically, however, database managementsystems are based on sets or bags— data is either “ in” or

“ out” of a query result, and there is no built-in notion of rank. Lorel queries are no exception, since

the result is simply a collection of OEM objects. Smooth integration of rankings into such a model

is a challenging problem, one we defer to future work (Chapter 8).

We do support rankings in our keyword searches (and in proximity search, described in Chap-

ter 5), for which we developed a simple standalonekeyword search interface for Lore. Through this

interface, we can return ranked results instead of justa flat collection of objects. However, because

this interface is separate from Lorel, these ranked results are currently unavailable forfollow-on

queries.

Glimpse itself does not rank its results, so we assign a score to each matching objectbased on

the amount of text in the object, the size of the text that matches the search, and/or the number of

matches within the object. Currently, we use a simple score based on dividing the total amount of

matched text in the objectby the total size of the object.

4.4 DataGuide Enhancements

As described in the motivating example of Section 4.1, we wish to build DataGuides over query

results, quickly enough to support interactivesessions. For this section, let us temporarily ignore

the issue of inverse pointers. As shown in Section 3.3, computing a DataGuide can be expensive:

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 63

the worstcase running time is exponential in thesize of the database, and for a large database even

linear running time would be too slow for an interactivesession. We thus introduce two techniques

to improve the running time of interactive DataGuide creation.

First, we can exploitthe auxiliarydatastructures thatare builtto provide incremental DataGuide

maintenance:targe tHash andobjectHash from Section 3.4. These structures guarantee that, when

constructing the DataGuide for a query result, we never need to recompute a “ sub-DataGuide” that

has previously been constructed. In Figure 4.1, suppose a user searches for all “ Projects,” a query

that would return the singleton setf4g. In this case, the DataGuide overf4g is the same as the

sub-DataGuide reachable alongDBGroup.Project in the original DataGuide. We can dynamically

determine this fact with a single lookup off4g in targe tHash (see Section 3.4), and no additional

computation is needed.

Second, we observe that an interactive user willrarely need to explore the entire DataGuide.

Our experience shows that even in the initial DataGuide, users rarely explore more than a few

levels. Most likely, after a reasonable “ focusing” query, users will want to browse the structure

of objects near the objects in the query result. Hence, for interactive sessions we modified the

original depth-firstDataGuide constructionalgorithm(Figure 3.4) to insteadwork breadth-first, and

we changed the algorithm to build the DataGuide “ lazily,” i.e., a piece at a time. From the user's

perspective, the difference is transparent except with respect to speed. When a user clicks on an

arrow for a region that hasn't yet been computed, behind the scenes we send a request to Lore to

generate and return more of the DataGuide. Our maintenance structures make it easy to interrupt

DataGuide computation and continue later with no redundantwork.

4.5 Inverse Pointers

Directed graphs are a popular choice for modeling semistructured data and XML, and the proposed

query languages [DFF�99b, AQM�97, BDHS96] are closely tied to this model. Powerful regu-

lar expressions in the languages traverse forward pointers (children), but essentially no language

support has been given to traversing inverse (parent) pointers. As our motivating example inSec-

tion 4.1 demonstrates, a parentmay be justas importantas a child for locating relevantdata during

an interactive session.

In this section we describe a simple modification to the Lore data model that makes access to

inverse pointers as seamless as possible: for an objectO with an incoming label “ X” from another

objectP , we conceptually also makeP a child ofO via an edge with the new special label “XOf.”

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 64

Answer

TitleTitle Title

PlayOf
Play

PlaywrightOf

Playwright Artist
SongOf

Song
AuthorOf

AuthorBookOf

Book

(a) (b) (c)

TitleOf
Title

TitleOf
Title

TitleOf
Title ArtistOf

Figure 4.3: An OEM query resultand two potential DataGuides

(Physical implementation of inverse pointers depends on theunderlying data store; in Lore, for ex-

ample, an auxiliary hash-based index keeps track of the parents of every object.) With this approach

of using specialOf labels, inverse pointers can be treated for the most part as additional forward

pointers. For example, the Lorel language can support references to these specialOf labels without

any modification. However, in the contextof DataGuides, the presence of inverse pointers may lead

to some counterintuitive results— a topic we now address.

As motivated in Section 4.1, we wish to extend DataGuides to summarize a database in all

directions, rather than only by following forward pointers. If the “Of” edges described above are

simply added to the database graph, then we need noteven modify our DataGuide algorithms. Un-

fortunately, this approach can yield some strange results. In OEM and most graph-based database

models, objects are identified by their incoming labels. A “ Publication,” for example, is an ob-

ject with an incomingPublication edge. This basic assumption is used by the DataGuide, which

summarizes a database by grouping together objects with identical incoming labels. An “Of” edge,

however, does a poor jobof identifying an object. For example, given an objectO with an incoming

TitleOf edge, we have no way of knowingwhetherO is a publication,book,play, orsong. Therefore,

a DataGuide may group unrelated objects together.

As a more detailed example, suppose a user's initial search over a library database finds some

Title objects. Figure 4.3(a) shows three atomic objects in the result (shaded in the figure), with

dashed “Of” edges to show their surrounding structure. Figure 4.3(b) shows the standard DataGuide

over thisAnswer. The problems with 4.3(b) should be clear: the labels shown underTitleOf are

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 65

confusing, since the algorithm has grouped unrelated objects together. Further, the labels directly

underTitleOf do notclearly indicate thatour result includes titles of books, plays, and songs.

To address the problem, we have modified the DataGuide algorithm slightly to decompose fur-

ther all objects reachable along an “Of” edge based on the non-“Of” edges to those objects. In

particular, we temporarily transform the source graph such that anOf edge that originally points

from objectX to objectY is modified to point to a new nodeXY ; further, for each incoming edge

to Y with a non-Of labelL, we add a new edge with labelL fromXY to Y . Figure 4.3(c) shows

the DataGuide built over this transformed graph— a resultwe call aPanoramic DataGuide. In this

DataGuide, we can see thatTitleOf leads to a new intermediate object (whose targetset is all of the

new nodes in the transformed graph created for theTitleOf edges). UnderTitleOf in the DataGuide,

we can see that thePlay, Book, andSong subobjects are now separated,yielding a more intuitive

DataGuide for browsing. Of course, since OEM databases can have arbitrary labels and topologies,

we have no guarantees that a Panoramic DataGuidewill be the ideal summary; still, in practice it

seems appropriate formany OEM databases. Note that adding inverse pointers to DataGuide cre-

ation adds many more edges and objects than in the original DataGuide, making our support for

“ lazy” DataGuides (Section 4.4) even more important.

As an alternative to using inverse pointers, a semistructured database systemcould “ remember”

the (forward) path traversed to evaluate a query. For example, consider the simple query from

Section 4.1 to find all projectpublications from 1997. During query execution, the system could

remember the path from the rootof the database used to reach the results objects— in this case, the

singleDBGroup.Project.Publication path passing through objects 1, 4, and 10. The user could then

explore this path to see some of the result's context. Lore can in fact provide such amatched path

for each query result. However, when an execution strategy does not involve navigating paths from

the root, generating a matched path from the root would drastically increase query execution time.

Further, a matched path still does not allow a user to arbitrarily explore the database after a query

result.

4.6 Related Work

For several of the topics covered in this chapter, such as modelling interactive query and search

sessions and exploiting inverse pointers, we know of no previous related work. The problem of

supporting keyword-based search in a database system has been addressed primarily at the level

CHAPTER4. INTERACTIVEQUERY AND SEARCH OFSEMISTRUCTURED DATA 66

of integrating document collections with relational database systems, such as supporting keyword-

search overspecific table fields knownto containdocuments [Ora99] orusing virtual tables to model

a search engine within the contextof a SQL query [DM97, CDY95, GW00].

Chapter 5

Proximity Search in Databases

In Chapter 4 we discussed the semantics and implementation of keyword-based searches in Lore

when the search term is a single keyword. Performing a keyword-based search over a semistruc-

tured database becomes more interesting and challenging when searching for multiple keywords. In

a typical information retrieval (IR) setting, a search for two or more keywords identifies documents

containing all keywords “ close” together— at the least, both keywords must be in the same docu-

ment, and often, a document is considered a “ better” match if the keywords are near each other in

the document text. Thenear operator is used in IR systems to perform explicitly such aproximity

search: searching for keywords close to each other within a document [Sal89].

In a graph-structured database, textual distance can be a poor measure of the relationship be-

tween keywords. In XML, for example, nesting structure can be far more important in determining

the “ nearness” of document elements than the textual distance between them. As we saw in Chap-

ter 1, in an XML representation of a movie database, two actors in the same movie will both be

subelements of a specific movie element. However, in a textual representation of the database, the

lastactor of one movie may actually be listed closer to a differentmovie element he has no relation

to. In a graph-structured database, measuring distance between objects or elements based on their

relationshipwithin the database structure is more meaningful than measuring text-based distance in

a serialization of the database.

In this chapter we apply the general notion of proximity search to search across an entire

database for objects that are “ near” other relevantobjects. We consider a graph-based data model

such as OEM (Chapter 2), and proximity is defined based on shortest paths between objects. We

demonstrate how proximity search enables interesting multiple-keywordsearches over a semistruc-

tured database with intuitive results. Our approach to proximity search requires only that data can

67

CHAPTER5. PROXIMITY SEARCH IN DATABASES 68

be viewed as an interconnected graph— it need not be “ semistructured,” nor need it be stored in a

database for semistructured data. As we will show in Section 5.2, it is quite straightforward to view

relational or object-oriented data as a graph. Thus, even though the implementation of our proxim-

ity search engine works within the Lore system, the techniques apply to traditional structured data

as well as they do to “ true” semistructured data. Referring back to our query functionality matrix

(Section1.1.5), ourproximitysearch engine enables keyword-basedsearchoverbothsemistructured

databases (Entry 4) and traditional databases (Entry 2).

Implementing proximity search in a graph-based database is significantly different from the

traditional IR approach. Traditionally, keyword proximity is measured along a single dimension

(text), and search is performed inside each textobject. It is easy to compute the distances between

words if we simply record the position of each word along this one dimension. In a graph-based

database, we measure distance as the length of the shortestpath between data objects. For efficient

inter-objectproximity search, we need to build an index thatgives us the distance betweenany pair

of database objects. Since there can be a huge number of objects, computing this index can be very

time consuming. For traditional proximity search, on the other hand, we only need to know the

distance between words withina single object, a much smaller problem. In this chapter we describe

optimizations and compression schemes that allow us to build indexes that can efficiently report

distances between any pair of objects. Experiments show thatour algorithms have modest time and

space requirements and scale well.

InSection 5.1, we provide a concrete example to further motivate ournotionof proximitysearch

in graph-based databases. Section 5.2 then defines our problem and framework in more detail. In

Section 5.3, we describe how we have builtproximitysearch into Lore to supportmultiple-keyword

search. Section 5.4 details our algorithms for efficient computation of distances between objects,

and experimental results are given in Section 5.5. We discuss related work in Section 5.6.

The basis of this chapter originally appear in [GSVGM98].

5.1 Motivating Example

The InternetMovie Database (www.imdb.com) is a popular Web site with information about more

than 140,000 movies and 500,000 film industry workers. Regardless of whether the data is stored

nativelyas a semistructuredXML orOEM database, in a relational database, or inan object-oriented

database, we can view the database as a set of linked objects, where the objects represent movies,

actors, directors, andso on. In this applicationitis very natural to define adistance functionbased on

CHAPTER5. PROXIMITY SEARCH IN DATABASES 69

the links separating objects. For example, since John Travolta stars in the movie “ Primary Colors,”

there is a close relationship between the actor and the movie; if he had directed the movie, the bond

mightbe tighter.

Within our framework, proximity searches are specified by a pair of queries, each of which can

be any type of query that returns a setof objects:

� A Find query specifies aFind set of objects that are potentially of interest. For our example,

letus say that the find query is keyword-based. For instance, “Find movie ” locates all objects

of type “ movie” or objects with the word “ movie” in their body. In the Lore system, such a

keywordsearch would use the techniques described in Section 4.3.1.

� Similarly, aNear query specifies aNear set. The objective is to rank objects in theFind set

according to their distance to theNear objects. For our examples we assume the near query

is also keyword-based.

For example, suppose a user is interested in all movies involving both John Travolta and Nicolas

Cage. This query could be expressed as “Find movie Near Travolta Cage .” Notice that this query

does not search for a single “ movie” object containing the “ Travolta” and “ Cage” strings. In this

database, the person named “ Travolta” is represented by a separate object, and similarly for “ Cage.”

Movie objects simply contain links to other objects that define the title, actors, date, etc. Thus,

the proximity search looks for “ movie” objects that are somehow closely connected to “ Travolta”

and/or “ Cage” objects.

To illustrate the effect of this query, we show results of issuing the query over a version of

the Internet Movie Database (IMDB) containing information about all1997 films, stored in OEM

format within Lore (Chapter 2). Our Lore implementation of proximity search is described in more

detail in Section 5.3. Figure 5.1 shows the query “Find movie Near Travolta Cage ” along with

the top 10 results. As we might expect, “ Face/Off” scored highestsince it stars both actors. That

is, both actor objects are a short distance away from the “ Face/Off” movie object. The next five

movies all received the same second-place score, since each film stars only one of the actors. (See

Section 5.2 for a detailed explanationof how ranking works.) The remaining movies reflect indirect

affiliations— that is, larger distances. “ Original Sin,” for example, stars Gina Gershon, who also

played a part in “ Face/Off.”

To illustrate other queries, a user could issue “Find movie Near Colorado” to locate all movies

filmed in Colorado (or with the word “ Colorado” in their titles). A user might issue “Find love Near

comedy” to find all references to “ love” in a comedy— movie titles, actor names, trivia, etc. As a

CHAPTER5. PROXIMITY SEARCH IN DATABASES 70

Figure 5.1: Results of proximity search over the InternetMovie Database

final example, we mightwish to rank movies by the number of different locations where they were

filmed at by issuing “Find movie Near location.” Our prototype is available to the public on the

Web, as described in Section 5.3.

Proximity searches are inherently fuzzy. If one can precisely describe the desired information

(e.g., what relation it occurs in, the exact path to it, the precise contents of fields) then traditional

database queries will usually be best. Still, proximity search is very useful when it is impractical

to generate a specific query, or when a user simply wants to search based on the general relevance

of differentdata objects and then focus in on relevantdata, as with the interactive query and search

model discussed in Chapter 4.

No currentdatabase or IR systems provide general proximity search across interrelated objects.

Often, applications implement particular versions of proximity search. For example, the IMDB

Web site does offer a form for searching for movies with multiple specified actors. Our goal is to

provide a general-purpose proximity service thatcan be implemented on top of any type of database

system, semistructured or otherwise. Further, we demonstrate that our techniques are practical by

implementing a proximity search engine within Lore.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 71

Near Query

Find/Near Objects Ranked
Find

Objects
Proximity
EngineDatabase

Distance
Module

Find Query

Figure 5.2: Proximity search architecture

5.2 The Problem

The problem, expressed in its most general terms, is to rank the objects in one given set (theFind

set) based on their proximity to objects in another given set (theNear set), assuming objects are

connected by givennumerical “ distances.” We firstdiscuss our conceptual model in detail, and then

we formalize our notion of proximity.

5.2.1 Conceptual Model

Figure 5.2 shows the components of our model. An existing database system— whether it be

semistructured, relational, or object-oriented— abstractly stores a set of data objects. Applications

generateFind andNear queries at the underlying database. Note thatwhile our motivating example

used keyword-basedsearch to identify theNear andFind sets, our framework is very general and is

open to other types of queries: it is designed simply to relate two sets of objects based on proximity

in a graph.

The database evaluates the queries and passesFind andNear object result sets, which may

themselves be ranked, to theProximity Engine. (For example, keyword search in Lore returns

a ranked list of objects as a result, as described in Section 4.3.) Database objects are opaquely

exported to the Proximity Engine, which only deals with object identifiers (OIDs). � The Proximity

Engine then re-ranks theFind set, using distance information, and possibly taking into account the

initial ranks of theFind andNear objects. The distance information is provided by aDistance

Module. Conceptually, theDistance Module is a black box thatprovides to the Proximity Engine a

setof triplets (X ,Y ,d), whered is the distance between “ adjacent” database objects with identifiers

X andY . (Note thatthe distance module uses the same identifiers as the database system.) In Lore,
�Most relational systems do notexpose explicit row identifiers; we can use primary key values or “ signatures,” e.g.,

checksumscomputed over all tuple field values.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 72

the Distance Module is simply the weighted edges that connect objects in the original database,

as we will discuss further in Section 5.3. The Proximity Engine then uses these base distances to

compute the lengths of shortestpaths between all objects. Because we are concerned with “ close”

objects, we will compute the distance between any two objects exactly only up to some constant

K, returning� for all distances greater thanK. This assumption enables improved algorithms, as

described in Section 5.4.

To the Proximity Engine, the database is simply anundirected graph withweighted edges. In

our motivating example, the underlying database is indeed a Lore database. Still, our proximity

calculations work over traditional database systems as well, as long as the data is exported as a

graph-structured view. For example, the database systemmay be relational, as illustratedby the left

side of Figure 5.3, which shows a small fragment of a normalized relational schema for the Internet

Movie Database. The right side of the figure shows how that relational data might be interpreted

as a graph by the Proximity Engine. EachMovie andActor tuple is broken into multiple objects:

one object for the tuple and additional objects for each attribute value. Distances between objects

are assigned to reflect their semantic closeness. For instance, in Figure 5.3 we assign small weights

(indicating a close relationship) to edges between a tuple and its attributes, larger weights to edges

linking tuples related through primary and foreign keys, and the largest weights to edges linking

tuples in the same relation. (For clarity, the graph shows directed, labeled edges; our algorithms

ignore the labels and edge directions.) Of course, the distance assignments must be made with a

goodunderstanding of the database semantics and the intended types of queries. It is simple to

model object-oriented, network, or hierarchical data in a similar manner.

Currently, our prototype implementationof the proximity engine is implemented as an indexing

module within the Lore system, though itcould be implemented as a separate componentthatworks

over OIDs exported from any database system.

5.2.2 Proximity and Scoring Functions

Recall that our goal is to rank each objectf in aFind setF based on its proximity to objects in a

Near setN . Each of these sets may themselves be ranked by theunderlying database system. We

use functionsr F andrN to represent the ranking in each respective set. We assume these functions

return values in the range��� ��,with1 representing the highestpossible rank. We define the distance

between any two objectsf � F andn � N as the weightof the shortestpath between them in the

underlying database graph, referred to asd�f� n�. To incorporate the initial rankings as well, we

define thebond betweenf andn (f �� n):

CHAPTER5. PROXIMITY SEARCH IN DATABASES 73

Actor

Name/1

Actor/10

John
Travolta Movie/4

Actor/4

Title/1 Year/1

Face/Off 1997

Movie/10

Movie/4

Mad City 1997

Movie/10
Name/1

Actor/10

Nicolas
CageMovie/4

Actor/4
Movie/4

Actor/4

Con Air 1997

Actor/4

Movie/10

Title/1 Year/1 Title/1 Year/1

Movie

ID
Title
Year

Actor

ID
Name

Movie/Actor

MovieID
ActorID

Figure 5.3: A fragment of the movie database relational schema and a database instance as a graph

b�f� n� �
rF �f�rN �n�

d�f� n�t
(5.1)

(We setb�f� n� � r F �f�rN �n� whenf � n.) A bond ranges from��� ��, where a higher number

indicates a stronger bond. The tuning exponentt is a non-negative real that controls the impact of

distance on the bond.

While a bond reflects the relationship between two objects, in general we wish to measure

proximity by scoring eachFind object based on all objects in theNear set. Depending on the

application, we may wish to take different approaches for interpreting bonds to theNear objects.

We discuss three possible scoring functions:

� Additive: In the query from our motivating example to “Find movie Near Travolta Cage ,”

(Section 5.1), our intuition leads us to expect thata film closely related to both actors should

score higher than a film closely related to only one. To capture this intuition, we score each

objectf based on the sum of its bonds withNear objects:

score�f� �
X

n�N

b�f� n� (5.2)

Here the score can be greater than 1.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 74

� Maximum: In some settings, the maximum bond may be more important than the total num-

ber. Thus, we may define

score�f� � max
n�N

b�f� n� (5.3)

In this case, scores are always between 0 and 1.

