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Abstr act

The amount of information available dime is proliferaiing at a temendous rate. Atone extreme,
traditional database systems are managing large amounts of structurednaestitood data that
can be queried viadeclarative languages such as SQL. Atthe other extithimes wf unstructured
Web pages are being collected and indexed by search engines for keyword-based search. Recently,
XML— the eXtensible Markup Language— has emerged as a simple, practical way 1o model and
exchange semistructured data across the Internet, withoutthe rigid constraints of tradiional database
systems.

This thesis describes work towards unifying and integrating query techniques for traditional
databases, search engines, and XML. Frst, we describe our contributions to tHeBM& for
managing semistructured data, focusing on ways o enhance system usability for effective querying
and searching. Next, we discuss algorithms and indexing techniques that enable effective keyword-
based search over tradiional and semistructured databases. We then describe how we have migrated
and enhanced our research on semistructured data to support the subtie but important nuances of
XML. Finally, we describe a new platform that enables efftient combined querying over structured
tradiional databases and existing Web search engines.
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Chapter 1

| ntr oduction

With the advent of the World-Wide Web we have seen enormous growth in the amountofanfo
tion available on-line. From daublished directly from tradiional, well-structured databases, to
the huge number of unstructured hand-writen HTML pages, to the increasing amsarittiic-
tured data [Abi97], the Web brings itall together into one gamnklgamation of information.

We can classify online data along a spectrum of how much structure exists in (or is imposed on)
the data. Atone extreme, traditional relafional, object-oriented, and object-relational databases store
large amounts of rigidly structured, typed data. Query languages such as SQL and OQL [Cat94]
exploitthe rigid structure imposed on the data to enable expressivarateelquees. Atthe other
extreme, many HTML pages exhibit litiesdermible structure, since they are manually-created
documents. In general, itis extremely diffcult if not impossible to capture the data relationships
within unstructured HTML documents through a traditional database system. Instead, from the feld
of information retrieval (IR), effective tecblogies are available tupportkgyword-based searches
over documentdata. Such searches are inherently less precise than SQL queries; as a consequence,
results are often ranked, requiring interaction from a user t focus in on relevantdata. Surprisingly,
despite their similar goals, there has been very litle research overlap between the felds of IR and
databases.

To help bridge these two extremes, research and industyfbemsed recenty on semistruc-
tureddate— datathatdoes exhibitsome structure butis either too irregular or changes too often to be
constrained by the table schemas andbr object classes required by trddBM®Bs. Semistruc-
tured data models, query languages, and database systems have converged around a graph-based
data representation that combines data and structure into one simplenmdala{Abi97]. XML
[XML98], which has emerged as a new standard for information interchange across the Web, can
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Fgure 1.1: Query Functionality Matrix

be seen as one such semistructured data model. Amanyg other interestingesearch topics,
an important issue is how o query and search a semistructured database effectively. Intuitively,
expressive queries, keyword searches, or some combination of the two could be applied.

1.1 Matrix of Data Repr esentationsand Query Techniques

Let us view this spectrum of data representations and query techniques as a matiix, shown in FHg-
ure 1.1. Along one dimension, we have structured, semistructured, and unstuctured data. Along the
other we have expressive declaraive queries and simpleddd searches. Two entiies in our ma-
trix are already accounted for: structured databases have long supporessaxpgueries (Entry
1), and unstructured data has traditonally been searched using keyword-based IR techniques (Entry
6). As the Web continues to unify all types of data in one medium, itwill be increasingly important
for users to be able to query all data seamlessly with the same techniques. In this thesis, we describe
work that flls in remaining matrix entries and helps tie them together as well.

Before exploring our contibutions in detail, letus consider each of the six entries in our matrix
with respectto a given scenario: querying or searching a collection of data about movies, including
actors, producers, writers, efc.
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1.1.1 Traditional Databases

Entry 1 represents traditional database functionality. We can imagine thatthe movie data is stored in
arelational database, with tables for movies, actors, producers, writers and so on, along with addi-
tional tables (or foreign-key relationships) for relating these elements. Tradiional query languages
such as SQL enable expressive queries over this data. As one example, itis a simple mater
write a query o “ Find all movies made since 1980 that have grossed more than $100,000 million.”
Note thatan object-oriented database system also corresponds to this matrix entry, where instead of
tables we would have classes, and we would use a language such as OQL instead of SQL. Despite
many proven advantages of datalbsgstems, radiion&BMSs have some deiigncies. Frst, we

must be quite certain ahead of ime of exacty what kind of data we wish to store. Data must be
entered carefully, conforming to the specift structure laid outahead of ime. If we decide overtime

to store additional (or different) data in the database, radiional DBMSs are notamenable to rapidly
evolving database stucture. Similarly, data demonstmaisngy irregulariies can also cause prob-

lems for tradional database systems; e.g., for relational systems, NULLSs can proliferate and cause
counterintuitive results. Fnally, as powerful as SQL is, itis notan easy language for casual users.
While interactive forms can make it easy for users to complete predefned pdmedetpreries,

SQL has no inherent supportfoilopessing keyword searches over an entire database. Yetthe Web
has shown that keyword expressions are an importanttool for interactive query sessions.

112 Traditional IR Systemsand Search Engines

At the opposite comer of the matrix, Entry 6 represents tradiionairiadion retievakystems

and search engines: keyword search expressions over a collection of documents. In our movie
scenario, we could imagine a hand-writen (or machine generated) document repository with one
document per movie, along with perhapsasaie documents for the more famous actors, directors,

and producers. This environment places few restictons on the designers of the data collection:
since all information is simply in documentformesigners are free to add (or omit) any imfation

for any flm or flm industry worker. Bsigners have complete flexibility to setor change tnedib

of each documentas well. In IR systems, searches are based on the presence (or lack of presence) of
keywords. As a simple example, a user could quickly find all documents containing thé Stting

Wars” . Results are often ranked based on the system's determination of relevance. For example, a
document containing “ Star Wars” many times might be ranked ahead of a document containing it
only once. As a more complicated example, we could perfdBookean search © see if Harrison
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Ford and Carrie Fsher starrasbether in any movies besides the Star Wars series. The search
would be expressed dsHarrison Ford” and “ Carrie Fisher’ and NOT“ StarWars” and NOT*“ Empire
Strikes Back” and NOT* Return of the Jedi” .

11.3 Expressive QueriesOver Unstructured Data

Considering matrix Entry 5, we note thatin general itis inherently diffcultor impossiblgfuost
expressive queries over unstructured data sources. As explained in Section 1.1.2, in a collecton
of unstructured documents about movies, there are no restictions on structure, and the document
designer has no tols for explicily designating the semantics of the documents textual content
Our example query in Section 1.1.1 to fhd the high-grossing movies of the 80s and 90s would be
impossible to execute directly over the documents (without making assumptions about document
structure), since itrequires some semantic understanding of the numbers and textappearing in each
document

When structural patierns do existin documentappers can be used over the unstructured
data to expose the documents as richer structures [AK97, CDSS98, HGME97, PGGMU95, RS97].
This approach is inherently britle since itmust be based on assumptions about the composition of
documents that may have been generated without any guaranteed constraints. Further, it may be
diffcult to mold a large collection of (potentially varied) documents into the rigid data models of
traditonal DBMSs.

1.1.4 Semistructured Data

As aresultof the inherent problems discussed in Section 1.1.3, over the lastfew years research and
industry have desoped semistructured data models, languages, and systems. XML is a prime
example of a semistructured data model. XML supports eargigical model that allows data

and structure o be mixed in one simple format, without iyed rconstraints of a relatonal or
object-oriented schema. While HTML ustags o specify presentation, XML uses tags to indicate
meaning. In our movie scenario, document designers could explicily assign structural tags to the
different document elements to enable expressive queries. For example, the year in which a movie
was created could be bracketedhy EAR> and</XEAR> tags. Similarly, we could designate

the gross revenue for each movie within a documentalong with basic information such as the movie
tite. Ata high level, semistuctured data adds enough structure o enable expressive queries, while
still avoiding the rigidity of tradiionaDBMSs.
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To enable users to manage and query semistructured data, we have boiktiatabase man-
agement system [MAG97]. The primary query interface to Lorelisrel, an OQL-like language
for issuing dedrative queries over a semistructured database [AQM 97]. In our matrix, Lore
addresses Entry 3. There anany interestingasearch issues associated with managing and query-
ing semistructured data. One issue we will focus on in particular is how we handle the fact that
semistructured databases do notinclude an explicit, predetermined schema. Without somae info
tion aboutthe tags in a database and their nesting pattern, itmay be diffcultto formulate meaningful
queries.

115 Keyword Search Over Semistructured And Structur ed Databases

Keyword-based search is very useful for unstructured documents, and often is the only way to query
such data. Keyword search also can be very useful over more structured data, since itis inherenty
simple for users to master and often is suffcientfor the task athand. However, some IR concepts and
algorithms must be reconsidered in a database setting. In parficokarity search benefts from
a new approach in a database setting. Traditionally, proximity search in IR systems is implemented
using the “ near” operator. If we search our document collectioni fxrrison Ford” near “ Carrie
Fisher’ , we are looking for documents where those two names appear “ close” 1o each other, where
closeness is measured by textual proximity. In this sense, proximity search is a relatively simple,
“ intra-object’ operation: we measure proximity along a single dimension (text) in each document
Now, suppose that we have fully migrated our movie document collecton to XML. Each movie
might begin with acMOVIE > tag, followed by nested tags for that movie's actors, producers, efc.
Inthis setiing, we wantto accountfor“ structural proximity” in the database, while textual proximity
may notbe relevant For example, if Harrison Ford @adie Fsher both star in the samewisg
then they will both be subelements of a speeiflOVIE > element In the textual representation,
however, there may be many other actoxsdally in between these actors. Similarly, we may find
that the last actor listed for some movie X is textually close to the fist actor listed for an adjacent
movie Y— butthis doesn'tmean thatthe two actors are related in any way. Thus, we need to extend
the notion of proximity search t handle the structure inherentin a semistuctured database. This
work flls in Entry 4 in our matrix.

As we will see in Chapter 5, algorithms and techniques for performing proximity search over
a graph-structured (semistructured) database are applicable to a traditional relaional or object-
oriented database as well. We can (logically) ranslate a relational database into a graph based
on the schema and on primandayn key relationships. (Details are given in Chapter 5.) We can
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then use our proximity search techniques to measure the distance between database elements based
on the graph representation. Viewing an object-oriented database as a graph is of course even sim-
pler. By combining proximity search with traditional indexing techniques for identifying tables or
atribute values that contain given keywords, we can provide keyword-based search (and browsing)
for tradional databases. Thus, our work on proximity search applies to matrix Entry 2 as well.

116 Combining Database Queriesand Keywor d Sear ch

Beyond flling out the different matrix entries, integrating query and search over the Web requires
strong interoperation between different types of systems. One case we focus on is the integration
of Enties 1 and 6. Traditional database systems for structured data are very different from (and
incompatible with) IR-based Web search engines thatindex millions of unstructured (and unrelated)
HTML documents for keyword-based searches. Yettherenarg/ cases where it makes sense to
query both kinds of systems at once. In our movie scenario, we may want to leverage the vast
amount of information in Web pages topport expessive queries over a local structured database

like the one described in Section 1.1.1. For example, we might want to rank all Star Wars actors
by how often their names appear on the Web. We could use the structured database to accurately
determine all of the Star Wars actors, and then we combine this data with results from a set of
Web searches to compute our fnal result Such functionality requires tight coupling between very
different systems, and optimal execution requires that we take advantage of the fact that existing
Web search engines are designed to hamadigy searches concurrently.

1.2 Resear ch Contributionsand ThesisOutline

121 Lore

In Chapter 2, we introduckeore [MAG T97], a database management system developeahhy
people from scratch at Stanford speciftally tpgort semistructured data. i@nally, Lore was
designed solely toupporta data model Bad OEM, for Object Exchange Model. In OEM, structure

and data are combined into a simple, graph-based objectmodel. Atomic datais stored in leaf objects,
and relationships are indicated via textually labeled directed edges between objectsmahe pri
query interface to Lore is Lorel [AQMT97], a declarative query language based on OQL [Cat94].
Chapter 2 serves as a basis for later chapters and is primarily a summary of work done by the many
contributors to the Lore projectsince 1995. The work in this thesis related to Lore focumerlyri
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on research issues related to a user's perspective of the system.

1.2.2 DataGuides

In radiional database management systems, the schema defhing the structure of the data is fiked.
For a given relational database, a fked set of tables and their atributes guide all query construc-
tion. Similarly, declared classes guide quetries in objectori@®}dSs. Butin a semistructured
database, the schema is not declared ahead of time. Rather, structure and data are mixed into one
simple data format. Further, the structure may be irregular and may change ofggrafichnty

over time. Withoutthe guidance provided by a separate schema, a user may notbe able to construct
meaningful queries, and a query may become less useful if the structure of the data changes. To ad-
dress these issues, in Chapter 3 we describe a novel database feature dadiedbtide [ GWI7].

A DataGuide is a concise, accurate structunadreary of a semistructured database. The DataGuide

is generated dynamically from the database, and is modifed dynamically as the database structure
evolves. In many ways, the DataGuide serves the role of “ schema” in a semistuctured database:
itis a valuable tool for guiding query formulation, and it can be used for query optimization as
well. The DataGuide also can be used within a graphical user-interface for interactive specifca-
tion of Lorel queries. Note that the DataGuide never resticts the data— it always conforms to the
structure in the database. Our discussion in Chapter 3 includeal fDataGuide defihitions and

gives algorithms for DataGuide construction and maintenance.narioe results for DataGuide
construction are given. We also show how the DataGuide can be used as an index to improve query
processing perfnance.

For cerain databases, DataGuide construction can be prohibitively expensive. In these situ-
ations, we may want o relax our defnition of a DataGuide for beter performance. Hence, in
Chapter 3 we also descrilfprox mate DataGuides, which can be smaller and require shorter
construction times than exact DataGuides. Despite the relaxed defnition, we show that approxi-
mate DataGuides are still usefulrimanyscenarios.

123 Interactive Queriesand Keywor d Sear ch for Semistr uctur ed Data

DataGuides make it easier for a user to explore structure and pose queries over a semistructured
database. Users familiar with searching and exploring the Web are comfortable with an iterative
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process of searching, querying, and exploring. In Chapter 4, meafiae an approach and intro-

duce associated techniques that enable a user to query and search a semistructured database itera-
tively, each ime focusing in towards data of interest In this chapter we explain how the system
supports keword-based searches, and we also discuss how to build DataGuides dynamically, in
order to summarize query results and enable formulation of further refningsuer

124 Proximity Search

As described earlier, the IR notion of proximity search should take on a different meaning when
applied o a database with some structure. While traditional proximity search is a relatively simple
operation performed along a single dimension (textf), applying proximity search to databases is a
more diffcult problem. In a semistructured database, for example, data is decomposeahinto

small nested data objects or elements. We can view such a database as a graph of data elements, with
edges representing relationships between these elements. We can weight these edges as well, ac-
cordingto the “ strength” of the semantic relationships— where a smallerweighton an edge indicates
a stronger bond between the two elements itconnects. In this setting, we can measure proximity as
the shortest graph distance between data. Similarly, we can view any relational or object-oriented
database as a graph of interrelated data elements as well. In a relatonal system, these elements
might be attribute values, tuples, or tables, related by containment omhgryfdeign key con-

straints. In Chapter 5 we discuss proximity search in databases in detail. We devatopwdik,

algorithms, and a new indexing technique togrts poximity search over any semistructured

or structured database. We then demonstrate how we have integrated proximity search into Lore to
supportinteresting interactive searches over dadaba

125 XML

XML is emerging as a new standard for data interchange across the Internet XML is a text-oriented
language that implies a data model very similar to the semistructured data models proposed by
researchers, including the OEM model we use in Lore. However, there are differences between
XML and OEM, many of which come from XML's heritage as a documentlanguage rather than a
data model. For example, representing graph structure today in XML is hardly elegant. Perhaps
the most striking difference is thatan XML documenthas an inherentordering among its elements.

In contrast, OEM and most other semistructured data models assume that subobjects are always
unordered. Thatis, an object can have a set of subobjects, nota list In Chapter 6 we discuss the
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migration of the Lore system to an XML-based data model, focusing particularly on the impact of
an ordered data model on DataGuides and proximity search.

126 WSQDSQ

Finally, in Chapter 7 we describe our work on integrating keyword-based search with structured
database queries. We call this work WSQDSQ, pronounced “ wisk-disk.” WSQDSQ stands for
Web-Supported (Database) QesDatabasepported (Web) Quars. From the WSQ angle, we

use the results of Web searches to enhance and augment queries over tradiional databases. From
the DSQ angle, we can use known data relationships in a tradiional database to help guide users as
they search, and explain search results in terms of welerstood data. Ofwcus in this thesis is

on WSQ. We show how we can model any Web search engine thvotigeh tables—  tables that

“ look” like normal tables to a query @cessor butwhose tuples are actually dynamically computed
rather than physically stored in the database. Through this abstraction, reading tuples from our vir-
tual ables corresponds 1o issuing Web searches. Further, we can use selection and join conditions
on ourvirtual tables o parameterize the searches. This approach provides a powerful mechanism for
integrating Web search results with queries over a relational DBMS. Unfortunately, the latency for
each call to a Web search engine is extremely high. A tadiional database query processor will sit
idle during each call, resuliing in extremely inefftientWSQ queries. Since existing Web search en-
gines can processany concurrentrequests effectively, the traditional approach is not nghay

use of available resources. Hence, we intoduce a new query processing techniquasgalled
chronous iteration that allows a conventional query processor to igsaey concurrent searches

with low overhead. This technique is a general one, applicableatty information integration
scenarios.

1.3 Reated Wor k

In this section we discuss some work thatis broadly related to the main contiibutons of this thesis.
Specift, more detailed discussions of related work are provided in each chapter.

Overviews of tradifonal database systems and query languages can be fowamy isources
(e.g., [UWI7], [GMUWOQ]), while [Sal89] provides a thorough overview of the feld of infor-
mation retrieval, the technologgany modem Web-based search engines are baseamiBr
search in IR systems is discussed in [Sal89], and to our knowledge we were the fist to introduce
IR-style proximity search into databases.
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The feld of semistructured data has seen a flurry of innovationover the lastfew years. Semistruc-
tured data models and query languages are discussed in [Ai897, PGMW95]. Databassys-
tems for managing semistructured data are described in [MAG 97, FFLS97].XML [XML98] has
emerged as a standard format for interchanging semistructured data, and much igirtabrer
search on semistructured data has migrated to support XML [DFFF99a, GMW99]. In general, our
work on DataGuides is complementary to the basic data models, query languages, and systems that
have been designed for semistructured data; DataGuides are general enough to apply to any graph-
based data model with unconstrained schema. DataGuides were inspired by initial work at Stanford
on representative objects [NUWC97]. Using DataGuides as an interactive query ool is related to
the seminal work on Query By Example [ZIo77]. DataGuides have since been cited as springboards
for improved path indexing [MS99] and XML compression [LS00].

Our work on integraing Web search engines with tradifional database systems is related in
overall motivation o a large body of work on information integration, including the creaton and
optimization of query plans over external sources with varying query processing capabilites, e.g.,
[HKWY97, LRO96, Mor88, RSU95, YLGMU99]. Our speciftc work of integrating document
repositories with a structured database is superfcially related to work in [CDY95] and [DM97],
though as we discuss in Chapter 7, our work turns outto be quite differentsince itis focused specif-
ically on using existing Web search engines.



Chapter 2

TheLoreDBMSfor Semistr uctur ed
Data and XM L

This chapter provides an overview bére, a database management system designed specifcally
for managingsenistructured data, such as data encoded in XML. Lore was built from scratch at
Stanford University over the past fie years, and it is a complete prototype muli-user database
system. As a research platform, Lore has enabled much of our specift work on DataGuides and
proximity search. This chapter serves to provide a seting for this work—  describing the Lore data
model, theLorel query language, and the overall system architecture.