� Beliefs: We can treatbonds as beliefs [Goo61] thatobjects are related. For example, suppose

thatour graph represents the physical connections between electronic devices, such that two

objects close together in the graph are close together physically as well. Assume further that

rN gives our belief that aNear device is faulty (1 means we are sure it is faulty). Similarly,

rF can indicate the known status of theFind devices. Then, for a devicef � F and a device

n � N , b�f� n� may give us the belief thatf is faulty due ton, since the closerf is to a faulty

device, the more likely it is to be faulty. Our belief thatf is faulty (between 0 and 1), given

the evidence of all theNear objects, is:

score�f� � ��
Y

n�N

��� b�f� n�� (5.4)

Of course other scoring functions may also be useful, depending on the application. We expect that

proximitysearch engines can provide several “ standard” scoring functions, and thatusers submitting

queries will specify their intended scoring semantics. This approach is analogous to how users

specify whatstandard function (e.g., COUNT,MAX, AVG)to use in a statistical query. In the Lore

implementation, we currently only use the additive scoring function.

5.3 Lore Implementation

We implemented our proximity architecture and algorithms within the Lore database management

system (Chapter 2). Proximity search extends the keyword searching facility described in Sec-

tion 4.3 to provide effective search using multiple keywords, across an entire database. Any OEM

database can serve as input to our proximity engine, with one slightmodification: we enable Lore

to store weights on edges. Withoutthis feature, experiments showed that the “ diameter” of a typical

database was justtoo small; in other words, there was little variation in distances and too many un-

related objects ended up “ tying” in proximitymeasurements. By adding weights, we can emphasize

the intended strength of relationships indicated by edges in the database. Each edge in the database

may be assigned a specific weight; alternatively, weights may be specified according to incoming

CHAPTER5. PROXIMITY SEARCH IN DATABASES 75

labels or label paths. As a simple example, we could specify that all edges labeledActor should be

assigned a certain weight. Note also that our proximity search engine ignores the directionality of

an OEM graph: the distance from a parentP to its childC always is the same as the distance from

C toP .

In our Lore implementation, we generate theFind andNear sets using thekeyword search

interface described in Section 4.3. Recall that in an OEM database, a keyword can identify an

objectwith a specific incoming edge label, an atomic textobjectwhose data contains the keyword,

or both. The two “ Category” drop-down menus in Figure 5.1 provide an alphabetical listof unique

labels in the database; the number of unique labels is generally small, and the list can be very

helpful for specifying meaningful searches. Choosing a label from either menu adds that label as a

keyword in the corresponding field. For each keyword,we execute a ranked, single-keywordsearch

as described in Section 4.3; we add all matching objects, with their rankings, to theFind or Near

set as appropriate. Note that if multiple keywords are used to generate aFind set (orNear set),

then we generate the appropriate set by performing single-keyword search on each keyword and

computing the union of all matching objects; currently this case is notan interesting application of

using multiple keywords since the relationship is expected to exist across the twoFind andNear

sets, notwithin them.

Based on informal usability tests, we chose to set tuning parametert to 2 in our bond definition

(Equation 5.1), to weightnearby objects more heavily; this setting causes a bond to drop quadrati-

cally as distance increases. We use the additive scoring function (Equation 5.2) to score eachFind

object. Together, our choice of tuning parameter andscoring function will give aFind objectf �

that is 1 unit away from aNear objectn � twice the score of aFind objectf � that is 2 units away

from twoNear objectsn � andn �. In the user interface, we linearly scale and round all scores to be

integers.

Figure 5.4 summarizes the results of several proximitysearchqueries overourDBGroupdatabase,

describing the members, projects,andpublicationsof the Stanford Database Group, as used through-

out this thesis. The database has been built from scratch in OEM, containing about 4200 objects

and 3600 edges. Initial supplied distances are similar to those shown in Figure 5.3; for example, a

root object is connected to allpublications, projects, and group members via edges of weight 10,

publications are connected to their titles viaedges of weight1, and group members are connected to

their publications via edges of weight4. Examples show that proximity search is a useful comple-

ment to traditional database queries, allowing users to narrow in on relevantdata withouthaving to

understand the nature of all database relationships, and without fully specifying structural queries.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 76

Find picture Near
China

Photos of 6 Chinese students, followed
by Prof. Widom, who advises 3 of them,
and Prof. Ullman, who advises 2

All of Prof. Garcia-Molina's publications,
followed by publications of his students

Find publication Near
Garcia

Find publication Near
Garcia Widom

The top publications are co-authored by
Profs. Garcia-Molina and Widom,
followed by their individual papers

The top results are members born in
September

The top pub. has "OEM" in its title,
followed by a pub. stored in "oem.ps,"
followed by one with keyword "oem"

Find publication Near
OEM

Find group_member
Near September

Figure 5.4: Summary of Stanford Database Group keyword searches

At the same time, proximity search provides more expressive power and useful results than the

simple single-keyword search introduced in Chapter 4. Note that even in the Lore context this im-

plementation reflects justone particular set of choices for instantiating our proximity model— how

we generate theFind/Near sets, our initial ranking functionsr F andrN , our tuning exponentt in

the bond definition, and our choice of scoring function.

5.4 Computing Object Distances

For our proximity computations to be practical, we need to find the distances between pairs of

objects efficiently. In this section we discuss the limitations of naive strategies and then focus on

our techniques for generating indexes thatprovide fast access atsearch time.

First, we discuss the framework for our distance computations. As described in Section 5.2.1,

the proximity engine takes as inputFind andNear sets of OIDs, and a setof base distances between

adjacentobjects. LetV be the setof objects. We assume the distances are provided by the Distance

Module of Figure 5.2 as anedge-list relationE �, with tuples of the formhu� v� wi, if vertices

u� v � V share an edge of weightw. For convenience, we assume thatE � containshu� v� wi, if

hv� u� wi is inE�. LetG refer to the graph represented byE �.

In graphG, we defined G�u� v� to be the shortestweighted distance betweenu andv. (We will

drop the subscriptG if it is clear which graph we are referring to.) As mentioned in Section 5.2.1,

CHAPTER5. PROXIMITY SEARCH IN DATABASES 77

our proximity search focuses on objects that are “ close” to each other. Hence, we assume all dis-

tances larger than someK are treated as�. In our prototype, settingK � �� for the IMDB and

DBGroup databases yields reasonable results, given the initial supplied distances.

5.4.1 Naive Approaches

Atone extreme, we could answer a distance query by performing all requiredcomputation atsearch

time. A classical algorithm to compute the shortest distance between two vertices is Dijkstra's

single-source shortestpath algorithm [Dij59]. The algorithm produces the shortestdistance using a

“ best-first” search to compute shortestpaths. Ateach iteration, we exploreN�v�, the vertices adja-

cent to some vertexv. While the algorithm is efficient for graphs in main memory, exploringN�v�

may requirejN�v�j random seeks for an arbitrary disk-based graph, and computing the shortest

distance could take as many asjE �j random seeks. Note that this behavior persists even when we

are only interested in distances no larger thanK. Further, since a generalFind/Near query requires

multiple distance computations, we would have to call the algorithmmin�jFindj� jNearj� times.

(Each call to the algorithm finds the shortestpath from a single given vertex to all others; we must

therefore run the algorithm over each vertex in theFind setor each vertex in theNear set.)

At the other extreme, we could precompute shortestdistances between all pairs of vertices and

store them in a lookup table for fast access. The classical algorithm to compute all-pairs shortest

distances is Floyd-Warshall's dynamic programming based algorithm [Flo62]. An obvious disk-

based extension of the algorithm requiresjV j scans ofG. The algorithm could be redesigned to be

more efficienton disk,and this approach is similar to the algorithmwe introduce in the nextsection.

There has been much work on the related problem of computing the transitive closure of a graph. In

Section 5.6 we discuss these approaches and why they are notsuitable for our problem.

In the nextsection, we propose an approach for precomputing all-pairs distances of at mostK

that is efficient for disk-based graphs, using well-known techniques for processing “ self-joins” in

relational databases. Section 5.4.3 shows how we can exploit available main memory to further

improve both the space and time requirements of index construction.

5.4.2 Precomputing Distances Using “ Self-Joins”

We compute shortestpaths between nodes up to some maximum distance by joining an inputedge-

listrelationwith itself, joining thatresultwith itself, and so on. We begin with a high-level, intuitive

explanation of our approach and then provide the actual algorithm. Given an inputedge-listE � as

CHAPTER5. PROXIMITY SEARCH IN DATABASES 78

introduced in Section 5.4, we joinE � with itself by finding tuples that share exactly one vertex in

common: if we findhv i� vj� wki andhv i� v�j � w
�

ki inE�, wherev j �� v�j , then we produce an output

tuple of the formhv j � v
�

j� wk 	 w�

ki. Intuitively, by performing this step we are asserting that the

distance fromv j to v �j is no greater thanw k 	 w�

k .

Let us create a temporary relationE �

� that contains all tuples inE � in addition to any joined

tuples as above (i.e., tuples of the formhv j � v
�

j� wk 	 w�

ki). Note that for verticesv j andv �j , E
�

�

contains tuples representing the distances of all possible paths between those two vertices through

atmostone other vertex. However, since our goal is to compute minimum distances, we ultimately

wantonly the shortestdistance betweenv j andv �j . We callE �

� annonreduced edge-list, since itmay

contain many tuples representing differentdistances between vertices. Wereduce E �

� by extracting

only the tuple representing the minimum distance for any given vertex pair, and inserting this tuple

intoE �. We callE � areduced edge-list. For any two verticesv i andv j ,E� has at most one tuple

representing the shortestpath between them through atmostone other vertex.

We could perform a self-join onE � and continue repeating the process to identify eventually

the shortestpaths between all pairs of vertices. However, remember that we are only interested in

shortestpaths up to someK. Thus, during the self-joinofE �, we will add an extraconditionthatthe

sum of the weights of both edges mustbe less than or equal toK. This filter will of course reduce

the size ofE �

�. Thus,E � contains (at least) all shortestpaths less than or equal to 2, assuming non-

negative initial weights greater than or equal to 1. Now, let us repeat the self-join process withE �

to generateE �, this time preserving distances atmost4. Thus,E � is guaranteed to contain (at least)

all shortestpath lengths up to 4. If we performdlog �Ke joins, the final relation will contain tuples

of the formhv i� vj� wki for all vertex pairsv i, vj with shortestpath lengthw k units (w k 	 K).

The algorithm described above is given explicitly in Figure 5.5. Step [1] introduces a loop that

will perform all of the needed self-joins. Steps [2] – [7] perform the self-join ofE l, leaving the

nonreduced result inE �

l��. Steps [8] – [10] compute the appropriate minimum distances for each

vertex pair, producing the reduced edge-listE l��. We call the final edge-list relation generated by

the algorithmDist (Step [11]). By building an index on the first column ofDist (Step [12]), we can

use itas a lookup table to find theK-neighborhoods of all vertices— i.e., for a givenvertexv we can

quickly find the lengths of the shortest paths to all vertices that are withinK units of v. Further,

querying ford�v i� vj� is also efficient: since we indexDist, we can access the K-neighborhood of

vi, and look for a tuple of the formhv i� vj � wki. If there is such a tuple, we know the distance to be

wk . If no such tuple exists, the distance is greater thanK, and we return�.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 79

Algorithm: Distance self-join
Input: Edge setE �, Maximum required distance:K
Output: Lookup tableDistsupplies the shortestdistance (up toK) between any pair of objects
[1] For l =1 todlog �Ke
[2] CopyEl intoE �

l��.
[3] SortE l on first vertex.�� To improve performance
[4] Scan sortedE l:
[5] For eachhv i� vj � wki andhv i� v�j� w

�

ki inEl wherev j �� v�j
[6] If �wk 	 w�

k 	 K�
[7] Add hvj � v�j� wk 	 w�

ki andhv �j � vj� wk 	 w�

ki toE �

l��.
[8] SortE �

l�� on first vertex, and store inE l��.
[9] Scan sortedE l��:
[10] Remove tuplehu� v� wi, if there exists another tuplehu� v� w �i, withw � w �.
[11] LetDistbe the finalE l��.
[12] Build index on first vertex inDist.

Figure 5.5: “ Self-Join” distance precomputation

The algorithm in Figure 5.5 runs with little I/O overhead, since sorting the data enables sequen-

tial rather than random accesses. Note that other efficient techniques are possible for computing

the self-join (such as hash joins), and in fact givenE l we can use standard SQL to generateE l��.

First, assume thatall tables have three columns:oid1, oid2, anddist. Then, the following code

shows how to go fromE � to E �; it could be parameterized and embedded within the outer loop

(Step [1] of Figure 5.5) to compute the entireDist table.

Insert into E 2

Select new oid1, new oid2, min(new dis t)

From

(Se lect t1.oid2 as new oid1, t2.oid2 as new oid2, (t1.dis t +t2.dis t) as new dis t

From E 1 t1, E 1 t2

Where (t1.oid1 =t2.oid1) and (t1.dis t +t2.dis t�=K) and (t1.oid2 �� t2.oid2)

Union

Se lect oid1 as new oid1, oid2 as new oid2, dis t as new dis t

From E 1)

Group by new oid1, new oid2

Unfortunately, the construction ofDist can be expensive. In Steps [5] – [7] of Figure 5.5,

we produce the cross-product of each vertex neighborhood with itself. The size the cross-product

CHAPTER5. PROXIMITY SEARCH IN DATABASES 80

p

q

A B

b

a

Figure 5.6: Hub vertices

could be as large asjV j � in the worst-case. For instance, when we executed the self-join algorithm

on the 4MB edge-list for the IMDB database described in Section 5.1 withK �
, the edge-

list grew to about one gigabyte— 250 times larger than the initial input! Sorting and scanning

the large nonreduced edge-lists could be expensive as well. (We have no guarantees that a SQL

implementation of this algorithm will be any less expensive.) In the nextsection, we propose a new

technique to alleviate this problem.

5.4.3 Hub Indexing

We now proposehub indexing, which allows us to compute shortestdistances using far less space

than required by the self-join algorithm of Section 5.4.2, with little sacrifice in access time. We use

Figure 5.6 to explain whathubs are and how they can be used to compute distances efficiently. If

we execute our simple self-join algorithm from the previous section on the given graph, we will

explicitly store distances for all pairs of vertices in the graph. In Figure 5.6 we see thatif we remove

p andq, the graph is disconnected into two sub-graphsA andB. � Rather than storing alljAj
 jBj

distances, suppose we store only thejAj	jBj shortestdistances top, thejAj	jBj shortestdistances

to q, and the shortestdistance betweenp andq. Of course, the query procedure for such an approach

is slightly more complex. We can see that the shortest-path betweena � A andb � B can be one

of a � p � b (not throughq), a � q � b (not throughp), a � p � q � b, ora � q � p � b. We

can computed�a� b� by finding these four distances and choosing the smallest.

The above description gives the reader a rough idea of our approach. By findinghubs such as

p andq, we can reduce sharply the storage required for a distance index, and we will show how to

handle the more complex query procedure efficiently. In addition, we can choose a hub set so that
�fp� qg is knownas aseparator in graph theory.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 81

the shortestdistances between them can be stored in main memory. As we will see in Section 5.5,

as we allocate more memory for hub storage, our total index size shrinks. Effectively choosing

hubs in an arbitrary graph is a challenging problem, and is not the subjectof this thesis. However,

good hub selection algorithms based onbalanced separators [LR88] do exist and are discussed in

[GSVGM98]. Assuming we have a setofhubs, thefollowing sections describe how to build a hub

index and then answer distance queries using it.

Constructing Hub Indexes

As suggested by the above discussion, ahub index is represented by two key components: ahub set

H � V and a table of distances between pairs of objects whose shortestpaths do notcross through

elements ofH . We redefine theDist lookup table from Section 5.4.2 to be this new table. As we

will discuss shortly, we actually transformH into a square matrix of inter-hub distances to increase

the speed of the overall hub index.

GivenH , we can reuse the algorithm of Figure 5.5 almost verbatim to construct the newDist

table. The only required change is to Step [6], which we replace with:

[��] If �wk 	 w�

k 	 K� andv i �� H

By checking thatv i is not inH we make sure that we do not consider any paths that cross hubs.

(Paths withhubs as endpoints are still considered.) Foreachv � V , Diststores all vertices reachable

within a distance ofK without crossing anyhubs; we call this set of vertices the “ hub-bordered”

neighborhood ofv.

As we will explain in the next section, pairwise distances betweenhubs must be consulted

many times to evaluate a distance query. Fortunately, experiments discussed in Section 5.5 show

that even a small set of hubs greatly reduces total indexsize. Hence, our query algorithm assumes

thatthe pairwise distances of allhubs are available in main memory. Atindex creation time, we cre-

ate a square, in-memory adjacency matrixHubs such thatHubs�h i��hj� gives the shortest distance

betweenhubsh i andh j . To do so, we first initialize each entry ofHubs to�. Then, with one se-

quential scan ofDist, for each edgehh i� hj � wki, whereh i� hj � H , we setHubs�h i��hj � � wk . This

step “ short-cuts” the need to recompute all distances from scratch. Finally, we use Floyd-Warshall's

algorithm to compute all-pairs shortest distances inHubs. We must conceptually consider paths

through non-hubs, but these were already accounted for when generatingDist tuples for paths from

one hub to another. Floyd-Warshall works in-place, withoutrequiring additional memory. Because

CHAPTER5. PROXIMITY SEARCH IN DATABASES 82

Algorithm: Pairwise distance querying
Input: Lookup table on disk:Dist, Lookup matrix in memory:Hubs,

Maximum required distance:K, Hub set:H
Vertices to compute distance between:u� v �u �� v�

Return Value: Distance betweenu andv: d
[1] If u� v � H , returnd �Hubs�u��v�.
[2] d ��
[3] If u � H

[4] For eachhv� v i� wki in Dist
[5] If vi � H �� Pathu � v i � v

[6] d � min�d� wk	Hubs�v i��u��
[7] If d � K, returnd ��, else returnd.
[8] Steps [4] – [7] are symmetric steps ifv � H , andu �� H .
[9] �� Neitheru norv is inH
[10] Cache in main-memory (E u) all hu� v i� wki from Dist
[11] For eachhv� v �

i� w
�

ki in Dist
[12] If �v�i � u�
[13] d � min�d� w�k� �� Pathu � v withoutcrossinghubs
[14] For each edgehu� v i� wki inEu

[15] If v�i � H andv i � H �� Pathu � v i � v�i � v through hub vertices
[16] d � min�d� wk 	 w�

k	Hubs�v �i��vi��
[17] If d � K, returnd ��, else returnd.

Figure 5.7: Pairwise distance querying

this matrix needs only to be created once, we fully materializeHubs at index creation time; there-

fore, it is actuallyHubs andDist thatcomprise the hub index on disk.

Since we keephubs and their distances in memory, a hub index has the nice property that

answering a distance query requires less work on disk as more memory is made available. In fact, if

the entire adjacency matrix fits in memory, we can chooseH to beV and eliminate query-time disk

access entirely. Our approach reveals a smooth transition to Floyd-Warshall's algorithm as main

memory increases. The Proximity Engine administrator(anyone in charge of building a hub index)

can specify a limit for the number of hub points based on available memory.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 83

Querying Hub Indexes

Given the disk-basedDist table and the in-memory matrixHubs, we can compute the distance

between any two objectsu andv using the algorithm in Figure 5.7. The algorithm performs a case-

by-case analysis. To help explain the algorithm, we refer back to the graph in Figure 5.6, assuming

H � fp� qg. Steps [1] through [8] are straightforward, since these steps handle the case where one

or both ofu andv are inH . (In terms of Figure 5.6, suppose thatu and/orv are infp� qg.) Steps

[10] through [17] address the case where neither input vertex is inH . Steps [12] – [13] consider

the case where the shortest path fromu to v does not go through any of the vertices inH and its

distance is therefore explicitly stored inDist. (In Figure 5.6, consider the case where both vertices

are inA.) Steps [14] – [16] handle shortest paths through vertices inH , such as a path from any

a � A to anyb � B in the figure.

If bothu andv are inH , no disk I/O is performed. Recall thatDist is indexed based on the first

vertex of each edge. Hence, if eitheru or v is inH , one random disk seek � is performed to access

the hub-bordered neighborhood ofv oru (Steps [4] – [8]). If neitheru norv is inH , two random

disk seeks are performed to access thehub-bordered neighborhoods of bothu andv (Steps [10] and

[11]). The algorithm implicitly assumes that thehub-bordered neighborhood for any given vertex

can be cached into memory (Step [10]). Since we use hubs, and given thatK is generally small, we

expect this assumption to be safe. Additional buffering techniques can be employed if needed.

Generalizing to Set Queries

The previous section discussed how to use a hub index to look up the distance between a single pair

of objects. As described in Section 5.2.1, however, aFind/Near query needs the distance between

eachFind and eachNear object. For instance, we may need to look up the pairwise distances

betweenFind � fv �� v�g andNear � fv �� v�� v�g The naive approach is to check the hub index

for each offv �� v�g, fv�� v�g, fv�� v�g, fv�� v�g, and so on. When we haveF Find objects andN

Near objects, this approach will require about�
 F
 N disk seeks, impractical ifF andN are

large. If theDist table data for all of either theFind or theNear objects fits in main memory, we

can easily perform allFind/Near distance lookups inF 	 N seeks. If not, we can still buffer large

portions of data in memory to improve performance.

In some cases, evenF 	 N seeks may still be too slow. Our movie database, for example,

contains about6500 actors. Hence, finding the result to a query like “Find actor Near Travolta” will
�For clarity of exposition, we do not mention anyadditionalseeks required to navigate the index. “ One” seek may

translate to two or three, depending on the index.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 84

take at least 6500 seeks. To avoid such cases, we allow engine administrators to specify object-

clustering rules. For example, by clustering all “ actors” together inDist we avoid random seeks

and execute the queries efficiently. Our engine is general enough to cluster data arbitrarily based on

user specifications. In our Lore implementation (Section 5.3), we cluster based on labels, such as

“ Actor,” “ Movie,” “ Producer,” etc. Note that this approach increases the space requirements ofDist,

because these clusters need not be disjoint. To mitigate the replication, preliminary investigation

suggests that we can significantly compress vertex neighborhoods on disk, discussed further in the

nextsection.

5.5 Performance Experiments

We now study some performance-related aspects of building hub indexes. Questions we address in

this section include:

1. Given a small, fixed number of hubs, what are the space and time requirements of hub index

construction?

2. How do the algorithms scale with larger databases?

3. What is the impactof selecting fewer or morehubs on the index construction time?

4. How fast is query execution? For our experiments, we used a Sun SPARC/Ultra II (�
 ���

MHz) running SunOS 5.6, with��� MBs of RAM, and�
 GBs of local disk space.

To answer the above questions in a realistic scenario, we experimented with the IMDB database

introduced in Section 5.1. Since the database is relatively small (the IMDB edge-listis about4MB),

we builta generator that takes an inputedge-listand scales the database by any given factorS. We

do not simply copy the database to scale it; rather we compute statistics on the small database and

produce a new, larger database with similar characteristics. For instance, the percentage of popular

actors will be maintained in the scaled-up version, and this set of actors will be acting in a scaled-

up number of new movies. Similarly, movies will have the same distribution of actors from the

common pool ofS times as many actors, and the ratio of “ romance” movies to “ action” movies will

stay aboutthe same. Since our generator produces the graphs based on a real database, we believe it

gives us a good testbed to evaluate our algorithms empirically. While we think the structure of our

data is typical of many databases, of course it does not reflect every possible inputgraph.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 85

�

�

�

�

�

��

��

��

� � � � �� ��
S
p
ac
e
re
q
u
ir
ed
�r
at
io
to
in
p
u
t�

K

Temporary �

�

�

�

�
Final 	

	 	
	

	

Figure 5.8: Space required with varying K

���

���

���

���

����

����

����

����

� � � � �� ��

T
im
e
�s
ec
s�

K

Final Index �

�

�

�

�

Figure 5.9: Index creation time with varying K

First, we discuss index performance when the number ofhubs is fixed at a “ small” number.

Recall from Section 5.4.3 that the algorithm requires temporary storage (for the nonreduced edge-

lists) before creating and indexing the final reduced edge-listDist. For our experiments, we build

an ISAM index over the final edge-list; other indexing techniques, such as a B-tree or a disk-based

hash table, are of course possible. Figure 5.8 shows the temporary and final space requirements of

the Dist table for different values ofK. We define the space required as a multiple of the size of

the original input. For this graph, we set scaling factorS � �� and we choose no more than���

of the vertices ashubs. For this case (about 40MB of data), we requiredless than 250K of main

memory to store ourHubs matrix. We see thatboth the temporary and final space requirements for

Dist can get large. ForK � �� (theK used for our prototype in Section 5.3), the temporary and

final space requirements are about12 times and 6 times larger than the inputedge-list, respectively.

Similarly, Figure 5.9 reports the total time to create a hub index for different values ofK. We see

quadratic growth of both space and time requirements, due to the quadratic growth in the size of a

vertex neighborhood. Momentarily we will show that increasing the number ofhubs reduces space

and time requirements.

Next, we consider how our algorithms scale as the databases grow in size. In Figure 5.10 we

show the total storage required to store the final index when we (again)choose no more than��� of

vertices ashubs, forK � ��. The key point to note from this graph is that the storage consumption

scales linearly, despite the fact that the large scaled databases are tightly interconnected (i.e., have

many edges).

CHAPTER5. PROXIMITY SEARCH IN DATABASES 86

�

	��

����

�	��

����

�	��

���

� 	 �� �	 �� �	
�
	 �� �	 	�

S
p
ac
e
�M
B
s�

Scale

Final �

�

�

�

�

�

Figure 5.10: Total storage with varying scale

�

��

���

����

��� � �� ���
S
p
ac
e
re
q
u
ir
ed
�r
at
io
to
in
p
u
t�

Number of hubs as percentage of vertices

Temporary �

�

�

�

� �

� �

�

�

Final 	

	

	
	

	 	
	 	

	
	

Figure 5.11: Space ratio vs. number of hubs

In Figure 5.11, we see that relatively small increases in the number of hubs can dramatically

reduce the storage requirements of theDist table. Again, we consider the case whereS � �� and

K � ��. First, notice that if we choose fewer than��� of vertices ashubs, we needsignificantly

more space to store theDist table; recall that we degenerate to the self-join algorithm when no

hubs areselected. If we can choose up to� of vertices ashubs we see that the storage ratio

for the finalDist table drops to about����. As we mentioned earlier, the graph shows that our

algorithm smoothly transitions into a main-memory shortest-path computation as more memory is

made available. The index construction time also follows a trend similar to the space requirements,

as shown in Figure 5.12.

Finally, we give some examples of query execution time. As can be expected, query times

vary based on the size of the input sets. Consider yet again the query “Find movie Near Travolta

Cage .” In our (unscaled) IMDB database,jFindj ���� andjNearj � �. With “ movie” objects

clustered together and no more than��� of the vertices ashubs, the query takes 1.52seconds

(beyond theFind/Near queries executed by Lore). For the query “Find movie Near location,” where

jFindj ���� andjNearj ���, execution takes 2.78 seconds. To measure the impact ofhubs

on query time, first we set all vertices to behubs and recorded the average query timeq for several

“ representative” queries such as those proposed in Section 5.1. Then, we varied the number ofhubs

and issued the same queries, normalizing the query time byq. As seen in Figure 5.13, query time

improves as more hubs areselected; coupled with the large decrease in index size and creation time,

hub indexing is a promising technique.

CHAPTER5. PROXIMITY SEARCH IN DATABASES 87

��

���

����

��� � �� ���

T
im
e
�s
ec
s�

Number of hubs as percentage of vertices

Final Index �

�

�

�

� �

� �
�
�

Figure 5.12: Index creation time vs. number of hubs

�

��

���

��� � �� ���

Q
u
er
y
ti
m
e
ra
ti
o

Number of hubs as percentage of vertices

Query �

� � �
� �

�

�
�

�

Figure 5.13: Query time vs. number of hubs

5.6 Related Work

Most existing approaches for supporting proximity search in databases are restricted to search-

ing only within specific fields in relational databases known to store unstructured text [Ora99,

DM97]. Searches do notconsider interrelationships between differentfields, unless manually spec-

ified through a query. One company, Data Technologies Ltd. (www.dtl.co.il),marketed technology

for plain language search over databases, but to the bestof our knowledge their algorithms have not

been made public.

There has been extensive work on the problem of computing thetransitive closure of a disk-

residentdirected graph, strictly more general than the problemof computing shortestdistances up to

someK. [DR94] examines many algorithms for this problemandsupplies comparative performance

evaluation, as well as discussion of useful measures of performance. In principle, it is possible

to apply these algorithms to our problem. However, full transitive closure is a somewhat more

general problem from our shortest-paths problem, so our specialized algorithms perform better.

Furthermore, the algorithms in [DR94] perform all computations atquery time.

Chapter 6

XML Support in Lore, DataGuides, and

Proximity Search

The recent emergence ofXML (theeXtensible Markup Language) as a new standard for data rep-

resentation and exchange on the World-Wide Web has drawn significant attention [XML98]. As

discussed in Chapter 1, there is a striking similarity between XML and semistructured data models

such as OEM (Chapter 2). Until now, this thesis has focused on OEM, which formed the original

basis for most of our research. This chapter describes the modifications and extensions we have

made to apply our work to XML as well. In Section 6.1, we provide some background on XML.

Next, in Section 6.2, we define an XML data model— a subtly challenging task given that XML

itself is justa textual language. In Section 6.3 we give an overview of how we can encode our XML

data model in OEM. We describe briefly changes toLorel, Lore's query language, in Section 6.4.

Next, we focus on how we can change DataGuides (Chapter 3) and proximity search (Chapter 5)

to work with XML, in Sections 6.5 and 6.6, respectively. We pay special attention to how we can

incorporate the inherent ordering present in XML data, since our original work was in the context

of the unordered OEM model.

Some of the work in this chapter firstappeared in [GMW99].

6.1 XML Background and Comparison With OEM

XML is a textual language quicklygaining in popularity for data representationand exchange on the

Web [XML98]. XML data is specified in documents, containing nested, taggedelements. Lexically,

each tagged elementhas a sequence of zero or more attribute/value pairs, and a sequence of zero or

88

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 89

moresubelements. These subelements may themselves be tagged elements, or they may be “ tagless”

segments of textdata. Consider the following simple example.

�DBGroup�

�Member Name=“ Smith” �

�Age�28�/Age�

�/Member�

�Member�

�Name�Jones�/Name�

�Advisor�Ullman�/Advisor�

�/Member�

�Project�

�Title�Lore�/Title�

�/Project�

�/DBGroup�

Note thatXML poses no restrictions onconsistency across tags:Name is an attribute of oneMember

element, and it is a subelementof the other.

Because XML was defined as a textual language rather than a data model, an XML document

always has implicitorder— an order thatmay or may notbe relevantbut is nonetheless unavoidable

in a textual representation. Awell-formed XML document places no restrictions on tags, attribute

names, or nesting patterns. Alternatively, a document can be accompanied by aDocument Type

Definition (DTD), essentially a grammar for restricting the tags and structure of a document. An

XML document satisfying a DTD grammar is consideredvalid. While not exactly a data model,

a standardDocument Object Model (DOM) for XML has been defined [ABea98], allowing XML

to be manipulated by software. The DOM defines how to translate an XML document into data

structures and thus can serve as a starting point for any XML data model.

In contrast, recall that OEM (Chapter 2) is not an ordered data model: each objecthas an un-

ordered set of subobjects. Further, OEM does not have an analogous concept of attributes— only

subobjects. More subtly, in OEM labels on edges are used only as entry points (Section 2.2 and

to denote relationships— an OEM object need not have a single label that it “ owns.” In contrast,

the XML DOM specifies that each (non-text) element contains its own identifying tag. Another

difference is that the XML DOM today does not supportgraph structure directly, no doubtan arti-

fact of XML's document orientation. Currently, XML uses special attribute types to encode graph

structure. An element can have a single attribute of typeID (as specified in the DTD) whose value

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 90

provides a unique identifier that can be referenced by attributes of typeIDREF or IDREFS from

other elements. Letus extend the above example to have such attributes:

�DBGroup�

�Member Name=“ Smith” Advisor=“ m1” �

�Age�28�/Age�

�/Member�

�Member ID=“ m1” Project=“ p1” �

�Name�Jones�/Name�

�Advisor�Ullman�/Advisor�

�/Member�

�Project ID=“ p1” Member=“ m1” �

�Title�Lore�/Title�

�/Project�

�DBGroup�

Assume attributeID is of type ID, and that attributesProject, Advisor, andMember are of type

IDREF. The above example encodes a graph where theMember, Project, andAdvisor attributes

serve as labeled references to the elements with correspondingID attributes. �

XML's “ second-class” supportof graph structure leads to interesting decisions in specifying a

true datamodel andquery language. ShouldanXML datamodel be a tree thatcorresponds to XML's

text representation (like theDOM), or a graph that includes the intended links? Our view is that

both approaches are important. In some situations, an application may wish to process XML data

as a literal tree, where IDREF(S) attributes are nothing more than text strings. In other situations,

an application may wish to process XML data as its intended semantic graph. Our decision is

to support both modes—literal andsemantic— that a user or application can select between. The

choice of mode has a direct impacton query evaluationand results, as we will see later.

6.2 Lore's XML Data Model

In our data model, an XML element is modeled as a pairheid, valuei, whereeid is a uniqueelement

identifier, andvalue is either an atomic textstring or a complex value containing the following four

components:
�Unfortunately, as of this writing a DTD is required to specify attribute types, so today it is common to use inelegant

heuristics to deduce ID/IDREF/IDREFS types when a DTD is notavailable. We assume that any attribute namedID is
of type ID, and that any attribute whose value is appearselsewhere as anID value is of type IDREF. If the attribute is a
sequence of space-separatedID values, we assume type IDREFS.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 91

1. A string-valued tag corresponding to the XML tag for thatelement.

2. Anordered listof attribute-name/atomic-valuepairs, where each attribute-name is astring and

each atomic-value has an atomic type� drawn frominteger, real, s tring, etc., orID, IDREF, or

IDREFS .

3. An ordered list ofcrosslink subelements of the formhlabel, eidi, wherelabel is a string,

introduced via an attribute of typeIDREF or IDREFS .

4. An ordered listofnormal subelements of the formhlabel, eidi, introduced via lexical nesting

within an XML document.

We differentiate normal subelements (4) from crosslink subelements (3) so we can support both

literal and semantic modes, as motivated in Section 6.1.

An XML document is mapped easily into our data model. Note that we ignore comments and

whitespace between tagged elements. As a base case, textbetween tags is translated into an atomic

text element; we do the same thing forCDATA sections, used in XML to escape text that might

otherwise be interpreted asmarkup [XML98]. Otherwise, a document element is translated into a

complex data element such that:

1. The tag of the data element is the tag of the documentelement.

2. The listof attribute-name/atomic-value pairs in the data element is derived directly from the

documentelement's attribute list.

3. For each attribute valuei of type IDREF in the document element, or componenti of an

attribute value of type IDREFS, there is one crosslink subelementhlabel, eidi in the data

element, wherelabel is the corresponding attribute name andeid identifies the unique data

elementwhoseID attribute value matchesi.

4. The subelements of the documentelementappear, in order, as the normal subelements of the

data element. The label for each data subelement is the tag of that document subelement, or

Text if the documentsubelement is atomic.

Once an XML document is mapped into our data model it is convenient to visualize the data as

a directed, labeled, ordered graph. The nodes in the graph represent the data elements and the edges
�While the XML specification does not include attribute types, some extensions do and we have chosen to include

them.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 92

Text

Member

Name AdvisorAge

&5

{Name="Smith",
Advisor="m1"}

Advisor

{ID ="m1",
Project ="p1" }

DBGroup

Title

{ID ="p1",
Member ="m1" }

Project

Project

Member

&4&3&2

Member
&1<DBGroup>

 <Member Name="Smith" Advisor="m1">

 <Age>28</Age>
 </Member>
 <Member ID="m1" Project="p1">
 <Name>Jones</Name>
 <Advisor>Ullman</Advisor>
 </Member>

 <Project ID="p1" Member="m1">
 <Title>Lore</Title>
 </Project>
</DBGroup>

"28"

&9

Text

&5

"Jones"

&10

Text

"Ullman"

&11

"Lore"

&12

Text

&6 &8&7

Figure 6.1: An XML documentand its graph

represent the element-subelement relationship. Each node representing a complex data element

contains a tag and an ordered list of attribute-name/atomic-value pairs; atomic data element nodes

contain string values. There are two different types of edges in the graph: (i) normal subelement

edges, labeled with the tag of the destination subelement; (ii) crosslink edges, labeled with the

attribute name that introduced the crosslink. Notice that the graph representation is isomorphic to

the data model, so they can be discussed interchangeably.

As mentioned earlier, it is useful to view the XML data in one of two modes:semantic or literal.

Semantic mode is usedwhen the userorapplicationwishes to view the database as an interconnected

graph. The graph representing the semantic mode omits attributes of type IDREFand IDREFS, and

the distinctionbetween subelementand crosslink edges is gone. Literal mode is available when the

user wishes to view the database as an XML document. IDREF and IDREFS attributes are visible

as textual strings, while crosslink edges are invisible. In literal mode, the database is always a tree.

Figure 6.1 shows the small sample XML document from Section 6.1 and the graph represen-

tation in our data model. Eids appear within nodes and are written as &1, &2, etc. Attribute-

name/atomic-value pairs are shown next to the associated nodes (surrounded byfg), with IDREF

attributes in italics. Subelementedges are solid and crosslink edges are dashed. The order between

subelements is left-to-right. We have not shown the tag associated with each element since it is

straightforward to deduce for this simple database. (For example, node &3 has the tagMember and

notAdvisor.) Note thatthe roottag of the XML documentis modeled as an objectwith an incoming

label, in the spirit ofentry points as introduced in Section 2.2. In semantic mode, the database in

Figure 6.1 does notinclude the (italicized) IDREFattributes. In literal mode, the (dashed)crosslinks

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 93

are not included.

6.3 Encoding XML in OEM

In Lore, we decided to encode our XML data model in OEM. Because the graph-based XML model

defined in Section 6.2 is so similar to OEM, the mapping is quite straightforward. Further, an

encoding strategy allowed us to reuse many of the same algorithms and much of the same code in

Lore for XML. In particular, as we will discuss in Sections 6.5 and 6.6, we were able reuse our

existing approaches for computing DataGuides and proximity search over OEM for XML as well,

with only a few changes discussed in those sections.

The graph presented in Figure 6.1 is “ almost” OEM; itrepresents much of ourencoding scheme.

In particular, elements correspond to objects, and incoming objectedges are labeled with either the

tag of the destination subelement (for normal subelements) or, for crosslink edges, the attribute

name that introduced the crosslink. (In literal mode, crosslink edges are left outentirely.)

We assume that an XML graph is ordered. While OEM itself is unordered, we assume that

a system supporting OEM (such as Lore) can indeed preserve the order of data as it is loaded.

Thus, when XML is encoded in OEM within Lore, we create anordered OEM graph. This order is

preserved during query processing, assuring that an XML query will return data in the same order

itwas created.

There are two important differences in our actual OEM encoding. First, each non-crosslink

attributeA of an elementE is encoded as an atomic subobjectO A of the objectcorresponding toE:

the labelA is marked specially so that the system knows the subobject represents an attribute and

nota subelement, and the value of attributeA is stored as the value ofO A. Second, every objectcan,

when necessary, store special “ metadata” thatcontains its true XML tag, along with information that

differentiates between normal subelements and crosslinks. Intentionally, most of the Lore system

does notneed to be aware of this special metadata.

Note thatLore has no problem processing and displaying raw OEM as XML. Subobjects are al-

ways translated to subelements, since OEM has no notionof attributes. Atomic values are translated

to free text. Further, since there is no special “ metadata,” tag names are always derived from the

incoming edge label traversed to display the element, and there are no crosslinks. Finally, several

different techniques are available for breaking OEM cycles for the purposes of serial XML output.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 94

Qualification Symbol Example Semantic Matches Literal Matches

Subelements only � DB.Member.�Name &6 &6
DB.Member.�Advisor &3, &7 &7

Attributes only � DB.Member.@ Name “ Smith” “ Smith”
DB.Member.@ Advisor empty “ m1”

None None DB.Member.Advisor &3, &7 &7, “ m1”

Table 6.1: Path expression qualifiers

6.4 Lore's XML Query Language

We now briefly discuss modifications we have made to the Lorel query language (Chapter 2) to

accommodate the differences between our new XML data model and OEM, and to exploit XML

features notpresentin OEM. Althoughnota core contributionof this thesis, this work was a natural

extension of our efforts to make the Lore system support XML “ across the board.” Recall that a

database in our XML data model can be interpreted either insemantic mode or in literal mode. For

simplicity letus assume thatthe desired mode is selected for each query posed againstthe database.

Distinguishing between attributes and subelements. Recall from Chapter 2 thatpath expres-

sions are the basic building blocks of Lorel, and thatduring query evaluation, path expressions are

matched to paths in the database graph. For XML, we extend the meaning of path expressions to

navigate both attributes and subelements, and we introducepath expression qualifiers in order to

distinguishbetween the two when desired. We use the optional symbol� before a label to indicate

matching subelements only, and the optional symbol@ to indicate matching attributes only. When

no qualifier is given, both attributes and subelements are matched— we expect this to be the most

common case. Table 6.1 shows simple examples of path expressions with qualifiers applied over

the database in Figure 6.1. Recall from Section 6.2 that in semantic mode IDREF(S) attributes are

notvisible, while in literal mode IDREF(S) are treated like other attributes and crosslink edges are

notvisible.