Lore was conceived to address several drawbacks of traditional relational or object-oriented
database systems. These systems require all data to adhere o an explicitly specifed, rigid schema.
In some scenarios, this constraint may be too restrictive: data for a desired application may be
iregular and thus not conform to a rigid schema. Further, itmay be difftultto decide in advance
on a single, correct schema. The structure of the data may evolve rapidly, data elements may
change types, or data notconforming to the previous structure may be added. In traditional database
systems, modifying the schema may have huge implications— often requiring data to be migrated
wholly to the new structure, and requiring application code to be rewriten. We call data with
imegular or fastchanging structseristructureddata—  see [Abi97] for further discussion.

The semistructured data managed by Lore is not constrained by a schema, and the data may be
imegular orincomplete. In general, Lore attempts to take advantage of structure where itexists, but
Lore also handles irregular data as gracefully as possible.

Lore was designed to store and query data natively according to a simple objectmodel called the
ObjectExchange Model (OEM), inroduced originally in thésinmisprojectat Stanford [PGMW95].

11
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In 1998, asXML (the eXtensible Mar kup Language) emerged, we noticed an obvious similarly be-
tween XML's nested, tagged structure and OEM. In Chapter 6, we will discuss how we migrated
Lore to support XML; untl that chapter, all of ouisgussions are in terms of OEM, a some-
what simpler model. Regardless, there is a straightforward two-way conversion between OEM and
XML— hence, all of our contributions to improve the management of OEM data are applicable to
the management of XML as well.

Lorel, for Lore language, is the declarative query language thabesided for Lore. Lorel is
as an extension ddQL, the Object Query Language [Cat94, BDK92]. Lorel augments OQL with
extensive type coercion and powerful path expressions for effectively querying semistructured data.
OEM and Lorel are reviewed briefly in this chapter; for details see [AQM+97].

Building a database system that accommodates semistructured data has required us to rethink
nearly every aspect of database management While the overall architecture of the system is rela-
tively tradiional, a number of components are particularly interesting and unique.

Frst, query processing introduces a number of challenges. One obvious difftulty is the absence
of aschemato guide the query processor. In addition, Lorel includes a powerful form of navigation
based on path expressions, which requires the use of automata and graph traversal techniques inside
the database engine. The indexing of semistuctured data and its use in query optiimization is an
interesting issue, particularly in the contextof the automatic type coercion provided by Lorel. While
some of our DataGuide will work touch on query processing and optimization, these topics are
covered in more detail in [MW99c, MW99b, MW99a, MWA *98].

With respectto Lore, the focus of the work in this thesis has been on several fronts:

e DataGuides replace traditional database schemas in Lore. A DataGuide enables users
browse the structure of a Lore database, it can be very helpful for formulaing meaningful
gueries, and itis used for several internal features of the database system. DataGuides are
described in detail in Chapter 3.

¢ e have integrated our work gnox ity search in databases into Lore, supporting effective
keyword-based search of Lore databases. We describe our model for sessions of interactive
gueries and keyword-based searches in Chapter 4. Proximity search is described in detail in
Chapter 5.

e e designed an Application Pnagnming Interface (API) that makes it easy for afignt
program to connectto and interact with a Lore database.
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Fgure 2.1: A sample OEM database

To showcase these features, we also developed a Web-based user interface to the Lore systemvia
our API. For several years, this interface has enabled online users to search, query and browse Lore
databases interactively. Screenshots from our user interface appear in the chapters on DataGuides
and proximity search.

In the rest of this chapter, we summarize the Lore data model, the Lorel query language, and
Lore's overall architecture. We end the chapter with a discussion of work related to Lore.

2.1 Object Exchange Model (OEM)

Inits original design, Lore managed only OEM data. OEM is a very simple data model. In essence,
an OEM database can be thought of as a directed, labeled graph. In OEM, each object contains
an objectidentfer (oid) and a value. A value may be atomic or complex. Atomic values may be
integers, reals, stings, images, pargs, or any other data consideredviiglble. A complex OEM

value is a collection of 0 or more OEM subobjects, each linked to the parentvia a descriptive textual
label. Note that a single OEM objectmay have multiple parent objects and cycles are allowed. For
more details on OEM and its motivation see [AQM+97, PGMW95].

Fgure 2.1 presents a very small sample OEM database, representing a portion of an imaginary
eating-guide database. Each object has an integer oid. Our database contains one complex root
objectwith three subobjects: WRe staurants and oneBar. EachRe staurantis a complex object
The Bar is atomic, containing the string valueRose & Crown” . EachRestaurant has an atomic
Name . TheChilis restauranthas atomic data describinglitene number and one availalimtre e .

We can see thatthe database structure is irregular, since restadsantwith two Entre e s, doesn't
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include any phone number informaton. Fnally, we see that OEM databases need not be tree-
structured— Smith is theOwner of one restaurant andanager of the other.

In many ways, OEM is a “ common denominaior’ among dataetgdince almost any data
model can be encoded in a graph-based representation. For example, mappings from other data
models into a graph-based model are used to show the wide applicability of our work in proximity
search (Chapter 5). Chapter 6 describes the differences between OEM and its more popular relative,
XML.

2.2 Lorel QueryL anguage

Lorel is the declarative language used to querygputdte Lore databas. Lorel is based on OQL,

with extensions for rich path expressions, and for extensive coercion— both between atomic types
and between singletons and sets. We present several demonstrative examples of Lorel. As an
extremely simple one:

SelectDB.RestaurantEntree

retums in Fgure 2.1 all entrees served by any restaurant, the set of disiet®, 11}. (Lorel
assumes that every database has one or more incoming labels that we refer to throughoutthe thesis
asentry points; in this case we assuniiB is an entry pointto objedt)

As another simple example, we may requestthe names of all restaurants that serve burgers:

SelectDB.RestaurantName
Where DB.RestaurantEntree =" Burger”

In our example database, the answer o this quef\pis Notice that the above queries do not
haveFrom clauses— in these cases, we assume thatall paths are examined fBvethisy point
Further, common prefkes repeated in the query (©B.Restaurant) are required to match to
identical paths during query processing. Alternatively, we could rewrite the above query as:

SelectR.Name
From DB.RestaurantR
Where R.Entree =" Burger”

In this case, th€rom clause iterates over @iB.Re staurantobjects, assigning eachroin tun for
use by thevhere andSelectclauses.
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To help deal with the semistructured nature of the data, Lorel suppevitdtards” within
gueries that match to labels during query processing. For example, the following query fnds all
Restaurantobjects that have an atomic subobjectthatcontains “ Smith” (independentof the incom-
ing label).

SelectDB.RestaurantName
Where DB.Restaurant% grep “ Smith”

In our example databasfs, 9} is the resultto this query.
To further assistin querying semistructured data, Lauppsrts regular expssion operators
within path expressions:

SelectDB.Restaurant(.%)*(Manager| Owner)

In this query, we are looking foManager or Owner objects reachable along any path of O or more
labels following anyDB.Re staurant. If we replace the with a+in the above query, we require at
leastone label to be traversed betweerRibs taurantand theManage r or Owner objects. In Lorel,
(.%)* can be abbreviated syntatically using the special sybol

Lorelis arich language, including an expression calculator, subqueries, existential and universal
quantfcation, aggregation, and updates. We have given only a few very simple examples here t©
setthe stage for our reported results. See [AQW97] for a full presentation of Lorel.

2.3 System Ar chitecture

The basic architecture of the Lore system is depicted in Hgure 2.2.

Access to Lore is through a variety of applications or directly viathe Lore Application Program
Interface (APl) mentioned earlier.

The Query Compilation layer consists of the parser, preprocessor, query plan generator, and
guery optimizer. The parser accepts a textual representation of a query, transforms itinto a parse
tree, and then passes the parse tree to the preprocessor. The preprocessor handlegtiaidansfo
of the Lorel query into an OQL-like query. A logical query plan is generated from the transformed
guery and then passed to the query optimizer. The query optimizer uses statistics about the database
and knowledge aboutwhat types of indexes are available © select an efftient physical plan for the
guery. The physical plan is then sentto the Data Engine layer.

The Data Engine layer houses the OEM object manager, physical query operators, tools for
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Fgure 2.2: Lore architecture

Y

concurrency control and recovery, and various utiliies such as a statistics manager for query opt-
mization and an external data manager for integration of external semistructured data. The query
operators execute the generated query plans. The object manager functions as the translation layer
between OEM and the low-level fle constructs. upgorts basic primitives such as fetching an
object, comparing two objects, performing simple coercion, and iterating over the subobjects of a
complex object In addiion, some peritance features, such as a cache of frequeatgssed
objects, are implemented in this component.

The index manager creates and maintains several differentkinds of Lore indexes, including the
indexes for keyword and proximity search. The DataGuide manager is responsible for building and
maintaining DataGuides and is discussed in detail in Chapter 3.

Lore is a product of many months of work by many people. Within the context of Figure 2.2,
our specift contibutions have been related to DataGuides, the HTMLOava user interface, the Lore
AP, and specialized indexes for keyword-based search.
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24 Reated Wor k

The Lore projectstarted as a componentwithin Stanfagdisris project[PGMW95, PGGMU95,
PAGM96, PGMU96], which studied the integration of heterogeneous data sources. Originally, Lore
was intended to be used as a cache of OEM data during query processing in Tsimmis. Lore quickly
evolvedinto its own research projectas we became more interestedriartpdacets of managing
semistructured data.

There have been several other research projects studying the management of semistructured
database. Atthe University of Pennsylvania, researchers propb¥gld[BDHS96], a power-
ful query language for semistructured data, based on a data model similar to OEM. While no
prototype system using UnQL has been made available, the language has infuenced the design
of Lorel over ime. At AT&T, researchers have develo@didel, a system designed to sim-
plify Web-site management and Web-page generation that includes iSro@h query language
[FFLS97, FFK 99, FLS98]. Some of the Strudel team later contributed to the query language and
data model foldML-QL [DFF *99b], perhaps the fist work on semistructured data done entirely
in the context of XML. As XML has gathered more and more attention worldwide, several com-
mercial products have become available for managing XML data. These products are described in
Chapter 6, which discusses Lore's migratioruppmort XML.