Comparisons. We anticipate thatmany different kinds of comparisons may be useful in queries

over XML data. For example, constants mightbe compared againstattribute values or againstele-

ment text. In other settings, we mightwant to compare againsta serialization of all textelements in

an XML subtree, ignoring markup. In graph-structured data, we mightwant to test for eid equality.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 95

Rather than supportmany distinctcomparison operators, we decided instead that for the purpose of

comparisons we would treat each XML component as some kind of atomic value, either through

defaultbehavior or via explicit transformation functions.

Attribute values are always atomic. For elements, Table 6.2 describes several built-in functions

that can be used to transform an element into a string, and can be used outside of comparisons if

desired, e.g., in these lectclause. (Each function returnsNULL if called over an attribute instead of

an element.) Since it is inconvenient for a user to have to specify functions for every comparison,

keeping in the spiritof Lorel we setdefaultsemantics when functions are notsupplied based on our

impression of the mostcommon and intuitive uses:

1. For an atomic (Text) element, the default value is the text itself.

2. For elements that have no attributes and only one or moreText elements as children, the

default value is the concatenation of the children's text values (a restricted case of theCon-

catenate function).

3. For all other elements, the default value is the element's eid represented as a string (theEid

function).

Example: Suppose we are looking for a group member whose advisor is “ Ullman” . In the original

versionof Lorel,DBGroup.Member.Advisor=” Ullman” does the trick. Based on Figure 6.1 itappears

that for our XML data model we mustwriteDBGroup.Member.Advisor.Text=” Ullman” ,and indeed

this expression will give us the correct answer. However, the former comparison also will give

us the correct answer by virtue of default semantics case (2) above. In general, we have found that

mostLorel queries designed for an OEM database can be used unmodified on acorresponding XML

database, such as the simple example we have justshown.

Additional features. Lorel has been extended with several additional features related to XML,

described in [GMW99]. These features includerange qualifiers for requesting specific ranges of

subelements based on the order of subelements with a given tag; a way to order query results based

on order in the original document; transformation and restructuring of query results; and modifica-

tions to the Lorel update language.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 96

Function Description

Flatten(e) Ignoring all tags, recursively serializes all textvalues in the subtree rooted
atelemente (following normal subelements only).

Concatenate(e) Concatenates all immediate textchildren of an elementand ignores
all other subelements.

Tag(e) Returns the XML tag of an element.
Eid(e) Returns a string representation of the eid of elemente.
XML(e) Transforms the graph, starting with elemente, into an XML document.

Note that there is no single “ correct” way to generate an XML
document from graph-structured data, so itwill be difficult to use this option
to compare againststring constants.

Table 6.2: Functions to produce different interpretations for comparisons

6.5 DataGuides for XML

As described in Chapter 3, aDataGuide is a concise, accurate structural summary of a semistruc-

tured database. DataGuides are constructed and maintained dynamically from a database, and they

have proved useful for a variety of purposes: browsing, query formulation, storing statistics, query

optimization, and most recently compression of XML data [LS00]. DataGuides were defined in

Chapter 3 in the context of the OEM model: DataGuides summarize unordered OEM databases,

and a DataGuide is itself an unordered OEM object. Recall from Chapter 3 thata DataGuideG of

a graph-structured source databaseD is itself a graph such thatevery label path from the rootofD

appears exactly once inG, and every label path from the rootofG appears inD.

It is straightforward to use our original DataGuide algorithms to create and maintain unordered

XML DataGuides over XML data. We take advantage of the fact that the XML is encoded in OEM,

as discussed in Section 6.3. First, we decide whether the OEM encoding should reflect literal mode

(in which the case the OEM database is a tree) or semantic node (in which the database is a graph).

In either case, we run the original DataGuide algorithm as-is over our OEM encoding, and the

resulting structure can be interpreted (exported) as well-formed XML. Because atomic values are

by definition left out of DataGuides, attributes in an XML DataGuide are empty (e.g.,NAME=“ ”),

andany free textbetween tags is omittedas well. Alternatively,the XML DataGuide can be explored

as graph in the same way we explore OEM DataGuides (Chapter 3)— with the small difference that

attributes are marked with a@ and other subelements aremarked with a�. Currently the special

“ metadata” mentioned in Section 6.3 is ignored during DataGuide creation. Tree structured data is

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 97

XXX

A A

X

B C A C D B A C D A B C D

Figure 6.2: Graph representation of XML for DataGuide example

notaffected, but for graph-structured data the notion of an element's “ primary” tag islost; instead,

tag names are derived based on incoming edges during traversal as described in Section 6.3, and

sublements links are notdistinguished from crosslinks.

Before further discussion of XML DataGuides, let us address briefly the relationship between

XML DTDs and DataGuides. Recall from Section 6.1 that a DTD is a grammar that restricts the

tags, attributes, and nesting structure of an XML document. DTDs are not required to accompany

XML; when a DTD is notsupplied, the notion of a DataGuide is justas important for XML as for

OEM. When aDTD is available,we can buildanApproximate DataGuide (see Section3.7) from the

DTD that can be used by the Lore system, such as in the user interface and for the query warning

system (Chapter 3). Note that DTDs currently do not support graph structure beyond restricting

attribute types to ID and IDREF(S), so DataGuides are more expressive than DTDs in this regard.

In the remainder of this section, we address the issue of ordering in XML DataGuides. Consider

the following tiny snippetof abstractXML data, contrived to illustrate a point.

�X��A/��A/��B/��C/��/X�

�X��A/��C/��D/��/X�

�X��B/��A/��C/��D/��/X�

�X��A/��B/��C/��D/��/X�

The graph representation of this XML is shown in Figure 6.2; in this case, since there are no at-

tributes or free text, translation to and from OEM is trivial. (The OEM graph is actually ordered on

disk, as discussed in Section 6.3; however, the original DataGuide algorithm ignores order.) Using

our standard DataGuide algorithm over this graph, the result is shown in Figure 6.3. The output

of the original DataGuide algorithm is an unordered graph. For this example, our challenge is to

impose a useful order over the subelements ofX to somehow reflect the order of the original data.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 98

X

A B C D

Figure 6.3: DataGuide for Figure 6.2

In particular, one possible permutation is:

�X��A/��B/��C/��D/��/X�

Given the DataGuide graph, each remaining permutation of theA, B, C, andD subelements forms

an equivalentrepresentation of Figure 6.3.

Whenwe take order into account, we would like to preserve the original definitionof aDataGuide

as much as possible, but extend the definition to summarize the order of subelements as well as

the overall structure. We thus propose to keep the size of the ordered DataGuide the same as the

size of the unordered DataGuide, choosing the “ best” subelementordering for each element in the

DataGuide. (If we want to store further information about the actual orderings, we canannotate the

DataGuide elements, as described in Section 3.2.3.)

In our example, intuitivelyABCD does the best job of approximating the subelement order for

theX instances in the source data:A is the first subelement in 75% of the instances;B follows A in

two instances and precedes it in one;C follows A andB in all three instances where they all appear;

andD is last in the three instances it's a part of. While it may be easy to choose a “ best” order for

this simple example, it is a challenge to define the “ best” order for an XML DataGuide in general,

and the definitioncouldeasily change depending on the application. Hence, we have devisedseveral

strategies for summarization and reporton their effectiveness through an experimental framework.

6.5.1 Problem Formulation

The problem of ordering a DataGuide can be broken down recursively into the problem of ordering

the subelements of each DataGuide element. (If we also wish to order the attributes of each element,

the problem can be treated in the same way.) Suppose we create an XML DataGuideG of a source

databaseD. Considerany elemente inG, reachable fromG's rootby some sequence of tagsp. (By

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 99

the definition of a strong DataGuide,e is the only element inG reachable viap; see Section 3.2.1.)

LetT be the set of elements in databaseD reachable byp. (In Section 3.2.1 we defineT as the

target set of p in D.) By the original DataGuide definition, each unique subelement tag of the

elements inT appears exactly once as a subelement tag ofe, and as discussed above we retain this

requirement in the presence of order. To order the DataGuide, we must order the subelements of

each such elemente. We will do so based on subelementordering in all of the elements inT .

The problem can be stated more formally (and abstractly) as follows. Consider a setS �

f��� � � � � �ng, where each� i is a sequence of labels. Construct a single sequence� of labels that

“ best” summarizes the sequences inS, where� contains each label appearing inany� i exactly once.

S corresponds to targetsetT ,� �� � � � � �n to the elements inT , and each� i encodes the subelement

ordering of one element ofT . In our simple example at the startof this section,S �fAABC, ACD,

BACD, ABCDg and we constructed� �ABCD.

6.5.2 Algorithms

We now describe three proposed algorithms for solving the problem specified in Section 6.5.1. Note

that for the simple example given at the beginning of Section 6.5, all three algorithms selectABCD

(which was seen to be the “ best” permutation). The algorithms are evaluated experimentally in

Section 6.5.3.

Greedy

One option is to use a simple greedy algorithm to generate� from S � f� �� � � � � �ng. To begin,

select the labelL thatappears at the head of the largestnumber of sequences inS. LabelL becomes

the first label in�. Remove all instances ofL from S, and repeat the process until all sequences

in S are empty.� will contain all labels exactly once. This algorithm is simple and can effectively

summarizesequence order inmany cases, but there are several situations where it can produce

counterintuitive results. Consider:

S =fBABB, BABB, BABB, ABB, ABB, XABBg

For this input, the greedy algorithm will constructBAX. However, this choice does a poor job of

reflecting the fact thatA precedesB in the data far more often thanB precedesA.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 100

Edit Distance

A more intricate algorithm can be constructed usingstring edit distance [Gus97], which measures

the minimum number of character insertions, deletions, or changes required to transform one string

into another. (For example, the wordswall ands till have an editdistance of 3: starting withwall, we

can change thew to s , change thea to t, and insertani. Note thatedit distance is symmetric.)

With a brute force approach, we can consider as candidates for� all permutations of all labels

in any � i. Then we compute the sum of the edit distances from each candidate� to all of the

sequences inS. The� permutation with the minimum overall edit distance is selected. For the

example sequenceS above,ABX andAXB tie as the bestpermutations according to this algorithm.

There are many possible ways to further tune this approach. For example, different costs may

be assigned to different edit functions: to account for consecutive labels in an inputsequence, we

mightwant to set the costof a label deletion to be cheaper if it's exactly the same as either adjacent

label. Another possibility is to use a non-linear combination of the edit distances from� to the

sequences inS to enhance (or mitigate) the impactof any particular sequence within the set.

Unfortunately, this algorithmcan be extremely expensive computationally,so pruning strategies

would be essential to making it practical in general.

Weighted Averages

For our third algorithm, we calculate the average sequence position for every label across all se-

quences inS and then pick a final sequence thatmostclosely matches the average sequence number

for each label. Here, we explicitly collapse consecutive identical labels to compute sequence posi-

tions.

More specifically, considerS � f� �� � � � � �ng. First, for each� i and each unique labelL in

�i, we computepos(L, � i): the average position ofL in � i, after collapsing consecutive identical

labels. As a simple example,pos(B,AAABBBCC)is 2, since after collapsing consecutive labelsB is

the second label. When a label appears in more than one position in a sequence, we use the number

of consecutive instances at each position to weight the final average. For example,pos(B, BBBAB)

is 1.5:��
 � 	 ����, while pos(B, BAB) is 2: �� 	 ����. Finally, letS L be the setof sequences� i

in S such thatL appears in� i. The final average position forL is computed as:

X

�i�SL

pos�L� �i�

jSLj

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 101

To illustrate this algorithm, consider the following inputdata.

S �fAAABCDC, BAC, AAACCCDCg

For this data, we compute the following positions:

pos(A,� �) =1;pos(A, � �) =2; pos(A, � �) =1

pos(B,� �) =2;pos(B,� �) =1

pos(C, ��) =4; pos(C, � �) =3;pos(C, � �) =2.5

pos(D, � �) =4; pos(D, � �) =3

The final positions forA, B, C, andD are approximately 1.3, 1.5, 3.2, and 3.5, respectively, leaving

ABCD as the final choice for�. For the example sequenceS in Section 6.5.2, this algorithm selects

XAB.

6.5.3 Experimental Framework and Performance Results

To evaluate ourdifferentalgorithms over large data sets, we created a simple program thatgenerates

sets of label sequences with varying characteristics. The language of possible labels consists of the

lettersA– Z, both in upper and lower case. The program takes a lottery-based approach to picking

labels to construct a sequence. Given an input integer parametert, the first label picked will bet

times more likely to be anA than any other letter (each of which has an equal chance to be picked).

The second label picked will bet times more likely to be aB than any other letter, and so on, for up

to l letters, wherel is an inputparameter thatcan vary from 1 to 26. The lower-case letterswill be

addressed momentarily. Each time a label is selected, we have another “ lottery” to determine how

many consecutive instances of that label to include in the sequence. We make itequally likely that

1, 2, 3,� � �, f consecutive instances are included, wheref is an inputparameter. A third parameter

is n, for noise, intended to model the occasional inclusion of atypical labels— as may happen with

semistructured data. Before selecting each new label for the sequence, with chances 1 outofn we

will inserta randomly selected lower-case letter into the sequence.

As an example let us setl=5 (for 5 upper-case labels),t=20 (making the odds 20/24 that the

right label will be picked at each step, since the other four labels all have an equal chance of being

picked),f=5 for moderate repetition, andn=10 for some noise. The following results representone

run to generate 10 sequences.

cABBBBBBEEEE

cAAAABBBBADDDDBB

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 102

AAAAcCCCDDDE

AAAABBBBCCCCDDDEEEE

hAAABnCCDDEE

AAAAAhCCDDDDEE

AAAAAAACDDDDbEE

AEEEECCCBEEE

ABCCCCaDDE

ABBBBCCCDE

To compare the effectiveness of our algorithms from Section 6.5.2, we measure how often each

algorithm chooses a “ correct” permutation as we vary the inputparameters. In this setting, we say

a permutation is “ correct” ifA, B, C, and so on all appear within the permutation in lexicographic

order. That is,A precedesB, which precedesC, and so on. We ignore any noise labels when deter-

mining whether a permutation is correct. A good algorithm should select a “ correct” permutation

more often ast increases (since labels are more likely to be chosen in order) and asn increases

(since noise is less likely to be added between labels). Furthermore, if an algorithmcan consistently

select the correct result for smallert andn, then it is likely to do well in practice atfinding intuitive

permutations.

Note thatwe are notmeasuring running time in these experiments, only effectiveness inselect-

ing a good permutation. Both the weighted averages and greedy algorithms are linear in running

time with respect to the total number of labels in all the sequences, while the edit distance algo-

rithm shows factorial space and time growth in the number of distinct labels across sequences. The

numberof different“ noise” labels quicklymakes the editdistance algorithminfeasible, so in ourex-

periments we make one small adjustment: we consider all permutations of the “ primary” labels (A,

B, C, etc.) only, then measure edit distances to the original sequences, which include both primary

and noise labels.

We compare the effectiveness of our algorithms in Figure 6.4. Six graphs are presented, cor-

responding to six different values fort (from 2 to 7). In each graph, we show the effectiveness of

all three algorithms (WA for weighted averages, ED for edit distance, and GR for greedy) for six

differentvalues ofn, again from 2 to 7. For each combinationoft andn, we ran all three algorithms

over 20 independentsets of 100 sequences. The effectiveness is the percentage of the 20 runs that

return a correct permutation. We setl � � andf � � for all experiments, though we observed

similar results for other values.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 103

0

20

40

60

80

100

2 3 4 5 6 7
0

20

40

60

80

100

2 3 4 5 6 7

0

20

40

60

80

100

2 3 4 5 6 7

0

20

40

60

80

100

2 3 4 5 6 7

0

20

40

60

80

100

2 3 4 5 6 7

0

20

40

60

80

100

2 3 4 5 6 7

WA ED GRNoise (n)

t=2 t=3

t=7

t=4

t=5 t=6

E
ff

ec
ti

ve
n

es
s

(%
)

Figure 6.4: Comparison of ordered DataGuide algorithms

The results show quite conclusively that the editdistance algorithm is the mosteffective, reach-

ing about 100% effectiveness for allt � �, at any value ofn. When noise israre, the other two

algorithms are similar to each other in accuracy, approaching 100% effectiveness whent � � and

n � �. The greedy algorithm is the most susceptible to large amounts of noise: it is less effective

than the weighted average algorithm whenn 	 �.

6.6 Proximity Search

Proximity search is a concept from information retrieval (IR) that we applied to searching graph-

structured databases, described in Chapter 5. Our proximity search technique is general: it can be

used over any database that can be modeled as a graph of interconnected objects. As we described

in Section 6.3, XML does have a straightforward mapping to OEM; hence, proximity search works

withoutchanges overXML data. Forexample, by representing elementattributes as childrenof their

parentnode, our proximitysearch technique can identify thatan element's attributes are “ near” their

parent. As with our DataGuide work, however, our original work on proximity search was based

on an unordered model. In the remainder of this section, we show how to augment our graph

representation of XML data such that shortest path computations account for subelement order.

We demonstrate the impact of our changes in a sample scenario where subelement order is clearly

relevantto proximity search.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 104

Title
1

Author
1

Author
1

Publication
10

Publication
10

Publication
10

Author
1

Proximity
Search...

R.
Goldman

N. Shiva-
kumar

S. Venkata-
subramanian

H. Garcia-
Molina

Title
1

Author
1

. . .

Author
1

. . .

Figure 6.5: Original XML graph

Consider the following sample XML data, representing three DBGrouppublications within a

larger XML database.

�Publication�

�Title�DataGuides : Enabling Query Formulation and Optimization in Semis tructured

Databases�/Title�

�Author�R. Goldman�/Author�

�Author�J. Widom�/Author�

�/Publication�

�Publication�

�Title�Lore : A Database Management Sys tem for Semis tructured Data�/Title�

�Author�J. McHugh�/Author�

�Author�S. Abiteboul�/Author�

�Author�R. Goldman�/Author�

�Author�D. Quass�/Author�

�Author�J. Widom�/Author�

�/Publication�

�Publication�

�Title�Proximity Search in Databases�/Title�

�Author�R. Goldman�/Author�

�Author�N. Shivakumar�/Author�

�Author�S. Venkatasubramanian�/Author�

�Author�H. Garcia-Molina�/Author�

�/Publication�

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 105

Title
1

Author
1

Author
1

Publication
10

Author
1

Proximity
Search...

R.
Goldman

N. Shiva-
kumar

S. Venkata-
subramanian

H. Garcia-
Molina

Author
1

0 0

p

d1 εd2 ε εd4 d5d3

c1 c2 c3 c4 c5

Figure 6.6: XML graph transformed for ordered proximity search

Consider a search that tries to identify publication titles “ near” J. Widom. The traditional definition

of textual proximity does not work well in this case: “J. Widom” is closer in the text to “Proximity

Search in Databases ” than to “ Lore ” , even thoughshe isn'tan authorof the former. Our initial work

on proximity search addresses exactly this situation (Chapter 5). We model the data as a graph, as

described in Section 6.3, and users can optionally add weights on edges to indicate the “ strength”

of object-subobject relationships. Distance between data objects is then measured based on the

shortest weighted path in the graph, and a special index is built to speed up the computation, as

described in Chapter 5. Even with uniform weights, the graph encoding and shortestpath approach

to proximity search solves the “Title near J. Widom” problem above.

Now let us consider the impact of order. In the example above, the order of authors is a very

importantaspectof the data. If we wantto find “Publication near Goldman” , the publications where

“ R. Goldman” is afirstorsecondauthorshould rank higher than those where “R. Goldman” is a later

author. To incorporate order into our proximity search framework, we preprocess each XML data

graphbefore buildingourproximitysearch index,adding new objects andweightededges thatadjust

the weighted shortest paths between objects in order to reflect ordering. For example, Figure 6.5

shows the XML data above modeled as a graph as in Figure 6.1, with some simple weights to

illustrate our approach.� Figure 6.6 shows the transformed graph for the rightmost publication

subtree. As can be seen, the firstAuthor is distance 1 from the parent publication element, the

second author is distance� 	 � (for some small value�), the third is distance� 	 ��, etc. The
�For improved presentation, here we simplify the XML graph slightly and omitTextsubelements, instead showing

text as atomic values of tag elements. Note that the transformations described doapply to our full encoding of the the
XML data model, including attributes andTextelements. Further, by showing the threepublicationsunder a rootobject
we are assuming that the XML publication elements are partof a larger XML document.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 106

distance between the first and second author is� 	 �, the same as the distance between the second

and third author and the distance between the third and fourth.

In this case we decided that theTitle subelementand the firstAuthor shouldbe the same distance

from the parent. However, if we preferred to take into account the fact thatTitle precedes the first

Author, we could insertan� edge between nodesd � andd � and remove the edge fromd � to p.

In the general case, consider an elementp. We partitionp's list of subelements into sublists,

where order is relevantwithin but notbetween sublists.� For each subelementc i of p, we “ discon-

nect” ci from p and create a new parentd i of ci. The weight on thed i � ci edge is the weight

from the originalp� c i edge. We then connectadjacentd i nodes within each sublistwith edges of

weight�, and finally add an edge with weight� from p to the firstd i for each sublist. Note that it is

well-defined to perform this transformation on arbitrary graphs.

The transformation effects some importantproperties. Considerp and one of its sublistsL such

that the weight fromp to every element inL isW . First, we see that any two adjacentsiblings are

now�W	� apart. More generally, theith andjthsiblings are�W	�ji�jj
�� apart, assuring that

sibling distances grow monotonically as their separation within thelist increases. Also, the distance

from p to theith element (counting from 0) ofL is W 	 �i
 ��, assuring that distance from the

parent to its children grows monotonically beginning with the first child.

6.6.1 Examples

To demonstrate the impact of our transformation, we built two proximity indexes over an XML

version of the DBGroup database used throughoutthis thesis. One index was based on the original

graph, and the other based on the transformed graph to take ordering into account. The format of

the publication data is similar to the XML shown above, though there is only one XML elementper

unique author, referenced (via an IDREF) from all of his or herpublications.

We performed several searches using both indexes and compared results. Recall that the result

of a proximitysearch is a rankedlistofFind elements, where the score of each is based on proximity

to all elements in theNear set. The score also is influenced by several tuning parameters described

in Chapter 5; we use the same default parameters as in Chapter 5. We describe results from two

representative searches.

First, we performed the search “Find Publication near Goldman” . All publications where R.
�This partitioning could be providedby the XML contentauthor. As a defaultwhennotspecified, we either create one

sublist containing all subelements or we partition based on repeating XML tags. In our example, tagsTitle andAuthor
partition the subelements into two sublists. When present, XML attributes can be grouped into their own sublist.

CHAPTER6. XML SUPPORT IN LORE, DATAGUIDES,AND PROXIMITY SEARCH 107

Goldman was the first author received the highest score, followed bypublications where he was

the second author, etc. In the original scheme, all of R. Goldman'spublications received the same

score.

Next,we performed the search “Find Author near Goldman.” The XML element for R. Goldman

received the highestscore. Nextwas an eight-way tie among S. Abiteboul,S. Chawathe, A. Crespo,

H. Garcia-Molina, J. McHugh, D. Quass, N. Shivakumar, and V. Vassalos. All were adjacent to R.

Goldman in an author list except for A. Crespo and V. Vassalos. The latter two are non-adjacent

co-authors of R. Goldman's, but they have other relationships to R. Goldman in the database (e.g.,

they worked on the same research project). The lowest non-zero scores were given to both S.

Venkatasubramanian and Y. Zhuge, representing the largest “ separation” between R. Goldman and

his co-authors. (On one paper, R. Goldman was firstauthor and S. Venkatasubramanianwas fourth,

and on another, R. Goldman was second and Y. Zhuge was fifth.) In the original scheme, all of R.

Goldman's co-authors tied for second place behind the element for R. Goldman himself.

6.7 Related Work

Database support for XML is a popular subjectdrawing much attention both in research and indus-

try. In the research community, work on the XML-QL query language was the first effort to apply

ideas from semistructured data research directly to XML [DFF�99a]. Like our work, XML-QL

supports both an ordered an unordered model, though they do not model XML's graph structure

as throughly as we do. Lorel's syntax is more similar to OQL's (or even SQL's) in comparison to

XML-QL, though both languages are similar in expressive power.

Researchers at the University of Wisconsin are developing Niagara, a comprehensive XML

query system. It includes mechanisms to identify relevantXML files across the Web and deal with

remote data sources [NDea00]. Niagara also has investigated using a relational database manage-

mentsystem to store XML [STH�99], in contrast to a native storage system like Lore.

In industry, XML activity is heating up aswell. Most prominently, Microsoft led a coalition

of companies to propose XQL, another XML query language [RLS98]. Currently, XQL is not as

expressive as either XML-QL or Lorel, relying on a compact “ URL-style” syntax for expressing

queries. Companies such as Microsoft, Oracle, and IBM are working hard to enable their relational

databases to publishand importXML,as well as allowingadatabase to be administeredremotely via

XML messages [SQL]. Finally,eXcelonCorporation, formerly ObjectDesign,sells adataserver for

managing XML data, including supportfor nativeelement-based storage and XQL queries [EXC].

Chapter 7

WSQ/DSQ: Combined Querying of

Databases and the Web

Our work on semistructured data (Chapters 2 – 4) will be useful in the future as more and more data

passes across the Internetas XML (Chapter 6). Proximity search (Chapter 5) enables powerful and

intuitive keyword-based searches that exploit structure in traditional database systems. However,

as of today we see two extremes of how data is managed and queried in practice. At one extreme,

most enterprises store their operational data in relational database systems, and queries are issued

via SQL. At the other extreme, search engines such as AltaVistaand Google continually crawl and

index millions of Web documents, butsuch systems only supportsimple keyword-basedsearch.

In this chapter we propose a new approach that combines the existing strengths of traditional

databases and Web searches into asingle query system.WSQ/DSQ (pronounced“ wisk-disk”)stands

for Web-Supported (Database) Queries/Database-Supported (Web) Queries. WSQ/DSQ is not a

new query language. Rather, it is a practical way to exploitexisting search engines to augmentSQL

queries over a relational database (WSQ), and for using a database to enhance and explain Web

searches (DSQ). In terms of the matrix in Chapter 1, WSQ/DSQ is a bridge thatcouples two entries

at opposite corners: it ties together Entry 1, representing expressive queries over structured data as

supported by traditional databasesystems, with Entry 6, representing keyword-based search over

unstructured data as supported by search engines. In terms of deployability, we believe WSQ/DSQ

could be deployed more quickly than the other contributions in this thesis because it builds on

mature technologies thatare already used widely.

The basic architecture of WSQ/DSQ is shown in Figure 7.1. Each WSQ/DSQ instance queries

one or more traditional databases via SQL, and keyword-basedWeb searches are routed to existing

108

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 109

Keyword
Searches

World-Wide
Web

Local
Database

SQL

Google

Any
Search
Engine

AltaVista

WSQ/DSQ

Users

Multiple WSQ/DSQ Instances
over different databases

Local
Database

Figure 7.1: Basic WSQ/DSQ architecture

search engines. Users interacting with WSQ/DSQ can pose queries that seamlessly combine Web

searches with traditional database queries.

As an example of WSQ (Web-Supported Database Queries), suppose our local database has

information about all of the U.S. states, including each state's population and capital. WSQ can

enhance SQL queries over this database using Web search engines to pose the following interesting

WSQ queries (fully specified in Section 7.2.1):

� Rank all states by how often they are mentioned by name on the Web.

� Rank states by how often they appear, normalized by state population.

� Rank states by how often they appear on the Web near the phrase “ four corners” .

� Which state capitals appear on the Web more often than the state itself?

� Get the top two URLs for each state.

� If Google (www.google.com) and AltaVista (www.altavista.com) both agree that a URL is

among the top 5 URLs for a state, return the state and the URL.

WSQ does notperform any “ magic” interpretation, cleaning, or filtering of data on the Web. WSQ

enables users to write intuitive SQL queries thatautomatically execute Web searches relevantto the

query and combine the search results with the structured data in the database. With WSQ, we can

easily write interesting queries that would otherwise require a significant amount of programming

or manual searching.

DSQ (Database-Supported Web Queries) takes the converse approach, enhancing Web keyword

searches with information in the database. For example, suppose our database contains information

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 110

about movies, in addition to information about U.S. states. When a DSQ user searches for the

keywordphrase “ scuba diving” ,DSQ uses the Web to correlate thatphrase with terms in the known

database. For example, DSQ could identify the states and the movies that appear on the Web most

often near the phrase “ scuba diving” , and mighteven find state/movie/scuba-diving triples (e.g., an

underwater thriller filmed in Florida). DSQ can be supported using thesystem and techniques we

present in this chapter, but we focus primarily on Web-supported queries (WSQ), leaving detailed

exploration of DSQ for future work.

Much of the work presented in this chapter originally appeared in [GW00].

7.1 WSQ Overview

WSQ is based on introducing twovirtual tables, WebPages and WebCount, to any relational

database. A virtual table is a program that “ looks” like a table to a query processor, but returns

dynamically-generated tuples rather than tuples stored in the database. We will formalize our vir-

tual tables in Section 7.2, but for now it suffices to think ofWebPages as an infinite table that

contains, for each possible Web search expression, all of the URLs returned by a search engine for

thatexpression.WebCount can be thoughtof as an aggregate view overWebPages : for each possi-

ble Web search expression, itcontains the total number of URLs returned by a search engine for that

expression. We useWebPages AV andWebCount AV to denote the virtual tables corresponding to

the AltaVista search engine, and we can have similar virtual tables for Google or any other search

engine. By referencing these virtual tables in a SQL query, and assuring that the virtual columns

defining the search expression are always bound during processing, we can answer the example

queries above, and many more, with SQL alone.

While the details of WSQ query execution will be given later, it should be clear thatmany

calls to a search engine may be required by one query, and it is not obvious how to execute such

queries efficiently given typical search engine latency. One possibility is to modify search engines

to acceptspecialized calls from WSQ database systems, butin our work we instead show how small

modifications to a conventional database query processor can exploit properties of existing search

engines.

When query processing involvesmany search engine requests, the key observations are:

� The latency for a single request is very high.

� Unless itexplicitly supports parallelism, the query processor is idle during the request.

� Search engines (and the Web in general) can handle many concurrent requests.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 111

Thus, for maximum efficiency, a query processor mustbe able to issuemany Web requests concur-

rently while processing a single query. As we will discuss in Section 7.3, traditional (non-parallel)

query processors are not designed to handle this requirement. We might be able to configure or

modify a parallel query processor to help us achieve this concurrency. However, parallel query pro-

cessors tend to be high-overhead systems designed for multiprocessor computers, geared towards

large data sets and/or complex queries. In contrast, the basic problem of issuingmany concurrent

Web requests within a query has a more limited scope that does not require traditional parallelism

for a satisfactory solution. To support our WSQ framework, we introduce a query execution tech-

nique calledasynchronous iteration that provides low-overhead concurrency for external virtual

table accesses and can be integrated easily into conventional relational database systems.

The main contributions discussed in this chapter are:

� A formalization of theWebPages andWebCountvirtual tables and their integration into SQL,

with several examples illustrating the powerful WSQ queries enabled by this approach, and a

discussionof supportfor such virtual tables in existing systems (Section 7.2).

� Asynchronous iteration, a technique that enables non-parallel relational query processors to

execute multiple concurrent Web searches within a single query (Section 7.3). Although we

discuss asynchronous iteration in the contextof WSQ, it is a general query processing tech-

nique applicable to otherscenarios as well, and itopens up interesting new query optimization

issues.

� Experimental results from our WSQ prototype (Section 7.4), showing thatasynchronous iter-

ation can speed up WSQ queries by a factor of 10 or more.

7.2 Virtual Tables in WSQ

For the purpose of integrating Web searches with SQL, we can can abstract a Web search engine

through a virtualWebPages table:

WebPages(SearchExp, T1, T2, ..., Tn, URL, Rank, Date)

whereSearchExp is a parameterized string representing a Web search expression.SearchExp uses

“ %1” , “ %2” , and so on to refer to the values thatare bound during query processing to attributesT1,

T2, ...,Tn, in the style ofprintf orscanf [KR88]. For example, ifSearchExp is “ %1 near %2” , T1 is

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 112

bound to “ Colorado” andT2 is bound to “ Denver” , then the corresponding Web search is “Colorado

near Denver” . For a givenSearchExp and given bindings forT1, T2, ... Tn, WebPages contains 0

or more (virtual) tuples, where attributesURL,Rank, andDate are the values returned by the search

engine for the search expression. The first URL returned by the search engine hasRank =1, the

second hasRank =2, and so on. It is only practical to useWebPages in a query whereSearchExp,

T1, T2, ..., Tn are all bound, either by default (discussed below), through equality with a constant

in the Where clause, or through an equi-join. In other words, these attributes can be thought of

as “ inputs” to the search engine. Furthermore, because retrieving all URLs for a given search

expression could be extremely expensive (requiringmany additional network requests beyond the

initial search), it is prudentto restrictRank to be less than some constant(e.g.,Rank� 20), and this

constantalso can be thoughtof as an input to the search engine.

A simple butvery useful view overWebPages is:

WebCount(SearchExp, T1, T2, ..., Tn, Count)

whereCount is the total number of pages returned for the search expression. Many Web search

engines can return a total number of pages immediately, withoutdelivering the actual URLs. As we

will see,WebCount is all we need for many interesting queries.

Note that for both tables, not only are tuples generated dynamically during query processing,

but the number of columns is also a function of the given query. That is, a query might bind only

columnT1 for a simple keyword search, or it might bindT1, T2, ..., T5 for a more complicated

search. Thus, we really have an infinite family of infinitely large virtual tables. For convenience in

queries,SearchExp in both tables has a default value of “%1 near %2 near %3 near ... near %n” .�

For WebPages , if no restriction onRank is included in the query, currently we assume a default

selection predicateRank� 20 to prevent“ runaway” queries.

Note also that virtual tableWebCount could be viewed instead as a scalar function, with input

parametersSearchExp, T1, T2, ..., Tn, and output valueCount. However, sinceWebPages and

other virtual tables can be more general than scalar functions— they can “ return” any number of

columns and any number of rows— our focus in this chapter is on supporting the general case.
�For search engines such as Google that do notexplicitly support the “ near” operator, we use “%1 %2 ... %n” as

the default.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 113

7.2.1 Examples

In this section we useWebPages andWebCount to write SQL queries for the examples presented

informally in this chapter's introduction. In addition to the two virtual tables, our database contains

one regular stored table:

States(Name, Population, Capital)

For each query, we restate it in English, write it in SQL, and show a small fraction of the actual

result. The population values used for Query 2 are 1998 estimates from the U.S. Census Bureau

[Uni98]. Queries 1– 5 were issued to AltaVista, and Query 6 integrates results from both AltaVista

and Google. All searches were performed in October 1999.

Query 1: Rank all states by how often they appear by name on the Web.

Select Name, Count

From States, WebCount

Where Name =T1

Order By Count Desc

Note that we are relying on the default value of “%1” for WebCount.SearchExp. The first five

results are:

�California, 4995016� �Washington, 4167056� �New York, 3764513�

�Texas, 2724285� �Michigan, 1621754� ...

Readers mightbe unaware thatTexas and Michigan are the 2nd and 8th most populous U.S. states,

respectively. Washington ranks highly because it is both a state and the U.S. capital; a revised query

could exploit search engine features to avoid some false hits of this nature, but remember that our

currentgoal is notone of “ cleansing” or otherwise improving accuracy of Web searches.

Query 2: Rank states by how often they appear, normalized by state population.

Select Name, Count/Population As C

From States, WebCount

Where Name =T1

Order By C Desc

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 114

Now, the first five results are:

�Alaska, 1149� �Washington, 733� �Delaware, 690� �Hawaii, 635� �Wyoming, 603� ...

Query 3: Rank states by how often they appear on the Web near the phrase “ four corners” .

Select Name, Count

From States, WebCount

Where Name =T1 and T2 ='four corners '

Order By Count Desc

Recall that“ %1 near %2” is the defaultvalue forWebCount.SearchExp whenT1 andT2 are bound.

There is only one location in the UnitedStates where a personcan be in four states atonce: the “ four

corners” refers to the pointbordering Colorado, New Mexico, Arizona, and Utah. Note the dramatic

dropoff inCount between the first four results and the fifth:

�Colorado, 1745� �New Mexico, 1249� �Arizona, 1095� �Utah, 994� �California, 215� ...

Query 4: Which state capitals appear on the Web more often than the state itself?

Select Capital, C.Count, Name, S.Count

From States, WebCount C, WebCount S

Where Capital =C.T1 and Name =S.T1 and C.Count� S.Count

In the following (complete) results, we again see some limitations of text searches on the Web—

more than half of the results are due to capitals that are very common in other contexts, such as

“ Columbia” and “ Lincoln” :

�Atlanta, 1053868, Georgia, 958280� �Lincoln, 669059, Nebraska, 385991�

�Boston, 1409828, Massachusetts, 1006946� �Jackson, 1120655, Miss iss ippi, 662145�

�Pierre, 663310, South Dakota, 283821� �Columbia, 1668270, South Carolina, 540618�

Query 5: Get the top two URLs for each state. We omitquery results since they are notparticularly

compelling.

Select Name, URL, Rank

From States, WebPages

Where Name =T1 and Rank �=2

Order By Name, Rank

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 115

Query 6: If Google and AltaVistaboth agree thata URL is among the top 5 URLs for a state, return

the state and the URL.

Select Name, AV.URL

From States, WebPages AV AV, WebPages Google G

Where Name =AV.T1 and Name =G.T1 and AV.Rank�=5 and G.Rank�=5 and

AV.URL=G.URL

Surprisingly, Google and AltaVistaonly agreed on the relevance of 4 URLs:

�Indiana, www.indiana.edu/copyright.html��Louis iana, www.us l.edu�

�Minnesota, www.lib.umn.edu� �Wyoming, www.s tate.wy.us /s tate /we lcome.html�

7.2.2 Support for virtual tables in existing systems

Both the IBM DB2 and Informix relational database systems currently supportvirtual tables insome

form. We give a quick overview of the supportoptions in each of these products, summarizing how

we can modify our abstractvirtual table definitions to work on such systems. (Atthe time of writing

we understand thatOracle also expects to supportvirtual tables in a future release.) See [RP98] for

more information aboutsupport for virtual tables in database products.

In DB2, virtual tables are supported throughtable functions, which can be written in Java or C

[IBM]. A table function must export the number and names of its columns. Hence, DB2 cannot

support a variable number ofcolumns, so we would need to introduce a family of table functions

WebPages1, WebPages2, etc. to handle the different possible number of arguments, up to some

predetermined maximum; similarly forWebCount. To the query processor, a table function is

an iterator supporting methodsOpen, GetNext, andClose [Gra93]. Currently, DB2 provides no

“ hooks” into the query processor for pushing selection predicates into a table function. At first

glance, this omission apparently prevents us from implementingWebPages or WebCount, since

both tables logically contain an infinite number of tuples and require selection conditions to become

finite. However, DB2 table functions support parameters that can be correlated to thecolumns of

other tables in aFrom clause. For example, consider:

Select R.c1, S.c3

From R, Table(S(R.c2))

In this query,S is a table function thattakes a single parameter. DB2will create anew table function

iterator for each tuple inR, passing the value ofc2 in that tuple to theOpen method ofS . (DB2

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 116

requires that references toS come afterR in theFrom clause.) With this feature, we can implement

WebPages andWebCount by requiring thatSearchExp and then search terms are suppliedas table

function parameters, either as constants or using theFrom clause join syntax shown in the example

query above. In the case ofWebPages , we must pass the restriction onRank as a parameter to the

table function as well.

Informix supports virtual tables through itsvirtual table interface [SBH98]. Unlike DB2, In-

formix provides hooks for a large number of functions that theDBMS uses to create, query, and

modify tables. For example, in Informix a virtual table scan can access the associatedWhere condi-

tions, and therefore can process selection conditions. However, the Informix query processor gives

no guarantees aboutjoin ordering, even when virtual tables are involved, so we cannotbe sure that

the columns used to generate the search expression are bound by the time the query processor tries

to scanWebPages orWebCount. Thus, Informix currently cannotbe used to implementWebPages

or WebCount (although, as mentioned earlier,WebCount could be implemented as a user-defined

scalar function, which is supported in Informix).

7.3 WSQ Query Processing

Even with an ideal virtual table interface, traditional execution of queries involvingWebCount or

WebPages would be extremely slow due to many high-latency calls to one or more Web search

engines. [CDY95] proposes optimizations thatcan reduce the number of external calls, and caching

techniques [HN96] are important for avoiding repeated external calls. But these approaches can

only go so far— even after extensive optimization, a query involvingWebCount orWebPages must

issue some number of search engine calls.

A query plan is a strategy for executing a query, typically a tree of operators thatscan, join,

filter,aggregate, andsort their inputs. As mentionedbriefly inSection 7.2.2, query plans are usually

executed usingiterators that recursively drive query execution by asking operators to supply tuples.

There is a costassociated with each operation in a query plan (usually based on predicted CPU and

I/O time), and it is the jobof thequeryoptimizer to estimate the costof differentpotential plans and

choose the plan that itpredicts will be the leastexpensive to execute [Gra93, GMUW00].

In many situations, the high latency of the search enginewill dominate the entire execution time

of the WSQ query. Any traditional non-parallel query plan involvingWebCount or WebPages will

be forced to issue Web searches sequentially, each of which could take one or more seconds, and

the query processor is idle during each request. Since Web search engines are built to supportmany

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 117

concurrent requests, a traditional query processor is making poor use of available resources.