Chapter 3

DataGuides

In a traditional relational or object-oriented database management system, the dadallyg &z p-

arated from the sgzifcation of itsschens, or structure. For example, in a relational database about
movies, the database schema would specify several tables (e.g., Movies, Actors, Directors, Wit
ers) and their atributes (e.g., the atributes of the Actors table mightinclude Name, Birthdate, and
Birthplace). The database schema must be specifed completely before any data can be loaded into
the system. A schema serves two important purposes:

¢ A schema, in the form of either tables and their atiributes (for relaional systems) or class hi-
erarchies (for gject-oriented systems), enables users 0 enforceraterstand the structure
of the database, and to form meaningful queries over it

e The DBMS query prcessor relies on the schema to devise efftient plans for computing query
results.

Without a schema, both of these tasks become signifcanty harder. Although it may be possible
to browse a small database manually, in general forming a meaningful query is diffcult without a
schema or some kind of structural summary ofuhdelying database. Further, a lack of imfiaa-
tion about the structure of a database can cause a query processor 1o resortto exhaustive searches.
As introduced in Chapter 2, semistructured data does not have an explicity declared schema.
To address the challenges faced by users and systems when a schema is not present, we intro-
duceDataGuides: dynamically generated and maintained structural summaries of semistructured
databases. Our work is castin the contextof the Lore system (Chapter 2). However, our contribu-
tions are applicable to any graph-based model for semistructured data, including XML.
This chapter makes several contributons:

18
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We give a formal defnition of DataGuides as cis@, accurate, and convenientsnaries
of semistructured databases. Further, we motivate and deding DataGuides, which are
well-suited for implementation and exploitation withiD8MS for semistructured data.

e e provide algorithms to build strong DataGuides and keep them consistentwhaddine
lying database changes.

¢ e show how to store sample values and other statistical information in a DataGuide.

e We demonstrate how DataGuides have been integrated successfully into Lore. DataGuides
are vital to Lore's user interface: users depend on the DataGuide to learn about the structure
of a database so they can formulate meaningful queries. In addition, users may specify and
submitqueries directy from the DataGuide.

e We explain how a query processor can use a strong DataGuide to optimize query execution
signifcantly, focusing on using a DataGuide gt index

e Because fully accurate DataGuides can be expensive to compute and store in the worstcase,
we describ&ypprox mate DataGui des, which relax part of the DataGuide defhition. Approx-
imate DataGuides can be signifcantly cheaper to compute and store, yetthey still are useful
in many situatons.

3.1 Chapter Outline

Section 3.2 provides the motivation andrf@al defniion for DataGuides, along with agarithm

for constructing a DataGuide from a database. In Section 3.3 we presentexperimental results show-
ing the ime and space required to build and store typical DataGuides. Section 3.4 presents an in-
cremental algorithm for DataGuide maintenance in response o database modiftations. Section 3.5
describes how DataGuides are used in practice to browse structure and guide query formulation
through a graphical interface to the Lore system. In Section 3.6 we see how a strong DataGuide can
improve query processing in Lore, especially when used as a path index. In Section 3.7 we explain
how we can relax the DataGuide defhition to generate “ approximate” DataGuides thatare still use-
ful in manyscenarios, butare less expensive to compute than fully accurate DataGuides. Finally, we
conclude the chapter with a short discussion of related work and the impact of DataGuides on the
feld of semistructured data. In Chapter 4 we will discuss how we can use DataGuides to enhance
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Fgure 3.1: A sample OEM database (same as Fgure 2.1)

interactive query and search sessions, and in Chapter 6 we will revisit DataGuides in the contextof
XML. Some of the work reported in this chapter was published initiallyin [GW97] and [GW99].

3.2 Foundations

In this section we motivate and defne DataGuides and their properiies, and we provide an algorithm
for building them. We use the OEM data model as described in Chapter 2. DataGuides for XML
are discussed in Chapter 6.

3.21 DataGuides

Consider FHgure 3.1, the sample OEM database we introduced in Chapter 2. Itserves as a basis for
muliiple examples throughoutthis chapter.

We now give several defiitions useful for describing an OEM database and subsequently for
defning DataGuides.

Defnition 3.2.1 (label path) A label path of an OEM objecb is a sequence of one or more dot-
separated labs,! 1.,. - -I,, such thatwe can traverse a patvoédgesd 1 ...e,) from o where
edgee; has label ;. O

In Fgure 3.1,RestaurantName andBar are both label paths of object1. In Lorel (Chapter 2),
queries are based on label paths. For example, in Fgure 3.1, a Lorel query mightrequestthe values
of all Re staurant Entre e objects thatsatisfy a given condition. (Withoutloss of generality, we ignore
for now the fact that Lorel label paths require an incoming label as indicated in Section 2.2.)
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Defnition 3.2.2 (data path) A data path of an OEM object denoted by oidis a dot-segprated
alternating sequence of labels and oids of the fbrmy.oq.05.09.- - -.1,,.0,, Such that we can traverse
from o a path ofn edgesq i ...¢,) throughn objects ¢ ;. ..x,) where edge: ; has label ; and
objectr ; has oidb ;. O

In Figure 3.1 Restaurant2.Name.5 andBar.4 are data paths of object1.

Defnition 3.2.3 (instance) A data pati is aninstance of a label pati if the sequence of labels in
dis equaltd. O

Again in Figure 3.1Restaurant2.Name.5 is an instance oRestaurantName andBar.4 is an in-
stance oBar.

Defnition 3.2.4 (tar get set) In an OEM object, atarget setof a label patt is a set of oids such
thatt ={o | [ 1.01.2.02.--1,.0 IS a data path instance 6f. Thatis, a target sétis the set of all
objects thatcan be reached by traversing a given label pbth We writet = T s(0). We say that
reaches any element of, and likewise each elementbfs reachable vial. O

For example, the target set BE staurantEntree in FHgure 3.1 is{6, 10, 1%. Note that two dif-
ferent label paths may share the same target set{8efor instance, is the target set of both
RestaurantOwner andRe staurantManager.

We are now ready to defne a DataGuide, intended to dmhe@se, accurate, andcorvenient
summary of the structure of a database. Hereafterefes 1 a database that wensmarize as the
source database, or simply thesource. We assume a given source database is identifed by its root
object. To achieveonciseness, we specify that a DataGuide encodes every unique label path of a
source exactly once, regardless of the number of imes itappears in thatsource. Tacnsaog,
we specify that a DataGuide encodes no label path that does not appear in the source. Fnally, for
convenience, we require that a DataGuide itself be an OEM object so we can store and access it
using the same techniques available for processing OEM database striiaediefhitionfollows.

Defnition 3.25 (DataGuide) A DataGuide for an OEM source objestis an OEM object such
that every label path of has exactly one data path instancd jand every label path af is a label
path ofs. O

Figure 3.2 shows a DataGuide for the source OEM database shown in Fgure 3.1. Using a
DataGuide, we can check whether a given label path of lengtists in the original database by
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Figure 3.2: A DataGuide for FHgure 3.1

considering at most objects in the DataGuide. For example, in Figure 3.2 we need only examine
the outgoing edges of objects 12 and 13 to verify that the RatitaurantOwner exists in the
database. Similarly, if we traverse the single instance of a label pathe DataGuide and reach
some objecd, then the labels on the outgoing edges»aepresent all possible labels that could
ever follow !/ in the source database. In Fgure 3.2, the fire different labeled outgoing edges of
object 13 represent all possible labels that ever folkRwgtaurant in the source. Notice that the
DataGuide contains no atomic values. Since a DataGuide is intended to reflect the stucture of a
database, atomic values are unneagssater wewill see how special atomic values, when added

to DataGuides, can play an important role in query formulation and optimization. Note that every
targetsetin a DataGuide is a singleton set. Recalling Defnition 3.2.4, a target setdenotes all objects
reachable by a given label path. Since any label path in a DataGuide has justone data path instance,
the target set contains only one object— the last objectin that data path.

A considerable theoretical foundation behind DataGuides can be found in [NUWC97], which
proved that creating a DataGuide over a source database is equivalentto conversion of a nondeter-
ministic fhite automaton (NFA) to a deterministic fhite automaton (DFA), a well-studied problem
[HU79]. When the source database is a tree, this conversion takes linear ime. However, in the
worst case, conversion of a graph-structured database may require ime (and space) exponental in
the number of objects and edges in the source. Despite these worst-case possibiliies, experimen-
tal results reported in Section 3.3 are encouraging, indicating that for typical OEM databases, the
running time is very reasonable, and the resulting DataGuidesigandcantly smaller than their
sources. Unfortunately, we know of no work thatworks t identfy quickly those NFAs that may or
may notrequire exponential ime or space to be converted to equivalentDFAS.
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Fgure 3.3: A source and two DataGuides

3.2.2 Existenceof Multiple DataGuides

From automata theory, we know that a single NFA may have many equivalentBIER&]. Sim-

ilarly, as shown in FHgure 3.3, one OEM source database may have multiple DataGuides. Fg-
ures 3.3(b) and (c) are both DataGuides of the source in FHgure 3.3(a). Each label path in the source
appears exactly once in each DataGuide, and neither DataGuide introduces any label paths that do
notexistin the source. Fgure 3.3(c) is in fathinmal: the smallest possible DataGuide, in terms

of total number of nodes. (Well-known state minimization algorithms can be used to convert any
DataGuide into a minimal one [Hop71].) Given the existence of multiple DataGuides for a source,
itis important o decide what kind of DataGuide should be built and maintained in a semistruc-
tured database system. Intuitively, a minimal DataGuide might seem desirable (as suggested by
[NUWC97]), furthering our goal of having as concise ansuary as pssible. Yet, as we now
explain, a minimal DataGuide is not always best Hrst, incremental maintenance of a minimal
DataGuide can be very diffcult In Figure 3.3(@ppose we add a new child objectto 10, viathe
label E. To correctly reflect this source insertion in Figure 3.3(b), we simply add a new objectvia
label E to object17. Butto refect the same insertion in the minimal DataGuide in Figure 3.3(c),
we must do more work in order to somehow generate the same DataGuide as our upsiatad ver

of Fgure 3.3(b), since it now is the minimal DataGuide for the source. In general, maintaining a
minimal DataGuide in response to a source update may require much afjinalatatabase to be
reexamined. The nextsubsection describes a second signifcant problem with minimal DataGuides.
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3.2.3 Annotations

Beyond using a DataGuide to summarize the structure of a source, weighelp keep additional
information in a DataGuide. For example, consider a source with a label. pdih aid query
formulation, we might want to present to a user sample database values that are reacliable via
(Such a feature is very useful in OEM, since there are no constaints on the typenatr ¢b
atomic data.) As another example, we may wish to provide the user or the query processor with the
statistical odds than an object reachablel ias any outgoing edges with a specift label. Finally,

for query processing, directaccess through the DataGuide to all objects reachallanvie very
useful, as will be seen in Section 3.6. The following defnion covers all of these examples.

Defnition 3.2.6 (annotation) In a source database given a label path, a property of the set of
objects that comprise the target set dtfi s is said to be aannotation of /. Thatis, an annotaion
of alabel path is a statement aboutthe set of objects in the database reachable by that path.

A DataGuide guarantees that each source label/paaches exacty one objectin the
DataGuide. Objeat seems like an ideal place o store annotationg,femce we can access all
annotations of simply by traversing the DataGuide's single data path instante _bffortunately,
nothing in our defnition of a DataGuide prevents multiple label paths from reaching the same ob-
jectin a DataGuide, even if the label paths have different target sets in the source. Refering to
Fgure 3.3(c), we see thatlabel pat€ andB.C both reach the same object Thus, if we store an
annotation on object 20, we cannotknow if the annotation applies o label patabel patB.C,
or both. In the DataGuide in Fgure 3.3(b), however, we have two distinctobjects for the two label
paths, so we can correctly separate the annotations. Next, wdifemDataGuide céracteristics
that enable unambiguous annotation storage.

324 Strong DataGuides

We defne a class of DataGuides that supports annotatiorseshd in the previous subsection.
Intuitively, we are interested in DataGuides where each set of label paths that share the same (sin-
gleton) target setin the DataGuide is exactly the set of label paths that share the same target setin
the source. Formally:

Defnition 3.2.7 (strong DataGuide) Consider OEM objects andd, whered is a DataGuide for a
sources. Given a label pathof s, letT” (/) be the targetsetdfin s, and letl’” 4(/) be the (singleton)
targetsetof ind. LetL ,()={m | T s(m)=T s()}. Thatis,L () is the setof all label paths in
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s that share the same target set.aSimilarly, letL. () ={m | T 4(m) =T 4()}. Thatis,L 4()is
the setof all label paths i that share the same target seitds, for all label pathd of s, L s() =
Ly(), thend is astrong DataGuide fors. O

For example, Fgure 3.3(c) is not a strong DataGuide for Fgure 3.3(a). The source target set
T,(B.C)is {6, 7}, and the DataGuide target §ét 4(B.C) is {20}. In the sourcel ,(B.C)is {B.C},
since no other source label paths have the same target set In the DataGuide, however,(B.C)
is {B.C, AC}. SinceL 4(B.C) # L 4(B.C), the DataGuide is not strong. Fgure 3.3(b) is a strong
DataGuide. Next, we prove thata strong DataGuide is sufftientfor storage of annotations.

Theorem 3.2.1 Supposed is a strong DataGuide for a source s. If an annotation p of sorre label
path [ is stored on the objecto reachable via [ in d, then p describes the target setin s of each label
path that reaches o. O

Proof: Suppose otherwise. Then there exists some labehpdtat reaches, such thap incor-

rectly describes the targetsetofin s. Thereforel' () # T's(m), since we know by Defhition 3.2.6
thatp is a valid property of" (/). We reuse the notation from the defnition of a strong DataGuide:

let L 4(!) denote the set of label paths in d whose target sEtis 4((), and letL (/) denote the set of
label paths in s whose target s€fis (/). By construction 4(/) contains boti andim. By defnition

of a strong DataGuidd; 4() =L ,((). Thereforel andm are both elements df (/). Butthis means
that7 ,(m), the target set ofn in s, is equal ©I' ,(/), a contadicton ' () # T's(m), derived
above. O

We also prove thata strong DataGuide induces a straightforward one-to-one correspondence be-
tween source targetsets and DataGuide objects. This property is useful for incremental maintenance
(Section 3.4) and query processing (Section 3.6).

Theorem 3.2.2 SQuppose d is a srong DataGuide for a source s. Given any target sett of s, ¢ is
by definition the target set of sore label path /. Corrpute T’ a(l), hetargetsetof [ ind, whichhasa
singleelement o. Let F' describe this procedure, which takes a source target set as inputand yields

a DataGuide object as output. In a strong DataGuide, F' induces a one-to-one cor respondence
between source target sets and DataGui de obj ects. O

Proof: We show thaf’ is (1) a function, (2) one-to-one, and (3) onto. (1) To sHows a functon
we prove that for any wo source target se@du, if ¢ =« then F(t) =F(u). ¢ is the target set
of some label path, andw is the target set of some label path) sot =T s()andu =T s(m). If
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M akeDataGuide: algorithm to build a strong DataGuide over a source database
Input: o, the oid of the rootof a source database
Effect: dg is setto be the rootof a strong DataGuidedor

targetHash =global empty hash table, to map source target sets to DataGuide objects
dg =global oid

MakeDataGuide(0)
dg =NewObject()
targetHash.Insef}, dg)
RecursiveMak€(0}, dg)

}

RecursiveMake(tl, d¥)
p =setof<label, oid>children pairs of each objectin tl
foreach (unique label | in d)
2 =setof oids paired with | in p
d2 =targetHash.Lookup(t2)
if (d2 !=nil) {
add an edge from d1 to d2 with label |
} else{
d2 =NewObject()
targetHash.Insert(2, d2)
add an edge from d1 to d2 with label |
RecursiveMake(2, d2)

b

Fgure 3.4: Algorithmto create a strong DataGuide

t =u, thenl andm are both elements af  ,(!), the setof label paths inthatsharel” (). Sinced
is strong,L () =L 4(). Thereforem is also an elementaof ;(), T4() =T 4(m), and their single
elements are equal. Hené#t) = F(u). (2) We show thaF’ is one-to-one using the same notation
and a symmetical algument Af(t) = F'(u), by construction we know that a) =T 4(m). I andm
are therefore both elements bf 4([), and by defnition of a strong DataGuide are also elements of
L,(). ThereforeT () =T s(m), i.e.,t =u. (3) FAnally, we see thatthe accuracy constraint of any
DataGuide (Section 3.2.1) giantees thdt' is onto. Any objectini must be reachable by some
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label pat that also exists (and therefore has a targetsef) in O

If a DataGuide is notstrong, itmay be impossible to fhd a one-to-one correspondence between
source target sets and DataGuide objects. For example, Figure 3.3(a) contains seven different target
sets, each corresponding to one of the label pathsC, A.C.D, B, B.C, B.C.D, and the empty path.

Since Hgure 3.3(c) has only 4 objects, we cannot have a one-ib-one correspondence.

3.25 Building a Strong DataGuide

Strong DataGuides are easy to create. In a depth-fist fashion, we examine the source target sets
reachable by all possible label paths. Each ime we encounter a new tatdet setme patti, we

create a new objeatfor ¢ in the DataGuide—  objeatis the single element of the DataGuide target
set of/. Theorem 3.2.2 guarantees that if we everisagain via a different label path, rather

than creating a new DataGuide objectwe instead add an edge to the DataGuide suchithat

also refer tw. A hash table mapping source target sets to DataGuide objects serves this purpose.
The complete algorithm is specifed in FHgure 3.4. Note that we must create and insert DataGuide
objects intoarge tHas h before recursing, in order to preventa cyclic OEM source from causing an
infhite loop. Also, since we compute targetsets to constructthe DataGuide, we can easily augment
the algorithm to store annotations in the DataGuide.

3.3 Experimental Per for mance

As described in Section 3.2.1, computing a DataGuide for a source is equivalentto converting a
nondeterministic fnite automaton into an equivalent deterministic fnite automaton. For a tee-
structured source, this conversion always runs in linear ime, and the size of the DataGuide is
bounded by theize of the source. Yetfor an arbity graph-structured source, creating a DataGuide
may in the worstcase require exponential running ime and could feasibly generate a DataGuide ex-
ponentially larger than the source. Needless to say, we were very concemed about the potential for
exponential behavior, and as far as we know no research has tieth@ife automaton enac-
teristics thatlead to better or worse behavior.

Inthis section, we show that fonany clases of OEM databases, experimental pgvdoce re-
sults are very encouraging. We begin by discussing peéiace on two operational OEM databases
that, although admitiedly are relatively small, require very litle ime for DataGuide creation and
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Database Source Source Unique Height [DataGuide DataGuide DataGuide
objects | links | labels objects links at’ame(secs)

Sports (Tree) 3,095 3,094 41 5 75 74 1.37

DBGroup (Graph) || 947 1,102 32 - 138 168 152

Table 3.1: DataGuide performance for operational Lore databases

yield DataGuides signifcanty smaller than the source. We then describe further experiments con-
ducted on synthetic OEM databases. For a wide rangea@imeters, we fnd that many large
graph-structured databases still yield good parémce. All measurements were takeming the

Lore system (Chapter 2) on a Sun Ultra 2 with 256MB RAM.

331 Operational Databases

We frst consider two medium-sized databases used in Lore. One is a tree, and the other is a graph
with signifcantdata sharing. Our tree-structured database contains a snapshotof data imported from
alarge Web site covering many different sports (wwpresom), with the OEM database following

the structure of the menus and links at the site. While the overall structure is quite regular, data for
each sportdiffers signifcantly. We captured only a small portion of the Web site, building a database
with about 3,000 objects and links, 40 unique labels, and a maximum heightof 5. Building a stong
DataGuide requires 1.37 seconds, and the DataGuide contains 75 objects and 74 links.

Our second operational database containgrimdiion about the Stanford Database Group, de-
scribing the group's members, projects, padicaions. (We will see this database again through-
outthe thesis.) The database uses extensive data-sharing (graph structure). As an example, a single
group member might be reachable as a member of one or more projects and as an author of any
number of publications. The graph also contains numerous cycles; for example, each group mem-
ber reachable by a link from a projectalso has links to all projects he or she works on. The version
of the database used in the experiments in this chapter contains about 950 objects and 1,100 links,
with 32 unique labels. Building a strong DataGuide takes 1.52 seconds; the resulting DataGuide
has 138 objects and 168 links. Penfiance for both databases is sunipegat in Table 3.1.