Thus, we want to find a way to issue asmany concurrentWeb searches as possible during query

processing. While a parallel query processor (such as Oracle, Informix,Gamma [DGS �90], or

Volcano [Gra90]) is alogical option to evaluate, it is also a heavyweightapproach for our problem.

For example, suppose a query requires 50 independentWeb searches (for 50 U.S. states, say). To

perform all 50 searches concurrently, a parallel query processormustnotonly dynamically partition

the problem in the correct way, it must then launch 50 query threads or processes. Supporting

concurrent Web searches during query processing is a problem of restricted scope that does not

require a full parallelDBMS.

In the remainder of this section we describeasynchronous iteration, a new query processing

technique that can be integrated easily into a traditional non-parallel query processor to achieve a

high number of concurrent Web searches with low overhead. As we will discuss briefly in Sec-

tion 7.3.2, asynchronous iteration is in fact a general query processing technique that can be used

to handle a high number of concurrentcalls to any external sources. As described in the following

subsections, asynchronous iteration also opens up interesting new query optimization problems.

7.3.1 Asynchronous Iteration

Letus startwithan example. Suppose in our relational database we have a simple tableSigs(Name),

identifying the different ACM Special Interest Groups, called “ Sigs” — e.g., SIGMOD, SIGOPS,

etc. Now we want to useWebCount to rank the Sigs by how often they appear on the Web near the

keyword “ Knuth” :�

Select*

From Sigs, WebCount

Where Name =T1 and T2 ='Knuth'

Order By Count Desc

Figure 7.2 shows a possible query plan for this query. For this plan, and for all other plans in

this chapter, we assume an iterator-based execution model [Gra93] where each operator in the plan

tree supportsOpen, GetNext, andClose operations. TheDependent Join operator requires each

GetNext call to its rightchild to include a binding from its left child, thus limiting the physical join

techniques thatcan be used to those of the nested-loop variety (although work in [HN96] describes
�Incidentally, the results (in order) from AltaVista are: SIGACT, SIGPLAN, SIGGRAPH, SIGMOD, SIGCOMM,

SIGSAM. For all other Sigs,Count is 0.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 118

Dependent Join:
Sigs.Name +
WebCount.T1

Scan:
Sigs

EVScan:
WebCount

(T2 = 'Knuth')

Sort:
WebCount.Count

Figure 7.2: Query plan forSigs �WebCount

hashing and caching techniques that can improve performance of a dependentjoin). TheEVScan

operator is an external virtual table scan. We assume that we are working with a query processor

thatcan produce plans of this sort— with dependent joins and scans of virtual tables— such as IBM

DB2 (recall Section 7.2.2).

Without parallelism, EVScan performs a sequence of Web searches during execution of this

query plan (one for eachGetNext call), and the query processor may be idle for a second or more

each time. Intuitively, we would like the query processor to issuemany Web searches simultane-

ously, withoutthe overhead of a parallel query processor. For this small data set— 37 tuples for the

37 ACM Sigs— we would like to issue all 37 requests atonce. To achieve this behavior we propose

asynchronous iteration, a technique involving three components:

1. A modified, asynchronous version of EVScan thatwe callAEVScan.

2. A new physical query operator calledReqSync (for “ RequestSynchronizer”), which waits for

asynchronously launched calls to complete.

3. A global software module calledReqPump (for “ Request Pump”), for managing all asyn-

chronous external calls.

The general idea is thatwe modify a query plan to incorporate asynchronous iterationby replac-

ing EVScans with AEVScans and inserting one or more ReqSync operators appropriately within the

plan. AEVScan and ReqSync operators both communicate with the global ReqPump module. No

other query plan operators need to be modified to supportasynchronous iteration.

Now we walk through the actual behavior of asynchronous iteration using our example. Con-

sider the query plan in Figure 7.3. In comparison to Figure 7.2, the EVScan has been replaced by

an AEVScan, the ReqSync operator has been added, and the global ReqPump is used. When tuples

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 119

Sort:
WebCount.Count

Scan:
Sigs

ReqPump

Pending Calls

Returned Calls

ReqSync

AEVScan:
WebCount

(T2 = 'Knuth')

Dependent Join:
Sigs.Name +
WebCount.T1

Figure 7.3: Asynchronous iteration

are constructed during query processing, we allow any attribute value to bemarked with a special

placeholder thatserves two roles:

1. The placeholder indicates that the attribute value (and thus the tuple it's a part of) is incom-

plete.

2. The placeholder identifies a pending ReqPump call associated with the missing value— that

is, the pending call thatwill supply the true attribute value when the call finishes.

Recall thatall of ouroperators, including AEVScanand ReqSync,obey a standard iterator interface,

includingOpen, GetNext, andClose methods. We now discuss in turn how the operators in our

example query plan work.

The Scan and Sortoperators are oblivious to asynchronous iteration. The DependentJoin (here-

after DJ) is a standard nested-loop operator that also knows nothing about asynchronous iteration.

Now consider the AEVScan. When DJgets a new tuple fromSigs , it callsOpen on AEVScan and

then callsGetNext with Sigs.Name . AEVScan in turn contacts ReqPump and registers an external

call C with T1 = Sigs.Name andT2 = 'Knuth'. (C is a unique identifier for the call.) ReqPump

is a module that issues asynchronous network requests and stores the responses to each requestas

they return. In the case of callC, the returned data is simply a value forCount; ReqPump stores

this value in a hash tableReqPumpHash, keyed onC. To achieve concurrency, as soon as AEVS-

can registers its call with ReqPump, it returns to DJ(as the resultofGetNext) oneWebCount tuple

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 120

T where theCount attribute contains as a placeholder the call identifierC. DJ combinesT with

Sigs.Name and returns the new tuple to its parent (ReqSync).

Now let us consider the behavior of ReqSync. When itsOpen method is called from above by

Sort, ReqSync callsOpen on DJbelow and then callsGetNext on DJuntil exhaustion, buffering all

returned (incomplete) tuples inside ReqSync. We choose this full-buffering implementation for the

sake of simplicity,and we will revisit this decision momentarily. ReqSync needs to coordinate with

ReqPump to fill in placeholders before returning tuples to its parent. The problem is a variation

of the standard “ producer/consumer” synchronization problem. Each ReqPump call is a producer:

when a callC � completes (and its data is stored in ReqPumpHash), ReqPump signals to the con-

sumer (ReqSync) that the data forC � is available. When signaled by ReqPump, ReqSync locates

the incomplete tuple containingC � as a placeholder (using its own local hash table), and replaces

C � with theCount value retrieved from ReqPumpHash. When ReqSync'sGetNext method is called

from above, if ReqSync has no completed tuples then itmustwaitfor the nextsignal from ReqPump

before it can return a tuple to its parent. Note that in the general case, tuples that do notdepend on

pending ReqPump calls may pass directly through a ReqSync operator.

In our simple implementation of ReqSync'sOpen method, all (incomplete) tuples generated by

DJare buffered inside ReqSync before ReqSync can return any (completed) tuples to its parent. In

the case of very large joins itmightmake sense for ReqSync to make completed tuples available to

its parent before exhausting execution of its child subplan. As with query execution in general, the

question of materializing temporary results versus returning tuples as they become available is an

optimization issue [GMUW00].

As we will show in Section 7.4, asynchronous iteration can improve WSQ query performance

by a factor of 10 or more over a standard sequential query plan. However, there are still three

important lingering issues thatwe will discuss in Sections 7.3.3, 7.3.4, and 7.3.5, respectively:

1. As seen in our example, an external call forWebCount always generates exactly one result

tuple. But a call forWebPages may produce any number of tuples, including none, and the

number of generated tuples is notknown until the call is complete.

2. When a query plan involvesmore than one AEVScan,we mustaccountfor the possibility that

an incomplete tuple buffered in ReqSync couldcontain placeholders for two ormore different

pending ReqPump calls.

3. We need to properly place ReqSync operators in relation to other query plan operators, both

to guarantee correctness and maximize concurrency.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 121

Monitoring and controlling resource usage is also an importantissue when we use asynchronous

iteration. So far we have assumed that during query execution we can safely issue anunbounded

number of concurrentsearch requests. Realistically, we need to regulate the amountof concurrency

to prevent a search engine from being inundated with an “ unwelcome” number of simultaneous

requests. Similarly, we may want to limit the total number of concurrent outgoing requests to

prevent WSQ from exhausting its own local resources, such as network bandwidth. It is quite

simple to modify ReqPump to handle such limits: we need only add one counter to monitor the

total number of active requests, and one counter for each external destination. An administratorcan

configure each counter as desired. When a call is registered with ReqPump butcannotbe executed

because of resource limits, the call is placed on a queue. As resources free up, queued calls are

executed.

7.3.2 Applicability of asynchronous iteration

Before delving into details of the three remaining technical issues outlined in the previous subsec-

tion, letus briefly consider the broader applicability of asynchronous iteration. Although this chap-

ter describes asynchronous iteration in the specific contextof WSQ, the technique is actually quite

general and applies to most situations where queries depend on values provided by high-latency,

external sources. More specifically, if an external source can handlemany concurrent requests, or if

a query issues independentcalls tomany different external sources, then asynchronous iteration is

appropriate. Our WSQ examples primarily illustrate the first case(many concurrent requests to one

or two search engines). As an example of the second case, asynchronous iteration could be used

to implement a Web crawler: given a table of thousands of URLs, a query over that table could be

used to fetch the HTML for each URL (for indexing and to find the next round of URLs). In this

scenario, WSQ can exploitall available resources withoutburdening any external sources.

As mentioned earlier, if we try to use a parallel query processor to achieve the high level of

concurrency offered by asynchronous iteration, then we would need to partition tables dynamically

into many small fragments and spawn many query threads or processes. Issuingmany threads can

be expensive. For example, the highestperformance Web servers do notuse one thread per HTTP

request; rather, many network requests are handled asynchronously by an event-drivenloop within

a single process [PDZ99]. By implementing the ReqPump module of asynchronous iteration in a

similar manner, we can enable many simultaneous calls with low overhead. Nonetheless, as future

work it would be interesting to conduct experiments comparing the performance of asynchronous

iteration againsta parallelDBMS for managing concurrentcalls to external sources.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 122

ReqSync

Scan:
Sigs

AEVScan:
WebPages
(Rank <= 3)

ReqPump

Dependent Join:
Sigs.Name +
WebPages.T1

Figure 7.4: Query plan forSigs �WebPages

7.3.3 ReqSync tuple generation or cancellation

The previous example (Figure 7.3) was centered on a dependent joinwithWebCount, which always

yields exactly one matching tuple. ButWebPages , and any other virtual table in general, may

return any number of tuples for given bindings— including none. Because we want AEVScan to

return from aGetNext call withoutwaiting for the actual results, we always begin by assuming that

exactly one tuple joins, then “ patch” our results in ReqSync.

Consider the following query, which retrieves the top 3 URLs for each Sig.

Select*

From Sigs, WebPages

Where Name =T1 and Rank �=3

For each Sig, joining withWebPages may generate 0, 1, 2, or 3 tuples. Assume a simple query

plan as shown in Figure 7.4. As in our previous example, AEVScan will use ReqPump to generate

37 search engine calls, and ReqSync will initially buffer 37 tuples. Now consider whathappens for

a tupleT , waiting in a ReqSync buffer for a callC to complete. WhenC returns, there are three

possibilities:

1. If C returns no rows, then ReqSync deletesT from its buffer.

2. If C returns 1 row, then ReqSync fills in the attribute values forT as generated byC.

3. If C returnsn rows, wheren � �, then ReqSync dynamically createsn� � additional copies

of T , and fills in the attribute values accordingly.

In our example, since all Sigs are mentioned on at least 3 Web pages, 111 tuples are ultimately

produced by ReqSync.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 123

ReqSync

Scan:
Sigs

AEVScan:
WP_AV

(Rank <= 3)

AEVScan:
WP_Google
(Rank <= 3)

ReqPump

Dependent Join:
Sigs.Name +

WP_AV.T1

Dependent Join:
Sigs.Name +

WP_Google.T1

Figure 7.5: Query plan forSigs �WebPages AV� WebPages Google

7.3.4 Handling multiple AEVScans

Now let us consider query plans involving multiple AEVScans. For example, the following query

finds the top 3 URLs for each Sig from two differentsearch engines.�

Select*

From Sigs, WebPages AV AV, WebPages Google G,

Where Name =AV.T1 and Name =G.T1 and AV.Rank�=3 and G.Rank�=3

Figure 7.5 shows a query plan that maximizes concurrent requests. Note that there is only one

ReqSync operator, notone for each AEVScan. The placementand merging of ReqSync operators is

discussedinSection 7.3.5. In this plan, the bottomDependentJoinwill generate 37 tuples,each with

placeholders identifying a ReqPump call forWebPages AV. The upperjoin will augment each of

these tuples with additional placeholders corresponding to a ReqPump call forWebPages Google .

Hence, ReqSync will buffer 37 incomplete tuples, each one with placeholders for two different

ReqPump calls.

The algorithm for tuple cancellation, completion, and generation at the end of Section 7.3.3

applies in this case as well, witha slightnuance: dynamically copied tuples (case 3 in the algorithm)

may proliferate references to pending calls. For example, suppose one of the incomplete tuples

T in the ReqSync buffer is waiting for the completion of two calls, indicated by two different
�The query actually finds all combinations of the top 3 URLs from each search engine, but it nonetheless

serves to illustrate the pointof this section.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 124

placeholders: one for callC A to AltaVistaand the other for callC G to Google. IfC A returns first,

with 3 tuples, then ReqSync will make two additional copies ofT . When copyingT , references to

pending callC G are also copied. OnceC G returns, all tuples referencingC G mustbe updated.

7.3.5 Query plan generation

Recall thatconverting a query plan to use asynchronous iteration has two parts: (1) EVScan opera-

tors are converted to AEVScans,and (2) ReqSync operators are added to the plan. In this section we

describe an algorithm for placing ReqSync operators within plans. Our primary goal is to introduce

a correct and relatively simple algorithm that: (1) attempts to maximize the number of concurrent

Web searches; (2)attempts to maximize the amountof query processing work thatcan be performed

while waiting for Web requests to be processed; and (3) is easy to integrate into existing query com-

pilers. ReqSync operators can significantly alter the cost of a query plan, and the effects on query

execution time will often depend on the specific database instance being queried, as well as the

results returned by search engines. Fully addressing cost-based query optimization in the presence

of asynchronous iteration is an important, interesting, and broad problem that is beyond the scope

of our work.

We assume thatthe optimizercan generate plans with dependentjoins [FLMS99] and EVScans,

but knows nothing about asynchronous iteration; a plan produced by the optimizer is the input to

our algorithm. We continue to assume an iterator model for all plan operators. We now describe the

three steps in our placementof ReqSync operators:Insertion,Percolation, andConsolidation.

ReqSync Insertion

Recall that we first convert each EVScan operator in our input planP to an asynchronous AEVS-

can. Next, a ReqSync operator is inserted directly above each AEVScan. More formally, for each

AEVScani in P , we insert ReqSynci into P as the parent of AEVScani. The previous parent of

AEVScani becomes the parent of ReqSynci. This transformation is obviously correct since no

operations occur between each asynchronous call and the blocking operator that waits for its com-

pletion.

ReqSync Percolation

Next, we try to move ReqSync operators up the query plan. Intuitively, each time we pull up a

ReqSync operator we are increasing the amount of query processing work that can be done before

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 125

blocking to wait for external calls to complete. Sometimes we can rewrite the query plan slightly to

enable ReqSync pull-up. For example, if the parent of a ReqSync is a selection predicate that de-

pends on attribute values filled in by ReqSync, we can pull ReqSync higher by pulling the selection

predicate up first. Similarly, if a join depends on values filled in by ReqSync, we can rewrite the

join as a selection over a cross-productand move the ReqSync above the cross-product.

Our actual algorithm is based on the notion of an operatorO clashing with a ReqSync operator,

in which case we cannotpull ReqSync aboveO. LetReqSync i.A denote the setof attributes whose

values are filled in by the ReqSynci operator as ReqPump calls complete, i.e., the attributes whose

values are substituted with placeholders by AEVScani. We say thatO clashes with ReqSync i iff:

1. O depends on the value of any attribute in ReqSynci.A, or

2. O removes any attribute in ReqSynci.A via projection, or

3. O is an aggregation or existential operator

Case 1 is clear: an operator clashes if it needs the attributes filled in by ReqSynci to continue

processing. Case 2 is a bit more subtle. If we projectaway placeholders before the corresponding

calls are complete, then tuple cancellation or generation (Section 7.3.3) cannot take place properly,

and extra tuples or incorrect numbers of duplicates may be returned. Case 3 is similar to case 2:

aggregation (e.g., Count) and existential quantification require an accurate tally of incoming tuples.

For each ReqSynci in the plan, we repeatedly pull ReqSynci above any non-clashing operators.

If an operatorO does clash, we check to see ifO is a projection or selection; if so, we can pullO

above its parent first. Otherwise, ifO is a clashing join, we rewrite it as a selection over a cross-

product. Other similar rewrites are possible. For example, a set union operator must examine each

complete tuple to perform duplicate elimination; we can rewrite this clashing operator as a “ Select

Distinct” overanon-clashing bag unionoperator. Ourpercolationalgorithmclearly terminates since

operators are only pulled up the plan. Also, the order in which we percolate ReqSync operators

does not matter— the only potential effect is a different final ordering between adjacent ReqSync

operators, something that is made irrelevantby ReqSync Consolidation, which we discuss next. We

will illustrate the percolation algorithm through examples momentarily.

ReqSync Consolidation

After percolation, we may find thattwo or more ReqSync operators are now adjacentin the plan. At

this pointwe can merge adjacentReqSync operators since they perform the same overall function,

and a single ReqSync operator can manage multiple placeholder values in tuples as discussed in

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 126

Section 7.3.4. When merging ReqSynci with ReqSyncj, ReqSynci.A � ReqSyncj.A is the set of

attributes thatmustbe filled in by the new ReqSync operator.

Plan generation examples

We now show three examples demonstrating our ReqSync placement algorithm. We point out the

performance gains asynchronous iteration can provide, along with some potential pitfalls of our

currentalgorithm.

Example 7.1: Figure 7.6 shows how our ReqSync placement algorithm generates the query plan

we saw earlier in Figure 7.5 for theSigs � WebPages AV � WebPages Google query. We omit

ReqPumpfrom these (and all remaining)query plans. Figure 7.6(a)shows the inputto the algorithm,

a simple left-deep query plan without asynchronous iteration. Figure 7.6(b) shows the plan after

ReqSync Insertion: the EVScans are converted to AEVScans and a ReqSync operator is inserted

directly above each EVScan. Figure 7.6(c) shows the plan after ReqSync Percolation. We first

move ReqSync� above both dependent joins, since neither join depends on any values returned by

WebPages AV (i.e., URL, Date , Rank). ReqSync� is then pulled above its parent dependent join.

The final plan after ReqSync Consolidation is shown in Figure 7.6(d). With this plan, the query

processor can process all 74 external calls (37 Sigs per join)concurrently.

This example demonstrates some interesting advantages of asynchronous iteration overpossible

alternatives. First, one might consider simply modifying the dependent join operator to work in

parallel: change the dependentjoin to launchmany threads, each one forjoining one left-hand input

tuple with the right-hand EVScan. While this approach will provide maximal concurrency formany

simple queries, it prevents concurrency among requests from multiple dependent joins: the query

processor will block until the first join completes. Anotherapproach, as discussed in Section 7.3.2,

is to use a (modified) parallel query processor for this query. However, performing both dependent

joins in parallel requires a nontrivial rewrite to transform our 2-join plan into a 3-join plan where

both dependent joins are children of a final “ merging” join.�

Example 7.2: Consider the following query, where a cross-product with a meaningless tableR is

introduced for illustrative purposes:

Select*

From Sigs, WebCount AV AV, R, WebCount Google G

Where Name =AV.T1 and Name =G.T1

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 127

(b)

Scan:
Sigs

AEVScan_1:
WP_AV

(Rank <= 3)

AEVScan_2:
WP_Google
(Rank <= 3)

Scan:
Sigs

EVScan_ 1:
WP_AV

(Rank <= 3)

EVScan_2:
WP_Google
(Rank <= 3)

ReqSync_1

ReqSync_2

(a)

ReqSync_2

Scan:
Sigs

AEVScan_1:
WP_AV

(Rank <= 3)

AEVScan_2:
WP_Google
(Rank <= 3)

ReqSync

Scan:
Sigs

AEVScan_1:
WP_AV

(Rank <= 3)

AEVScan_2:
WP_Google
(Rank <= 3)

ReqSync_1

(c) (d)

Dependent Join:
Sigs.Name +

WP_Google.T1

Dependent Join:
Sigs.Name +

WP_Google.T1

Dependent Join:
Sigs.Name +

WP_Google.T1

Dependent Join:
Sigs.Name +

WP_Google.T1

Dependent Join:
Sigs.Name +
WP_AV.T1

Dependent Join:
Sigs.Name +

WP_AV.T1

Dependent Join:
Sigs.Name +

WP_AV.T1

Dependent Join:
Sigs.Name +

WP_AV.T1

Figure 7.6: Generating the query plan forSigs �WebPages AV�WebPages Google in Figure 7.5

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 128

Figure 7.7(a) shows the result of running our ReqSync placement algorithm over a left-deep input

plan in which the cross-productwithR is performed between the two virtual table dependent joins.