3.32 Synthetic Databases

To further study performance, we generated numerous large syntheticesiabath trees and
graphs, with and withoutcycles. For tree-structured databases we have the follamsimgtprs.
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Height, or number of levels, in the tree.

For each level in the tree, the number of unique labels on outgoing ddbels per ledl).
The sets of labels corresponding to differentlevels are disjoint

e Maximum number of outgoing edges from any non-|éafi-Out).

e Whether to use maximum fan-out for each objédt)or to simulate irregular structure by
varying randomly the number of outgoing edges of any object from zero to the maximum
fan-out {rregular).

For graph-structured synthetic databases we modify and supplement the above tree parameters as
follows.

e Heightis defhed as the longest path in a breadth-fist raversal from the root of the graph.
Leveln includes all objects whose shortest path from the rootledges.

e Fan-outno longer is suffcient to specify the number of objects at a level, snag edges
of one level may pointto the same object Hence, a remangeter is the maximum number
of objects per level, as an integer to be multiplied by the level number. Until this number is
exceeded, every edge from the previous level points to a different object. When the limitis
reached, all remaining edges are evenly distibuted among existing objects in the level.

¢ Rather than sending all outgoing edges to objects in the nextlevel, any proporiion of outgoing
edges lfackink frequency) may be redirected to objects in previous levels; here we always
redirectedges to objects a fked number of leviadsl{inklevel) above the current level.

The results discussed below are captured in Table 3.2. We begimigaszing the perfor-

mance for two tree-structured databases. A large full tree with only one label per level provides
an extreme example of how a DataGuide can be very small when compared o the source. DB1,
a full ree with a fan-out of 8, height of 5, and one label per level, contains 37,449 objects. The
strong DataGuide contains only 6 objects, and building ittakes 11.3 seconds. As a larger example,
we built DB2, which has an irregular edge distribution with a maximum fan-out of 8, heightof 12,
and 2 labels per level. The tree contains 329,176 objects. Ittakes 127.3 seconds to build a strong
DataGuide with 1,802 objects. Next, we describe several graph-structured databases. We begin with
a regular, cycle-free graph, and then progress to more intricate examples. In DB3, each non-leaf
has 10 outgoing edges, with two labels per level. There are 12 levels of objects, with a maximum of
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DB || Tree | Source | Source |Hgt |Labs Fan- Full Objs Bklink DG DG 0G
No ? Objects | Links per |out |? per |Freq/ Q@bjects Ljnks Time
Lvl Lvl Lvl (secs)

1 Y 37,449 | 37,448 5 1 8 Y — — 6 5 11.3
2 Y | 329,176 329,175 12 2 8 N - - 1,802 1,801 127.4
3 N 37,111 | 311,111 12 2 10 Y 500 - 156 288 123.1
4 N 26,700 | 93,151 | 12 2 10 N 500 - 3,074 | 3,073| 7126
5 N 11,134 | 44,346 5 4 80 N 2000 | 102 198 720 22.6
6 N 4,524 13,151 8 4 10 N 200 100 14,326 (29,101 |78.5
7 N 3,108 6,787 8 4 10 N 200 | 158 8,736 [16,805 |36.2

Table 3.2: DataGuide performance for synthetic databases

500 objectsin level 1, 1,000 in level 2, 1,500 in level 3, and so on. The source database has 37,111
objects and 311,111 links. The DataGuide has 156 objects and 288 links, requiring 123.1 seconds
to create. Next, we introduce irregularity in the number of outgoing edges from each object This
iregular version, DB4, is expectedly smaller, with 26,700 objects and 93,151 links. The irregular-
ity results in more time for DataGuide creation and a larger DataGuide: 712.6 seconds, with 3,074
objects and 3,073 links.

For the remaining databases we introduce backlinks, which clearly can complicate DataGuide
performance. We begin with DB5, which has relatively shalleight (5) butlarge breadth, with 80
outgoing edges per objectand up to 2,000 objects on level 1, 4,000 on level 2, etc. Every tenth edge
is a backlink to an objecttwo levels closer 1o the root The database has 11,134 objects and 44,346
links, and ityields good perfmance: 22.&econds to build the DataGuide, which has 198 objects
and 720 links. In practice, we expecany databases follow this style, generally structured as a
wide butreasonably shallow tree with some cycles and links for data-sharing.

For our nextexamples, we reduce the breadth and signifcantly increase the height, we cutfan-
outto 10, reduce objects per level to at most 200 times the level number, and increase heightto 12.
InDB6, we make every tenth edge a link to another objectatthe same level. While the ime required
to create the DataGuide is still reasonable, we see that the DataGuide has become larger than the
source. Keep in mind that even if larger than the source, the properties of any stong DataGuide
make it useful for schema browsing and query optimization, as we will discuss in Sectons 3.5
and 3.6. In DB7, we have fewer backlinks but allow them to pointto objects three levels closer to
the root Performance is similar, with fast creation time buta DataGuide larger than the source.

While itis impossible to explore all possible graphs, our results categorizarparite for a
signifcant range of databases. Imsuary, we see that as expected, performance for any tree is
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Fgure 3.5: Data structures to support DataGuide maintenance

good. Acyclic graphs with repetitive structure do not cause problems in common situations. For
relatively shallow graphs with a large number of outgoing edges per object, cycles do notpose much
of a problem either. For much deeper graphs, however, cycles can cause DataGuides 0 be larger
than the source. While the examples presented here yield reasonabienaiectn the potential

does certainly exist for very poor penfsance. Many unconstrainedddinks in deep graphs,

for instance, can cause signifcant problems— to the point of exhausting system resources during
DataGuide construction. This problem is discussed in detail in Section 3.7, where we propose
a relaxation of the DataGuide defnition that provides better performancegieldd a structural

summary thatis stll seful inmany situations.

34 Incremental Maintenance

If a DataGuide is to be useful for query formulaion and especially optimization, we must keep it
consistent when the source database changes. In this section we addressipeiateta strong
DataGuide to reflect inserons or deletions of edges in the source. Natpdas to atomic
values do not affect the DataGuide. We modify the DataGuide creation algorithm in Fgure 3.4 for
incremental maintenance. Frst, we listchanges o the algorithm's data structuresmaized

in Hgure 3.5.

e Aswe constructtarget sets in the DataGuide algorithm (in varidbke®lt2, Figure 3.4), we
store them within the database as auxiliary OEM objects.

o e make persistenttterge tHas h table, which maps source targetsets to DataGuide objects.
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e Foreach DataGuide object, we add an edge connecting itto its corresponding target set (guar-
anteed to existby Theorem 3.2.2). The edge has the specialidajpetOf.

o In parallel, we build an additional persistenthash talis ctHas h, 1o map a source object
to all DataGuide objects that correspond to target sets containing

Our algorithmupdates the DataGuide in response to any number of edge inserti@hstonm
on the source. Each edge can be writtem.as, indicating an edge from objeeto object: viathe
labell. We refer tou as the update point, and we are notconcemed with whether the edegergpr
an inseriion or a deletion. (When adding an edgeay or may not already existin the database.)

Note that the algorithm can handle the insertion of a complete subgraph directly, givpteds
pointconnecting the new graph to the existing database.

The fist step of the algorithm is to identify all DataGuide regions that might be affected by
the changes: for eaalipdate point:, we useobjectHash to find every DataGuide object whose
corresponding source target set containsEach such DataGuide objectis a “ sub-DataGuide”
that describes the potential structure of any objectin the corresponding source target set (including
one or more of the update points). The updates may affect each such sub-DataGuide, so we must
reexamine all of them, relying asrge tHas h to avoid excessive recomputation. The algorithm tums
outto be only a slightly modifed version of the DataGuide creation algorithm from FHgure 3.4. In
fact, the newRe cursive Make algorithm can and should be used to build the initial DataGuide
ensure that the data structures are built correctly. The algorithm is presented in Figure 3.6. Lines
that are different from the original RecursiveMake algorithm are numbered and emphasized.

The Handle Update algorithm is very simple, usingbje ctHash to identify all sub-DataGuide
objects that mightneed to pdated. The modifcaions e cursive Make are as follows. Line (1)
checks to make sure that the exact edge we wish to add does notalready exist In truth this check
is only an optimization, since the two lines following the check would simply remove and re-add
thatedge. Line (2) removes old DataGuide edges thatare no longer correct a change in target sets
may cause a DataGuide edge t pointto a new object. Lines (4)- (7) simply mabjsitHas h
and theTarge tOf links when new objects are added to the DataGuide! Line (8) performs the same
function as line (2). To preserve DataGuide accuracy, line (9) removes DataGuide edges with labels
no longer represented in the source due to edge deletion. The edge removal in lines (2), (8), and (9)
may resultin detached subgraphs in the DataGuide. In Lore, garbage collection periodically deletes
any unreachable objects. We must at the same time remove obsolete references from the persistent

! Similar lines also mustbe added o the MakeDataGuide function in Figure 4 © comecty store rootinformaton.
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HandleUpdate: algorithm to build a strong DataGuide over a source database
Input: U, asetof edge updates, each of the farin (and global variables below)
Effect: The global DataGuide dg correctly refectsugtates to the source

targetHash =global persistenthash table, mapping source target sets to DataGuide object
objectHash =global persistent hash table, mapping source objects to DataGuide objects
dg =global oid of the rootof a strong DataGuide

HandleUpdate(U)
foreach (update pointu in )
foreach (DataGuide objectd in objectHasiokup(u)X
RecursiveMake (TargetOf(d), d)
Pl

RecursiveMake(t1, d¥)
p =setof<label, oid>children pairs of each objectin t1
foreach (unique label | in g)
2 =setof oids paired with [ in p
d2 =targetHash.Lookup(i2)

if (d2 !'=nil) {
@ if an edge does notalready existfrom d1 to d2 with lalel |
() if d1 has an outgoing edge with label |, remove it
add an edge from d1 to d2 with label |
®
} else{

d2 =NewObject()
targetHash.Insert(2, d2)
@) foreach (oid o in 2]
®) objectHash.Append(o, d2)
® 3
) TargetOf(d2) =2
® if d1 has an outgoing edge with label |, remove it
add an edge from d1 to d2 with label |
RecursiveMake(2, d2)
¥
¥
(9) remove any outgoing edges of d1 (other than TargetOf) with a label notin p
¥

1°2)

Fgure 3.6: Algorithm taupdate a strong DataGuide incrementally
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Fgure 3.7: Insertion of an edge

hash tables.
Next, we trace wo examples to demonstrate the algorithm.