With or without asynchronous iteration, this input plan is problematic: by performing the cross-

product before the join withWebCount Google , a straightforward dependent join implementation

will sendjRj identical calls to Google for each Sig. Thus, incorporating a local cache of search en-

gine results is very importantfor such a plan. Furthermore, when using asynchronous iteration with

the plan in Figure 7.7(a), the cross-productwith tableR will generatejRj copies of the incomplete

tuples fromWebCount AV that must be buffered and then patched by ReqSync. Depending on the

data, itmay be preferable to use two ReqSync operators as shown in Figure 7.7(b). By doing so, we

reduce the total number of attribute values to be patched byjSigs j � �jRj � ��, or roughly a factor

of 2 for reasonably largejRj. On the down side, we will block after the first join, preventing us

from concurrently issuing the Web requests forWebCount Google . Had the cross-product withR

been placed last in the original inputplan, another alternative would be to place a single ReqSync

operator above the dependent joins butbelow the cross-product.

This contrived example serves to illustrate the challenging query optimization problems that

arise when we introduce AEVScanand ReqSync operators. Still, inmany cases oursimple ReqSync

placementalgorithm does perform well, as we will see in Section 7.4.�

Example 7.3: As a final example suppose that we also have a tableCSFie lds(Name) containing

computer science fields (e.g., “ databases” , “ operating systems” , “ artificial intelligence” , etc.). Con-

sider the following query, which finds URLs that are among the top 5 URLs for both a Sig and a

CSField.

Select S.URL

From Sigs, WebPages S, CSFie lds, WebPages C

Where Sigs.Name =S.T1 and CSFie lds.Name =C.T1 and S.Rank�=5 and

C.Rank�=5 and S.URL =C.URL

An inputquery plan is shown in Figure 7.8(a). Note that the inputplan is bushy, and thejoin at the

the rootof the plan may well be implemented as a sort-merge or hash join. After inserting the two

ReqSync operators, we first pull them above the dependent joins. To pull the ReqSyncs above the

upperjoin, we rewrite the join into a selection over a cross-product, as described in Section 7.3.5.

(Because the join depends on attributes supplied by WebPages, we can't pull the ReqSync above it

withoutthe rewrite.) Figure 7.8(b) shows the final plan.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 129

ReqSync

Scan:
Sigs

AEVScan:
WC_AV

AEVScan:
WC_Google

Cross-Product

Scan:
R

ReqSync

Scan:
Sigs

AEVScan:
WC_AV

AEVScan:
WC_Google

Cross-Product

Scan:
R

ReqSync

(a) (b)

Dependent Join:
Sigs.Name +
WC_AV.T1

Dependent Join:
Sigs.Name +

WC_Google.T1

Dependent Join:
Sigs.Name +

WC_Google.T1

Dependent Join:
Sigs.Name +
WC_AV.T1

Figure 7.7: A query plan mixing two dependent joins with a cross-product

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 130

Join:
S.URL=
C.URL

Scan:
Sigs

EVScan:
WebPages S
(Rank <= 5)

Cross-Product

Select:
S.URL=
C.URL

ReqSync

(a) (b)

Scan:
CSFields

Dependent Join:
Sigs.Name +

S.T1

Dependent Join:
CSFields.Name +

C.T1

Scan:
Sigs

Scan:
CSFields

Dependent Join:
Sigs.Name +

S.T1

Dependent Join:
CSFields.Name +

C.T1

EVScan:
WebPages C
(Rank <= 5)

AEVScan:
WebPages S
(Rank <= 5)

AEVScan:
WebPages C
(Rank <= 5)

Figure 7.8: Generating the query plan for query overSigs andCSFie lds

In this query, given that theSigs andCSFie lds tables are tiny, rewriting the join as a cross-

product is a big performance win: it enables the query processor to execute all external calls (from

both the left and right subplans) concurrently. However, in other situations, such as if the cross-

product is huge, this specific rewrite could be a mistake.

This example illustrates one more important issue. Suppose thata Sig does nothave any URLs

on a given search engine. Indeed, assume for the moment that all Sigs have no URLs, so all Sig

tuples generated will ultimately be canceled. In that case, pulling the ReqSync operator up as in

Figure 7.8(b) results in an unnecessary cross-productbetween placeholder tuples forCSFie lds and

WebPages , since ultimately the cross-product (and therefore the join)will be empty. In the general

case, because AEVScan always returns exactly one matching tuple before the final result is known,

a plan could perform unnecessary work— work thatwouldnotbe done if the query processorwaited

for the true Web search resultbefore continuing.�

To summarize, the above examples demonstrate how our ReqSync placement algorithm fo-

cuses on maximizing the number of concurrent external calls for any given query plan. If external

calls dominate query execution time, then asynchronous iterationcan provide dramatic performance

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 131

improvements, as we demonstrate in Section 7.4. Nevertheless, there are several potential per-

formance pitfalls that are best addressed by a complete cost-based query optimizer incorporating

asynchronous iteration:

� Manipulating query plans to use asynchronous iteration may change their relative perfor-

mance. Given two equivalent input plansA andB, whereCost�A� � Cost�B�, there is

no guarantee that the asynchronous version ofA will remain cheaper than the asynchronous

version ofB.

� The ReqSync operator buffers tuples, possibly proliferates them, and fills in missing attribute

values. In some situations it is possible that the amountof work required by ReqSync offsets

the advantages of asynchronous iteration.

� Asynchronous iteration assumes non-empty join results and continues processing, patching

results later as necessary. If join results do turn out to be empty, then our “ optimistic” ap-

proach will have performed more work than necessary.

� In order to pull ReqSync operators higher, we may move or rewrite operators in the input

query plan, such as replacing joins with selections over cross-products. Additional work

induced by these rewrites could offset the benefitof additional concurrency.

7.4 Implementation and Experiments

We have integrated the two WSQ virtual tables and our asynchronous iteration technique into a

homegrown relational database management system calledRedBase. (RedBase is constructed by

students at Stanford in a course on DBMS implementation.) RedBase supports a subsetof SQL for

select-project-join queries, and it includes a page-level buffer and iterator-based query execution.

However, it was not designed to be a high-performancesystem: the only available join technique

is nested-loop join, and there is no query optimizer although users can specify a join ordering

manually. Nevertheless, RedBase is stable and sophisticated enough to support the experiments

in this section, which demonstrate the potential of asynchronous iteration. Our experiments show

the considerable performance improvementof running WSQ queries with asynchronous iteration as

opposed to conventional sequential iteration.

Measuring the performance of WSQ queries has some inherent difficulties. First, performance

of a search engine such as AltaVista can fluctuate considerably depending on load and network

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 132

delays beyond our control. Second, because of caching behavior at search engines beyond our

control, repeated searches with identical keyword expressions may run far faster the second (and

subsequent) times. To mitigate these issues, we waited at least two hours between queries that issue

identical searches, which we verified empirically is long enough to eliminate caching behavior.

Also, we performed our experiments late atnightwhen the load on search engines is low and, more

importantly, consistent.

In order to run many experiments without waiting hours between each one, we usetemplate

queries and instantiate multiple versions of them that are structurally similar but result in slightly

differentsearches being issued. Consider the following template.

Template 1:

Select Name, Count

From States, WebCount

Where Name =T1 and WebCount.T2 =V1

V1 represents a constant that is chosen from a pool of different common constants, such as “ com-

puter” , “ beaches” , “ crime” , “ politics” , “ frogs” , etc. For our experiments, we created 8 instances

of the template by choosing 8 different constants from the pool. After timing all queries using

asynchronous iteration, we waited two hours and then timed all queries using the standard query

processor. For corroboration, we repeated the testwith 8 new query instances.

The results for this template (and the two below) are shown in Table 7.1. For each template,

we list the results of two runs. The times listed are the average execution time in seconds for the

8 queries, with and without asynchronous iteration. AltaVista is used for the first two templates;

the third uses both AltaVistaand Google. Experiments were conducted on a Sun Sparc Ultra-2 (2 x

200Mhz) 256MB RAM machine running SunOS 5.6. The computer is connected to the Internetvia

Stanford University's network.

Template 2:

Select Name, Count, URL, Rank

From States, WebCount, WebPages

Where Name =WebCount.T1 and WebCount.T2 =V1 and

Name =WebPages.T1 and WebPages.T2 =V2 and WebPages.Rank�=2

In this query template, we issue two searches for each tuple inStates , one forWebCount and

one forWebPages . When instantiating the template we wanted to ensure thatV1 �� V2, so we

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 133

Synchronous (secs)Asynchronous (secs)Improvement

Template 1
Run 1 (8 queries) 23.13 3.88 6.0x
Run 2 (8 other queries) 32.8 3.5 9.4x

Template 2
Run 1 (8 queries) 70.75 5.25 13.5x
Run 2 (8 other queries) 64.25 5.13 12.5x

Template 3
Run 1 (8 queries) 122.5 6.25 19.6x
Run 2 (8 other queries) 76.13 4.63 16.4x

Table 7.1: Experimental results

selected 16 distinctconstants to create 8 query instances. In our prototype system, the join order is

always specified by the order of tables in theFrom clause, so for this query we joinedStates with

WebCount, then joined the resultwithWebPages . Results are shown in Table 7.1.

Template 3: The following template is similar to the example in Section 7.3.4 (Figure 7.5), with the

added constantV1. Again, we created 8 queries by instantiatingV1 with constants, and results are

shown in Table 7.1.

Select Name, AV.URL, G.URL

From Sigs, WebPages AV AV, WebPages Google G,

Where Name =AV.T1 and Name =G.T1 and AV.Rank�=3 and G.Rank�=3 and

AV.T2 =V1 and G.T2 =V1

Our results show clearly that asynchronous iteration can improve the performance of WSQ

queries by a factor of 10 or more. Of course, all of the example queries here are over very small

local tables, so network costs dominate. These results in effect illustrate the best-case improvement

offered by asynchronous iteration. For queries involving more complex local query processing over

much larger relations, the speedup may be less dramatic, and the results of any such experiment

would be highly dependent on the sophistication of the database query processor (independent of

asynchronous iteration). Further, as illustrated in Section 7.3, complex queries may introduce opti-

mization decisions thatcould have a significant impacton performance.

We have created a simple interface that allows users to pose limited queries over our WSQ

implementation, available at http://www-db.stanford.edu/wsq.

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 134

7.5 Related Work

The techniques we know of that most closely relate to WSQ/DSQ are reported in [CDY95] and

[DM97]. Written before the explosion of the World-Wide Web, [CDY95] focuses on execution

and optimization techniques for SQL queries integrated with keyword-based external text sources.

There are three main differences between [CDY95] and our work. First, they aim to minimize

the number of external calls, rather than providing a mechanism to launch the calls concurrently.

Nevertheless, some of techniques they propose are complementary to our framework and could be

incorporated. Second, they assume thatexternal textsources return search results as unordered sets,

which enables optimizations thatare notalways possible when integrating SQL with(ranked) Web

search results. Third, some of their optimizations are geared towards external text searches that

return small (or empty) results, which we believe will be less common in WSQ given the breadth of

the World-Wide Web. [DM97] discusses approaches for coupling a search engine with SQL, again

without focusing on the World-Wide Web. A query rewrite scheme is proposed for automatically

translating queries that call a search engine via a user-defined predicate into more efficient queries

that integrate a search engine as a virtual table. While we also use a virtual table abstraction for

search engines, [DM97] does not address the issue of high-latency external sources, which forms

the core of much of this chapter.

The integrationof external relations into acost-basedoptimizerfor LDL is discussedin [CGK89].

The related, more general problemof creating and optimizing query plans overexternal sources with

limited access patterns and varying query processing capabilities has been considered in work on

data integration, e.g., [HKWY97, LRO96, Mor88, RSU95, YLGMU99]. In contrast, we focus on

a specific scenario of one type of external source (a Web search engine) with known query capa-

bilities. [BT98] addresses the situation where an external source may be unavailable at a particular

time: a query over multiple external sources is rewritten into a sequence of incremental queries over

subsets of sources, such that the query results can be combined over time to form the final result.

Although the asynchronous iteration technique we introduce shares the general spiritof computing

portions of a query and filling in remaining values later, our technique operates at a much finer

(tuple-level) granularity, it does not involve query rewriting, and the goal is to enable concurrent

processing of external requests rather than handling unavailable sources.

Work in [UFA98] suggests a technique for improving response time of queries over high latency

sources. In their approach, a query plan may be rescheduled or modified dynamically in response

to delayed tuple arrival. In contrast, our asynchronous iteration technique optimistically assumes

CHAPTER7. WSQ/DSQ: COMBINED QUERYINGOFDATABASES AND THE WEB 135

that external sources continually and immediately return tuples. These returned tuples, though po-

tentially incomplete, allow the query processor to continue working withoutdynamic rescheduling.

The statically placed ReqSync operators ensure thatthe final values returned by the external sources

are handled correctly by the query processor.

As we saw in Section 7.3, we rely ondependent joins to supply bindings to our virtual tables

when we integrate Web searches into a SQL query. Hence, previous work on optimizing and effi-

ciently executing queries involving dependent joins is highly applicable. A general-purpose query

optimization algorithm in the presence of dependent joins is provided in [FLMS99]. A caching

technique that can be applied to improve the implementation of dependent joins is discussed in

[HN96].

Muchof the research discussedin this section is eitherpreliminaryorcomplementary to WSQ/DSQ.

To the best of our knowledge, no previous work has taken our approach of enabling a non-parallel

database engine to supportmany concurrentcalls to external sources during the executionof asingle

query.

Chapter 8

Conclusions and Future Work

This thesis covers several contributions toward the challenging goal of unifying query functionality

over structured, semistructured, and unstructured data.

We described ourcontributions toLore (Chapter 2), enabling expressive queries over semistruc-

tured data— data that need not adhere to an explicitly declared, static schema. Our focus was on

DataGuides (Chapter 3), which replace traditional schemas in a semistructured environment. A

DataGuide is a dynamically generated and maintained summary of the structure of a semistructured

database. DataGuides enable query formulation and optimization, and they also have been used

both inside and outside of Stanford for other projects related to managing semistructured data.

Next,we focused on enabling interactivequery andsearch sessions. In the contextof asemistruc-

tured database, a user may wish to search, explore, and query a data set iteratively,until the desired

data is reached. We described ourmodel for enabling such interactive sessions in Chapter 4. As part

of this model, basic single-keyword search for semistructured databases was introduced in Chap-

ter 4. In Chapter 5, we described a more general approach to keyword-basedsearch: we introduced

proximity search in databases, building on the traditional information retrieval notion of “ proxim-

ity.” Our work in Chapter 5 applies to semistructured databases as well as to traditional structured

databases.

In Chapter 6, we described how we extended our work on DataGuides and proximity search to

apply to XML, the emerging standard for data interchange on the Web. XML is very similar to the

original data models proposed for semistructured data, including the OEM model on which much

of our work is based. But key differences needed to be addressed. Having the most impact, XML

is inherently an ordered data model, whereas our algorithms for DataGuides and proximity search

assumed unordered data.

136

CHAPTER8. CONCLUSIONS ANDFUTUREWORK 137

Finally, in Chapter 7 we describedWSQ/DSQ, a platform for efficient, tightly-coupled queries

over existing relational database systems and Web search engines. Together, online relational

databases and search engines combine to manage much of the Web's total data. WSQ/DSQ pro-

vides a platform for querying a relational database and searching the Web in a single framework,

and the query processing techniques we introduced can improve overall performance by more than

an order of magnitude over a naive approach.

In Section 8.1, we describe directions for future research related to each of the contributions of

this thesis. Taking a longer-term view, much work remains to be done toward the ultimate goal of

unifying all types of queries over all types of data. Thus, Sections 8.2 and 8.3 conclude this thesis

with a discussion of two broad avenues of research that will move us closer to the vision of one

ultimate data management system for all of the world's online data.

8.1 Future Work Related to Thesis Contributions

In the following five subsections, we describe potential future work corresponding to the topics of

Chapters 3 – 7, respectively.

8.1.1 DataGuides (Chapter 3)

For many semistructured databases, the performance of DataGuide creation with respect to space

and time is easily adequate. However, computing DataGuides for some databases is extremely

expensive,especially for highly cyclic data. A challenging avenue of future work is to formalize the

database characteristics that lead togood (or poor) DataGuide performance. Heuristics thatquickly

identify databases thatmay result in poor DataGuide performance would also be helpful.

While our work on Approximate DataGuides (ADGs) helps offset some of the DataGuide per-

formance pitfalls, there are interesting potential extensions to the ADG work as well. In particular,

among the several techniques we provided for approximation (object matching, suffix matching,

and path-cycle matching), it may be possible to combine these techniques to generate the “ best”

approximation. An interesting avenue of research is to devise strategies thatcan efficiently analyze

a database and selectan approximation thatwill be quick to create and reasonably accurate as well,

perhaps with statistical guarantees on the quality of approximation. Another interesting issue to

pursue is ADG maintenance. While we can use a variation of our incremental DataGuide main-

tenance algorithm (Figure 3.6), there may be opportunities for better performance. For example,

any ADG will remain an ADG after a database deletion (by definition). Another possibility is to

CHAPTER8. CONCLUSIONS ANDFUTUREWORK 138

use invalidation rather than incremental maintenance. An ADG may still be quite useful even if

particular regions aremarked “ invalid” due to updates. These regions could be recomputed in batch

in the background, or perhaps the entire ADG could be regenerated when the percentage of invalid

regions crosses some threshold.

8.1.2 Interactive Query and Search (Chapter 4)

Atthe highestlevel, we see much room for blurring the distinctionbetween formulating and issuing

a query. In our proposed model, we create a new DataGuide over the resultof each query. However,

these steps can be integrated. For example, simply adding a filtering condition to a DataGuide could

trigger a query that automaticallyupdates the DataGuide, perhapseliminating DataGuide paths

that are no longer relevant based on the given condition. To be effective in real-time, such tight

integration requires high-performancecoordinationbetween query processing, DataGuide creation,

and the user interface.

8.1.3 Proximity Search (Chapter 5)

In terms of performance, ourhub-based indexing algorithm is open to further improvements. In

particular, itmay be possible to identify better heuristics for selectinghubs than those presented in

[GSVGM98], especially when we can determine certain properties of the input graph. Abstractly,

we introduced hubs because the space requirements of storing allK-neighborhoods on disk are

enormous; if there were some way to effectively compressK-neighborhood storage on disk, query

times could be improved dramatically. Another challenging direction is support for processing

incremental changes to the underlying data; currently, the entire index mustbe recomputed.

As for functionality, we think it would be very interesting to add support for the Boolean op-

eratorsand, or, andnot to the contextof searching databases. Reconsider the motivating example

from Chapter 5, “Find movieNear Travolta Cage.” Suppose a user really only wants movies near

bothTravolta andCage. Currently, our proximity search treats allNear objects uniformly. Hence,

if there were many “ Travolta” objects but only one “ Cage” object, a proximity query might highly

rank amovie nearall of the “ Travolta” objects,even if itis notnear the “ Cage” object. Implementing

a logicaland requires either more sophisticated scoring functions or schemes for combining results

from multiple proximity searches. Ata higher level, there are significantopportunities for integrat-

ing proximity search with traditional database languages and models, as we discuss in Sections 8.2

and 8.3.

CHAPTER8. CONCLUSIONS ANDFUTUREWORK 139

8.1.4 XML Support in Lore (Chapter 6)

Ourwork onXML has focused on the impactof orderon DataGuides and proximitysearch. Another

interesting avenue for future research is the impactof DocumentType Definitions (DTDs).

We can build an Approximate DataGuide from a DTD (as described in Section 6.5), but itmay

also be interesting to combine DataGuides with DTDs: it is easy to envisiona scenario where DTDs

are available for specific portions of an XML database, but the overall database is still semistruc-

tured. We can build a DataGuide over the portions not governed by DTDs, with appropriate links

to DTDs where appropriate. It is a challenge to coordinate these two structures to provide a unified

view to users and applications, especially in the face ofupdates to the underlying XML data.

For proximity search, a DTD could be a useful tool for pruning the search space. For example,

if we know that tags specified in a proximity search are restricted from ever appearing near each

other, we can reduce the work required to perform the search.