EXAMPLE 3.4.1 FHgure 3.7 shows one of the tickier cases for inserion. Fgui@3without
the dashed edge between objects 1 and 3, is our original source, and Fgure 3.7(b) is a strong
DataGuide for this source (witargetOf links omitted). Suppose we insert tBeedge. Handle -
Update is called with the argumentL.B.3}, and 1 is the solepdate point DataGuide jeut 8
corresponds to the only target setthat object 1 is a partof. Hence, weecalts ive Make with {1}
as the initial target setand 8 as the inial DataGuide object As in the original algorithm, we ex-
amine the children of all objects in the initial source target set, label by labghdSe we consider
children via labelA fist The target se® is {2, 3}. From our persisteirge tHash, we see that
object9 corresponds to this set Line (1) catches the fact thatan edge from 8 to 9 with tie label
already exists, so no additional work is required for that label. Proceeding to examine children via
labelB, we see thatthe target setis now af03}. Hence we add a new edge from 8 to 9 with the
labelB. Before doing so, we remove the existi®gdge, as specifed by line (2)Re cursive Make.
The detached subgraph is garbage collected, and the fnal resultis the strong DataGuide shown in
Fgure 3.7(c).

Notice that deleting the edge we justinserted would regenerate a DataGuide equivalentto Fg-
ure 3.7(b). After the deletion, the target setaemains{2, 3}, butthe target setd is now {2}.
Hence, theB edge from 8 0 9 is removed, and recursive callRézursive Make generate a new
DataGuide path from the rootf&C.D. O
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Fgure 3.8: Deletion of an edge

EXAMPLE 34.2 We now demonstrate how the algorithm handles deletion in a case where we
must recompute muliiple sub-DataGuides. Fgurda}.8cluding the dashed edge from 6 to

9, is our source. Note that object 6 is in two target sgfs, 6} for A.C, and{6, 7} for B.C.

Fgure 3.8(b) is the original strong DataGuideipose we delete tieedge. Because object6 is

in wo targetsets, we mustreconsider wo sub-DataGuides, objects 14 and 15. Consider 14 frst We
call Recursive Make with target sef5, 6} and object 14 as arguments. The target set for children
via labelD is 8, which already corresponds to object 16, so no change is made. There are no other
children to consider, and line (9) of the algorithm will remove the obs&etdge from object14.
Calling Recursive Make for target sef 6, 7} and object 15, we eliminate the ottieredge in the

same manner, and object17 is garbage collected. The fnal resultis in Figure 3.8(c). O

The work required to maintain the DataGuide depends entirely on the structural impact of the
updates. For example, inseriing a new leaf intee-structured database requires only one target
set b be recomputed (and one new object added to the DataGuide). Atthe other extreme, in a
graph-structured databases extensive sharing may cause many sub-DataGuidesampeted
after an update. Regéegs, keeping accurate target set data prevents any excessive recomputation:
recursion is halted whenever a target set lookufaiige tHas h is successful, indicating that the
sub-DataGuide cormresponding to thattarget setis already correct
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3.5 Using DataGuidesfor Query For mulation

Without some notion of the structure of a database, formulaiing queries can be extremely diffcult
The user is limited to an ad-hoc combination of browsing the entire database, issuing exploratory
gueries, and guesswork. Since DataGuides provide concise, accurate, and up-tordafziag
information about the structure of a database, they are &&fulufor query formulation. In this

section we demonstrate the value of DataGuides in the contextof a Java-based Web user interface
we have created for Lore. From the interface, a user can interactively explore the DataGuide to aid
formulation of Lorel queries. Further, the DataGuide enables end-users to specify a large class of
gueriesina*“ by example” style, withoutany knowledge of the Lorel query language.

In all of our examples we refer o a medium-sized database we have built describing members,
projects, ancpublications of the Stanford Database Group, frst introduced in Section 3.3. The
database mirrors much of the information available on the Database Group Web site, and in fact
contains links to many of our site's homepa, images, anublications. Once a connection to the
database is made, the user is presented with an HTML pagef) a Java DataGuide, as shown in
Fgure 3.9.

The user can explore the DataGuide by clicking onaitews (riagles), which expand or
collapse complex objects within the DataGuide. Immediately, we see how the DataGuide guides the
speciftation of path expressions used in Lorel queries: every valid path expression mustbegin with
the DB Group label, followed byGroup Me mber, Project, or Publicaton. Expanding a DataGuide
complex objectlists all potential subobjectlabels that are found in the database, and we never see
two subobjects with the same label. Therefore, we can determine whether any given label path of
lengthn exists in the database by clicking on at mest DataGuide arrows. In contrast, when
browsing a semistructured database directy, we may have to exammdike-labeled objects
before fnding one with a specift outgoing label.

While the DataGuide is useful for deducing valid path expressions, values in the database atthis
pointremain a mystery. A user interested in locating all group members from Nevada doesn'tknow

if Original Home for someone from Las Vegas would be stored aa$ Vegas, NV’ ,“ Nevada” , or
“ Nevada, USA” . One optionis to use Lorel's pattern matching features [AQN87] to write a query
that attempts to encompass all possiblets, butin many cases a beter approach is to examine
sample values from the database. As described in Section 3.2.3, we can effectively store such
sample values as annotaions in the DataGuide. In Figure 3.9, notice that a diamond accompanies

every label, corresponding to a distinctlabel path from the root. Clicking on the diamond brings up
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Fgure 3.9: A Java DataGuide



CHAPTER 3. DATAGUIDES 38

Eﬁf’ﬁ Path Information M=l E

DB Group.Group Member. Original Home

Sample %alues From a Total of 33 Objects:

Mew Yok, E
Mevada

Bulgana

[ndia [

Select for Queny Result | I_

Conditionz;
Ew » 10 and < 50

Ew grep "USA" or = "United States"

k. Cancel

Fgure 3.10: DataGuide path information

adialog box such as the one shown in Fgure 3.10, which was obtained by clicking on the diamond
nextto theOriginal Home label.

The top portion of the dialog box identifes the path expression and shows two DataGuide an-
notations: the total number of database objects reachable by that path expression, and a list of
sample values. A fked number of values are chosemeagilgifrom the database, although clearly
there is room to be more sophisticated here. Annotations are stored as speaiadigt children of
DataGuide objects that are interpreted by the user interface. They are computed during DataGuide
creation and maintenance by simple extensions to the algorithm in Hgure 3.4.

The other elements in the dialog box allow users to specify queries directly from the DataGuide
without wriing Lorel, in a style reminiscent of Query By Example [ZIo77]. As shown, a user
can click a button to select a path for the query result Further, value-fltering conditions may be
specifed using common comparison and boolean operators, as well as custom operators such as
the UNIX utility gre p and the SQL functiotike . (These comparisons correspond to Lorel “ where”
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Fgure 3.11: A DataGuide query speciftaton

conditions, but users need not be aware of that fact) The on-screen DataQupdetisl to re-

flect any query speciftations, highlighting diamonds for selected path expressions and displaying
fltiering conditions nextto the corresponding label. Fgure 3.11 shows the DataGuide after a user
has specifed to select all students in the group that are originally from Nevada or New York and
have been at Stanford for more than two years. (The like predicate will saisBhang tude nt or

Masters Student) When the user clicks the Go button from Figure 3.11, the Java program generates
a Lorel query equivalentto the DataGuide query speciftcaion, and sends itto Lore to be processed.
Lore returmns query results in HTML, using a hierarchical format thatis easy to browsevayaiaia
like-labeled objects are grouped together, and complex objects are represented as hyperlinks. At
any pointthe user may return to the DataGuide to modify the original query or submita new one.

DataGuide queries can specify any Lorel query with simple path expressions (no path wildcards,
recall Secton2.2)and“ where” clauses thatare conjunctive with respect o unique path expressions.
Also, all value comparisons must be made against constants. It would not be difftult to expand
the expressive power of DataGuide queries; e.g., adding disjunctions across path expressions, path
wildcard speciftations, and variables to enable joins.

On a larger scale, we believe that there is much opportunity for blurring the distinction be-
tween formulating a query and browsing a query result, in the spitit of PESTO [CHMW96]. For
example, suppose that instead of supplying justa few sample values, the dialog box for each path
expression always displayed all values. Then clicking on a diamond answers the simple query o
fnd all values reachable by a given path. Furthermore, by integrating the query processor with our
DataGuide maintenance algorithms, we could quickly respond to a fltering condition specifed in
the DataGuide by updating the DataGuide and its Vaitgeto reflect that condition. For example,
suppose the user specifed the condition in Fgure 3.1Poeition fist, restricting the query © only
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consider students. It may be that the database h&ese arch Intere st data for any such group
members, so that path could be removed temporarily from the DataGuide. More importantly, click-
ing on the diamond next Wriginal Home would now display sample values from the homes of
students only. In the same manner, restictagrs At Stanford would evaluate the entire desired
guery, since clicking on the diamonds for labetslerGroup Me mber would only display data that
matched our query conditions. Atthat point, it may be desirable to revert to the current model of
result browsing, allowing a user to examine one by one the group members that satisfed the query.
As one step in this direction, Chapter 4 describes how we can generate special DataGuides over
guery results to improve interactive query sessions.

The DataGuide-driven user interface described here is accessiblpublitesiathe Lore home
page on the Web, at htip:ivww-db.stanford.edulore.

3.6 DataGuidesas Path I ndexes

In this section we discuss how the inftation maintained by a strong DataGuide can be used o
speed up query processing signifcantly for a broad class of Lorel queries. Essentially, a strong
DataGuide can also serve apath index. While path indexes have been studied for traditional
object-oriented systems, e.g., [BK89, CCY94, KM92], their use in a semistructured environment
had not been addressed prior to our work. In particular, creaiing and maintaining a path index
without a fked schema may be quite diffcult, yetwe can conveniently use strong DataGuides o
address the problem. As shownin Section 3.4 for incremental maintenance, each objectin the strong
DataGuide can have a link 1o its corresponding target setin the source. Hence, in ime proportional
to the length of a label path, we can use the DataGuide to locate all source objects reachable viathat
path, independent of the size of the source. (Of course, 1o examine all of these objects takes time
proportional o the size of the target set) In this analyze a sequence of sample query executions to
show the benefis of having fast access to target sets during query processing.