Atthe highestlevel, a DTD may be sufficient to enable effective modeling and storage of XML

in a traditional relational or object-oriented database system. As we discuss briefly in Section 8.3,

an important long-term goal is to manage data effectively based on its inherent structure— not the

particular encoding used to express it.

8.1.5 WSQ/DSQ (Chapter 7)

Asynchronous iteration was introduced as a technique to enable efficient WSQ queries, but it is a

promising approach formanyscenarios involvingqueries over external sources, notjustWeb search

engines. For example, our WSQ approach could be used to compare prices of items stored in a local

database at many different online vendors, obtaining concurrency across many different Web sites

insetad of across many differentcalls to the same Web site.

Optimizing asynchronous query plans is a very challenging problem, and it requires a cost

model that accounts not only for total work, but for response time as well. Further, modeling the

latency and performance of external sources is inherently difficult. It would also be worthwhile to

compare the performance of asynchronous iteration against a traditional parallel query processor.

Alternatively, asynchronous iteration could be integrated into more radical approaches to query

processing such aseddies [AH00], which continuously adapt and optimize query processing at

runtime based on the delays of external sources.

Of course, given the title of our work, an obvious unexplored direction is to focus on DSQ,

CHAPTER8. CONCLUSIONS ANDFUTUREWORK 140

Database-Supported (Web) Queries. Keyword-based search still dominates searching on the In-

ternet, and we feel there aremany opportunities to enhance this experience by leveraging known

relationships within a traditional database system. A software module built on top of WSQ could

translate a user's keywordsearch into one or more WSQ queries and then rank the query results for

presentation back to the user.

8.2 Language Integration

We have performed some initial steps towardunifying query functionalityacross relational databases,

semistructured data, XML, and search engines, buttoday each type of systemhas its own language.

SQL and Lorel are similar in spirit, butLorel is mostclosely related to OQL[Cat94]— which is fast

becoming obsolete. We mustacknowledge thatSQL is probably here to stay, and the bestapproach

may be to integrate the most important features of Lorel into SQL. In the world of search engines,

there is no standard query language; at best, there is the general acceptance that a keyword-based

“ query” is a boolean expression of keywords, using operators such asand, or, andnot. (And as

our work suggests, thenear operator may well have a differentmeaning depending on whether the

underlying data is a setof documents or an interconnected database.) An open question is whether

we can integrate keyword-based search into SQL as well. Alternatively, perhaps SQL itself should

be integrated or embedded within a larger, more comprehensive query language.

8.3 Model Integration

Relational data is set-oriented, based on relations containing sets of tuples. Semistructured data

proposes an unordered, directed graph as its data model. XML data can be viewed as an ordered

directed graph. To search engines, data is essentially a flat collection of documents. An ambitious

goal is to provide a universal data model and storage management system thatcan supportall such

types of data yetnotsacrifice any performance or expressive power provided by the native systems.

The graph-based models of semistructured data may be universal enough to handle translation from

other models, butthe performanceissue has notbeen addressed to significantdepth. In other words,

we cannotexpect the world to translate their relational databases to XML (or OEM) if performance

drops significantly. If we can export a universal data model yet still take advantage of specific

structures and patterns of different data sets for higher performance, we may be able to slowly

migrate the world toward a single view of data.

CHAPTER8. CONCLUSIONS ANDFUTUREWORK 141

A strong benefitof the relational model is that the resultof a query is itself a relation, which can

be queried further. Work on Lore and other semistructured data management systems has enforced

this idea as well, assuring thatit is easy to query the resultof an OEM or XML query. However, this

approach becomes complicated in the world of keyword-basedor other “ fuzzy” searches: rankings

and scores are an extremely important aspect of any such query result, and the system usually

cannotmake a simple binary decision of whether data is “ in” or “ out” of the result. There has been

strikingly little work in unifying the worlds of set-based results with ranked and/or scored results

(see [Fag96] for one important paper on this topic). However, we see this topic as being a critical

component of merging traditional database queries with keyword-based search in an interactive,

online setting.

Bibliography

[ABea98] Editors: V. Apparao, S. Byrne, and M. Champion et al. Document object model

(DOM) level 1 specification, October 1998. W3C Recommendation available at

http://www.w3.org/TR/REC-DOM-Level-1.

[Abi97] S. Abiteboul. Querying semistructured data. InProceedings of the International

Conference on Database Theory, pages 1– 18, Delphi, Greece, January 1997.

[ABS99] S. Abiteboul, P.Buneman, and D. Suciu.Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, San Francisco, California,

1999.

[AH00] R. Avnurand J. Hellerstein. Eddies: Continuously adaptive query processing. In

Proceedings of the ACM SIGMOD International Conference on Management of

Data, pages 261– 272, Dallas, Texas, May 2000.

[AK97] N. Ashish and C.A. Knoblock. Wrapper generation for semi-structured internet

sources.SIGMOD Record, 26(4):8– 15, 1997.

[AQM�97] S. Abiteboul,D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query lan-

guage forsemistructureddata.International Journal on Digital Libraries, 1(1):68–

88, April 1997.

[BCSYDN�99] L. Bouganim, T. Chan-Sine-Ying, T. Dang-Ngoc, J. Darroux, G. Gardarin, and

F. Shea. MIROWeb: Integrating multiple data sources through semistructureddata

types. InProceedings of the Twenth-Fifth International Conference on Very Large

Data Basees, pages 750– 753, Edinburgh, Scotland, September 1999.

142

BIBLIOGRAPHY 143

[BDFS97] P.Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to un-

structured data. InProceedings of the International Conference on Database The-

ory, Delphi, Greece, January 1997.

[BDHS96] P.Buneman, S. Davidson, G.Hillebrand, and D. Suciu. A query language and

optimization techniques for unstructured data. InProceedings of the ACM SIG-

MOD International Conference on Management of Data, pages 505– 516, Mon-

treal, Canada, June 1996.

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors.Building an Object-Oriented

Database System: The Story of O �. Morgan Kaufmann, San Francisco, California,

1992.

[BGMZ97] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the

Web. InProceedings of the Sixth International World Wide Web Conference, pages

391– 404, April 1997.

[BK89] E. Bertino and W. Kim. Indexing techniques for queries on nested objects.IEEE

Transactions on Knowledge and Data Engineering, 1(2):196– 214, 1989.

[BT98] P. Bonnet and A. Tomasic. Partial answers for unavailable data sources. InPro-

ceedings of the Third International Conference on Flexible Query Answering Sys-

tems (FQAS), pages 43– 54, Roskilde, Denmark, May1998.

[Bun97] P. Buneman. Semistructured data. InProceedings of the Sixteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 117–

121, Tucson, Arizona, May 1997. Tutorial.

[Cat94] R.G.G. Cattell.The Object Database Standard: ODMG-93. Morgan Kaufmann,

San Francisco, California, 1994.

[CCY94] S. Chawathe, M. Chen, and P. Yu. On index selection schemes for nested object

hierarchies. InProceedings of the Twentieth International Conference on Very

Large Data Bases, pages 331– 341, Santiago, Chile, September 1994.

[CDSS98] S. Cluet, C. Delobel, J. Sim´eon, and K. Smaga. Your mediators need data conver-

sion! InProceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, pages 177– 188, Seattle, Washington, June 1998.

BIBLIOGRAPHY 144

[CDY95] S. Chaudhuri, U. Dayal, and T. Yan. Join queries with external text sources: Exe-

cution and optimization techniques. InProceedings of the ACMSIGMOD Interna-

tional Conference on Managementof Data, pages 410– 422, San Jose, California,

1995.

[CGK89] D. Chimenti, R. Gamboa, and R. Krishnamurthy. Towards an open architecture

for LDL. In Proceedings of the Fifteenth International Conference on Very Large

Data Bases, pages 195– 203, Amsterdam, The Netherlands, August1989.

[CHMW96] M. Carey, L. Haas, V. Maganty, and J. Williams. Pesto: An integrated

query/browser for object databases. InProceedings of the Twenty-Second Inter-

national Conference on Very Large Data Bases, pages 203– 214, Bombay, India,

August1996.

[Com79] D. Comer. The ubiquitous B-tree.Computing Surveys, 11(2):121– 137, 1979.

[DFF�99a] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language

for XML. In Proceedings of the Eighth International World Wide Web Conference

(WWW8), Toronto, Canada, 1999.

[DFF�99b] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A

query language for XML. InProceedings of the Eight International World-Wide

Web Conference, Toronto, Canada, May 1999.

[DGS�90] D.J. DeWitt, S. Ghandeharizadeh, D.A. Schneider, A. Bricker, H.I. Hsiao, and

R. Rasmussen. TheGamma database machine project. IEEE Transactions on

Knowledge and Data Engineering, 2(1):44– 62, 1990.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs.Numerische

Mathematik, 1:269– 271, 1959.

[DM97] S. Deß loch and N. Mattos. Integrating SQL databases with content-specific search

engines. InProceedings of the Twenty-Third Internatial Conference on Very Large

Databases, pages 276– 285, Athens, Greece, August1997.

[DR94] Shaul Dar and Raghu Ramakrishnan. A performance study of transitiveclosure

algorithms. InProceedings of SIGMOD, pages 454– 465, May 1994.

BIBLIOGRAPHY 145

[EXC] eXcelon data server. http://www.odi.com/products/excelon/excelondataserver.

html.

[Fag96] R. Fagin. Combining fuzzy information from multiplesystems. InProceed-

ings of the Fifteenth ACM SIGACT-SIGMOD-SIGARTSymposium on Principles

of Database Systems, pages 216– 226, Montreal, Canada, June 1996. Tutorial.

[FFK�99] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat

with Strudel: Experiences with a web-site management system. InProceedings

of the ACM SIGMOD International Conference on Management of Data, pages

414– 425, Seattle, Washington, June 1999.

[FFLS97] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a Web-

site managementsystem.SIGMOD Record, 26(3):4– 11, September 1997.

[FLMS99] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query optimization in the pres-

ence of limitedaccess patterns. InProceedings of the ACMSIGMODInternational

Conference on Managementof Data, pages 311– 322, Philadelphia, Pennsylvania,

June 1999.

[Flo62] R. W. Floyd. Algorithm 97 (SHORTEST PATH).Communications of the ACM,

5(6):345, 1962.

[FLS98] D. Florescu, A. Levy, and D. Suciu. Query optimization algorithm for semistruc-

tured data. Technical report, AT&TLaboratories, June 1998.

[GMUW00] H. Garcia-Molina, J.D. Ullman, and J. Widom.Database SystemImplementation.

Prentice Hall, Upper Saddle River, New Jersey, 2000.

[GMW99] R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML:

Migrating the Lore data model and query language. InProceedings of the 2nd

International Workshop on the Web and Databases (WebDB '99), pages 25– 30,

Philadelphia, Pennsylvania, June 1999.

[Goo61] I. J.Good. A causal calculus.BritishJournal of the Philosophyof Science, 11:305–

318, 1961.

BIBLIOGRAPHY 146

[Gra90] G. Graefe. Encapsulation of parallelism in the Volcano query processing system.

In Proceedings of the ACM SIGMOD International Conference on Managementof

Data, pages 102– 111, Atlantic City, New Jersey, May 1990.

[Gra93] G. Graefe. Query evaluation techniques for large databases.ACM Computing

Surveys, 25(2):73– 170, 1993.

[GSVGM98] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina.

Proximity search in databases. InProceedings of the Twenty-Fourth International

Conference on VeryLarge Data Bases, pages 26– 37, New York,New York,August

1998.

[Gus97] D. Gusfield.Algorithms on Strings, Trees, and Sequences. Cambridge University

Press,Cambridge, England,1997.

[GW97] R. Goldman and J. Widom. DataGuides: Enabling query formulation and opti-

mization in semistructured databases. InProceedings of the Twenty-Third Inter-

national Conference on Very Large Data Bases, pages 436– 445, Athens, Greece,

August1997.

[GW98] R. Goldman and J. Widom. Interactive query and search in semistructured

databases. InProceedings of the International Workshop on the Web and

Databases (WebDB '98), Valencia, Spain, March 1998.

[GW99] R. Goldman and J. Widom. Approximate DataGuides. InProceedings of the

Workshop on Query Processing for Semistructured Data and Non-Standard Data

Formats, Jerusalem, Israel, January 1999.

[GW00] R. Goldman and J. Widom. WSQ/DSQ: A practical approach for combined query-

ing of databases and the Web. InProceedings of the ACM SIGMOD International

Conference on Managementof Data, pages 285– 296, Dallas, Texas, May 2000.

[HGMC�97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting

semistructured information from the Web. InProceedings of the Workshop on

Managementof Semistructured Data, pages 10– 17, Tucson, Arizona, May 1997.

BIBLIOGRAPHY 147

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing queries across

diverse data sources. InProceedings of the Twenty-Third Internatial Conference

on Very Large Databases, pages 276– 285, Athens, Greece, August1997.

[HN96] J.M. Hellerstein and J.F. Naughton. Query execution techniques for caching ex-

pensive methods. InProceedings of the ACM SIGMOD International Conference

on Managementof Data, pages 423– 434, Montreal, Canada, June 1996.

[Hop71] John Hopcroft. An n log n algorithm for minimizing the states in a finite automa-

ton. InThe Theory of Machines and Computations, pages 189– 196, New York,

NY, 1971.

[HU79] J. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley,Reading, Massachusetts, 1979.

[IBM] IBM DB2 Universal Database SQL Reference Version 6.

ftp://ftp.software.ibm.com/ps/products/db2/info/vr6/pdf/letter/db2s0e60.pdf.

[KM92] A. Kemper and G. Moerkotte. Access support relations: An indexing method for

objectbasees.Information Systems, 17(2):117– 145, 1992.

[KR88] B. Kernighanand D. Ritchie.The C Programming Language. Prentice Hall,Upper

Saddle River, New Jersey, 1988.

[LR88] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform

multicommodity flow problems with applications to approximationalgorithms. In

29th Annual Symposium on Foundations of Computer Science, pages 422– 431,

White Plains, New York, 1988.

[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information

sources using source descriptions. InProceedings of the Twenty-Second Inter-

national Conference on Very Large Databases, pages 251– 262, Bombay, India,

September 1996.

[LS00] H. Liefke and D. Suciu. XMILL: An efficient compressor for XML data. In

Proceedings of the ACM SIGMOD International Conference on Management of

Data, pages 153– 164, Dallas, Texas, May 2000.

BIBLIOGRAPHY 148

[MAG�97] J. McHugh, S. Abiteboul,R. Goldman, D. Quass, and J. Widom. Lore: A database

management system for semistructured data.SIGMOD Record, 26(3):54– 66,

September 1997.

[Mor88] K.A. Morris. An algorithm for ordering subgoals in NAIL! InProceedings of the

Seventh ACM SIGACT-SIGMOD-SIGARTSymposium on Principles of Database

Systems, pages 82– 88, Austin, Texas, 1988.

[MS99] T. Milo and D. Suciu. Index structures for path expressions. InProceedings of the

International Conference on Database Theory, pages 277– 295, January 1999.

[MW93] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems.

Technical report, Department of Computer Science, University of Arizona, Octo-

ber 1993. Available atURL ftp://ftp.cs.arizona.edu/glimpse/glimpse.ps.Z.

[MW99a] J. McHugh and J. Widom. Compile-time path expansion in Lore. InProceedings

of the Workshop on Query Processing for Semistructured Data and Non-Standard

Data Formats, Jerusalem, Isreal, January 1999.

[MW99b] J. McHugh and J. Widom. Optimizing branching path expressions, June 1999.

Available at ftp://db.stanford.edu/pub/papers/mp.ps.

[MW99c] J. McHugh and J. Widom. Query optimization for XML. InProceedings of the

Twenty-Fifth International Conference on Very Large Data Bases, pages 315– 326,

Edinburgh, Scotland, September 1999.

[MWA �98] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman. Indexing

semistructured data. Technical report, Stanford UniversityDatabase Group, 1998.

Available at ftp://db.stanford.edu/pub/papers/semiindexing98.ps.

[NAM98] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistruc-

tured data. InProceedings of the ACM SIGMOD International Conference on

Managementof Data, Seattle, Washington, June 1998.

[NDea00] J. Naughton, D. DeWitt, and D. Maier et al. The niagra internet query

system. Technical report, University of Wisconsin, 2000. Available at

http://www.cs.wisc.edu/niagara/papers/NIAGRAVLDB00.v4.pdf.

BIBLIOGRAPHY 149

[NUWC97] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative objects: Con-

cise representations of semistructured, hierarchical data. InProceedings of the

Thirteenth International Conference on Data Engineering, Birmingham, England,

April 1997.

[Ora99] Oracle. Oracle interMedia text management. http://www.oracle.com/

database/documents/intermediatextmgmtds.pdf, March1999. White paper.

[PAGM96] Y. Papakonstantinou,S. Abiteboul, and H. Garcia-Molina. Object fusion in medi-

ator systems. InProceedings of the Twenty-Second International Conference on

Very Large Data Bases, Bombay, India, 1996.

[PDZ99] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable web

server. InProceedings of the USENIX1999 Annual Technical Conference, Mon-

terey, CA, June 1999.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H.Garcia-Molina, and J. Ullman. A query trans-

lation scheme for rapid implementation of wrappers. InProceedings of the Fourth

International Conference on Deductive and Object-Oriented Databases, pages

161– 186, Singapore, December 1995.

[PGMU96] Y. Papakonstantinou, H.Garcia-Molina, and J. Ullman. Medmaker: A media-

tion system based on declarative specifications. InProceedings of the Internation

Conference of Data Engineering, (ICDE '96), pages 132– 141, 1996.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across

heterogeneous information sources. InProceedings of the Eleventh International

Conference on Data Engineering, pages 251– 260, Taipei, Taiwan, March 1995.

[RLS98] J. Robie, J. Lapp, and D. Schach. XML query language (XQL). InProceedings

of QL'98 – The Query Languages Workshop, Boston, Massachusetts, December

1998. Papers available online athttp://www.w3.org/TandS/QL/QL98/.

[RP98] B. Reinwaldand H. Pirahesh. SQL open heterogenous dataaccess. InProceedings

of the ACM SIGMOD International Conference on Management of Data, pages

506– 507, Seattle, Washington, June 1998.

BIBLIOGRAPHY 150

[RS97] M.T. Roth and P.M. Schwarz. Don't scrap it, wrap it! A wrapper architecture for

legacy data sources. InProceedings of the Twenty-Third Internatial Conference on

Very Large Databases, pages 266– 275, Athens, Greece, August1997.

[RSU95] A. Rajaraman, Y. Sagiv, and J.D.Ullman. Answering queries using templates

with binding patterns. InProceedings of the Fourteenth ACM SIGACT-SIGMOD-

SIGARTSymposiumon Principles of Database Systems, pages 105– 112,San Jose,

California, May 1995.

[Sal89] Gerard Salton.Automatic Text Processing: The transformation, analysis, and re-

trieval of information by computer. Addison-Wesley, 1989.

[SBH98] M. Stonebraker, P. Brown, and M. Herbach. Interoperability, distributed appli-

cations and distributed databases: The virtual table interface.Data Engineering

Bulletin, 21(3):25– 33, 1998.

[SQL] What's New in SQL Server 2000. http://http://www.microsoft.com/sql/product-

info/sql2kover.htm.

[STH�99] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.

Relational databases for queryingXML documents: Limitationsand opportunities.

In Proceedings of the Twenty-Fifth International Conference on Very Large Data

Bases, pages 302– 314, Edinburgh, Scotland, September 1999.

[UFA98] T. Urhan, M. Franklin, and L. Amsaleg. Cost-based query scrambling for initial

delays. InProceedings of the ACM SIGMOD International Conference on Man-

agementof Data, pages 130– 141, Seattle, Washington, June 1998.

[Uni98] United States Bureau of the Census. State population estimates and demo-

graphic components of population change: July 1, 1997 to July 1, 1998.

http://www.census.gov/population/estimates/state/st-98-1.txt,December 1998.

[UW97] J.D. Ullman and J. Widom.A First Course in Database Systems. Prentice Hall,

Upper Saddle River, New Jersey, 1997.

[Wag73] R. Wagner. Indexing designconsiderations.IBMSystems Journal, 12(4):351– 367,

1973.

BIBLIOGRAPHY 151

[XML98] Extensiblemarkup language (XML) 1.0, February1998. W3C Recommendation

available athttp://www.w3.org/TR/1998/REC-xml-19980210.

[YLGMU99] R. Yerneni, C. Li, H.Garcia-Molina, and J. Ullman. Optimizing large join queries

in mediationsystems. InProceedings of the International Conference on Database

Theory (ICDT), pages 348– 364, Jerusalem, Israel, January 1999.

[Zlo77] M. Zloof. Query by example.IBM Systems Journal, 16(4):324– 343, 1977.