All of our query processing comparisons are based on the number of objects examined. We use
a very simple cost model that assigns a uniform costto every objectexamination since, in general,
itis diffcult to make guarantees about clustering in a graph-based rikel€DEM; each object
examination may therefore require a random disk access. In Lore, the value of a complex objectis
a sequence oflabel, oid> pairs representing its subobjects [MAG +97], so time spentto examine
only the labels and oids of those subobjects is included in the costof examining the complex object
itself. For some queries, we need to fnd parents of an OEM object. Parent pointers need not be
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stored explicity within the database; Lore, for example, instead uses a hash-based index to map an
objecto and a label 1o all parents that reachvial [MAG +97]. For simplicity, we assume that
examining an objectyields that objects parents at no additional cost

EXAMPLE 3.6.1 We begin by tracing a very simple Lorel query over a sample database, showing
how the DataGuide can reduce dramatically query execatieh Sippose we wish to execute

the following Lorel query (recall Chapter 2) over a database with structure similar o the Stanford
Database Group database described in Section 3.5. Itfi@alb Me mber publications in Troff

format

SelectDB Group.Group_Me mber.Publication. Troff

The result is a set of oids. For this example, let us consider an extreme database that has one
DBGroup objectcontaining 10,000 group membésiong other gects). EactGroupMe mber has

an average of 10PBublications, but only oneTroff subobjectis reachable along the path specifed in

the query. (Assume for now thatthe database contains 100,00mofftpliblications, even though

only one is reachable along the path of interest) Without any a priori knowledge of the structure
of the database, a query processor would be forced to examingeaghMe mber, in tum each
Publicaton of eachGroupMe mber, and fhally return everjroff object of each sucRublicaton.

We see that, in additon to the root and DBGroup object, the query processor must examine
1,000,000 objects. If instead we attemptto begin query processing by using a straightforward index
to identify any objectwith an incomingoff label, we will need to examine 100,000 objects.

Inthis example, the query resultis exactly the objects in the targetBBtabup.GroupMe mber.
Publication.Troff. To fid the target set, we simply traverse the path from the root of the DataGuide,
and we know there is only one such path. Hence, we need examine only six objects to find the result
the DataGuide root, thBBGroup object, theGroupMe mber, the Publication, the Troff object, and
the objectcontaining the path's targetset. (As in Section 3.4, the objectin the DataGuide reachable
by DBGroup.GroupMe mber.Publication. Troffincludes as part of its valueTarge tOf link to a special
objectwhose children are all objects in the path's target set)

Note thatwhen traversing the DataGuide, we may fhd thata path does not exist. For this query
and many others, such a fhding guarantees that the query resultis empty. This type of optimization
works with any DataGuide (notnecessarily a stong one) and was in fact suggested by [NUWC97].

0

EXAMPLE 3.6.2 We now show a somewhat more interesting query. Suppose we wish to fid the
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publicaion years of some of the group's olgeilicaions:

SelectDB Group.Group_Me mber.Publication.Year
Where DB_Group.Group_Me mber.Publicaton.Year < 1975

This query is similar to the previous example butintroduces a flitering condition. For such condi-
tions Lore can use a B-tree [Com79] basalle index (Mndex) that takes a label, operator, and
value and retums the set of oids of objects that satisfy the given value constraint and have the
specifed incoming label [MAG'97]. Note that this index is based only on the last label in a la-
bel path to an object Using the DataGuide, we can compute the intersection between the set of
objects retumed by the Vindex on (Year, 1975) and the target set of the full label paig-
Group.GroupMe mber.Publication.Year. Because the DataGuide algorithm in Figure 3.6 constructs
each target setin one step (and never modifes a target set), we can typically expecttarget sets o
be stored contiguously on disk. Further, since oids retumed by the Vindex are stored efftienty
in a B-tree, we expect computation of this intersection to be fast, with few additional random disk
accesses.

We now specify a sample database for analyzing the ipesfce of both this query and Exam-
ple 3.6.3 below. While the numbers are contived in this paricular database, they are representative
of the size and structure of databases we are likely to encounter in pracigesg the patB-
Group.GroupMe mber.Publicaton.Ye ar has a target s&t of 20,000 objects. Assume 1,000 of these
objects satisfy the value constraint, each reachable via a $igleaton along that path. Also,
suppose that these 1,000 Year objects are referenced by 1,000 uliestons along the path
DBGroup.Proje ctPublicaton.Year, and that 9,000 othek ar objects with value less than 1975 are
reachable from 9,000 moreublicatons on that same path. Hence, a Vindex lookup on (Year,
1975) returns 10,000 objects, pointed to by 11,000 différebitcations.

To process the query using the DataGuide, we fistexamine 5 DataGuide objects o find the oid
identfyingY". Next, we retieve the 10,000 valid oids from the Vindex and intersect them with the
20,000 oids of Y to compute the result Now consider processing the query withoutthe DataGuide.
A * top-down” exploraiion that does not use the Vindex would need © examine the values of all
20,000 objects in Y, and as in the previous example we might examéng GroupMe mber or
Publicaton objects that do noteven have the appropriate subobjects. Alternatively, Lore can build a
guery plan o take advantage of the Vindex by traversing “ bottom-up” to identify objects reachable
by valid paths [MAG T97]. In this example, for each objectetumed by the Vindex, the system
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would fihd all objects that havexaar link to o, check o see which of those objects have incom-

ing links with the labePublication, and so on up to the root unil it can determine whether or not

the objectis indeed reachable via the label p&Eroup.GroupMe mber.Publicaton.Year. To be-

gin processing our example, we frst examine all 10,000 objects retumned by the Vindex t fnd the
11,000Publicatons with links to those objects. Next, we must fnd the parents of all 11F®6-

cation objects as well. Hence, processing the query “ bottom-up” requires atleast 21,000 objects to
be examined. O

EXAMPLE 3.6.3 Suppose we now wish to fnd the actual olgeblications:

SelectDB Group.Group-Me mber.Publicaton
Where DB_Group.Group_Me mber.Publicaton.Year < 1975

Let P denote the target setof the “ select’ path @hthe target setof the “ where” path, both found
by traversing a single data path in the DataGuide. As mentioned in Example 3.6.1, if either path
does notexistthen the query resultis empty. Otherwise, we proceed as in Example 3.6.2 to intersect
oids inY with the set of oids returned by the Vindex to identify candittater objects,Y” *. Next,
we examine all objects il * to find the seP? * of (parent) objects that hawe ar links to objects

in Y*. SinceP* may include objects notin the query result, we intersect the oid® of * andP to
compute the fhal resuRt.

As before,Y has 20,000 objects. We assume each Publication has a S&rwleso P has
20,000 objects as wellY *, essentally the query result from the previous example, has 1,000
objects. Because of data-shariy, * contains 2,000 objects. In addition to the work required from
the previous example to compife *, we need to examine the 1,000 objec®’in * to fnd the parent
objects inP *, and we mustinterse€tandP * to fnd R. Hence, the total costusing the DataGuide
is 1,000 expensive objectexaminations, plus the relatively small costs involvedin retiieving 10,000
oids from the Vindex and performing two oid setintersections: one between the 10,000 oids returmed
by the Vindex and the 20,000 oids¥h and the other between the 20,000 oid®’iand the 2,000
oids in P*. In comparison, a top-down approach without the Vindex or DataGuide would again
have to examine at least 20,000 objects. Similarly, as in the previous example, combining the
Vindex with parent traversal would retrieve 10,000 oids from the Vindex and then examine at least
21,000 objects. O

The three examples illustrate how the DataGuide can be used to speed up common queries
signifcanty. DataGuides have been integrated into Lore's cost-based query optimizer [MW99c]:
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the optimizer automatically considers using a DataGuide path index as one of the potential strategies
available for query evaluaton. (Note that using a DataGuide path index is not necessarily always
the bestapproach for evaluating a quetry, since we may need objects bound along a given path.)

The path index techniques we have described also apply to queries with more sophisticated path
expressions. For example,

SelectDB Group(.Group-Member | .Proje ct)? .Publication

selectsPublications either directly undebB Group (since the? makes the other labels optional)

or underGroupMe mbers or Projects. Because the DataGuide is an OEM object, we can reuse the

same code that handles such constructs over data to fnd target sets of such paths in the DataGuide.
DataGuides also can be used to expand wildcards and regular expressions during query compi-

lation. For example, consider the query:

SelectDB Group(.%)?.Publicaton

Recall from Section 2.2 thés matches any label, and t?e indicates that the label is optional.
During query compilation, by consuling the DataGuide we could determine quickly all paths
that satisfy the wildcard and regular expression in the current instance of the database. In this
example, the query processor might use the DataGuide to concludsB t@&bup.Publication,

DB _Group.Group Me mber.Publication, and DB Group.Proje ct.Publication are the only paths that
could satisfy the query. By expanding such wildcards and regular expressions at compile ime,
we guarantee that weill visit (at runtime) a subsetof the objects thatwould have been visited with

the original path expression, regardless of execution strategy. See [MW99a] for more details.

On a related note, Lore includesjaerywarning systemthat uses the DataGuide to warn users
when a Lorel query includes path expressions thatdo notexistin the currentinstance of the database.
One of the design goals of Lorel was to ensure thata given query can still return valid results even
if some of the path expressions it refers to are not matched in the database. Hence, the warning
systemis away to give a query writer feedback aboutinvalid paths without halting query execution
and retumning an expliciterror. For example, consider the query:

SelectDB Group.Proje ct#Hobby

If the query is run ata pointwhen the ompbby objects in the database are reachable via the path
DB _Group.Group Me mber.Hobby, then the query will retum a warning that the specifed path does
notcurrently exist—  a conclusion drawn by consulting the DataGuide.
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3.7 Approximate DataGuides

As explained in Section 3.3, our algorithm for DataGuide construction performs wadlrip situ-

ations for both tree-structured and graph-structured databases. However, we have seen examples of
highly cyclic databases thatresultin very poor periance. For example, we have a 4MB database

for which DataGuide creation runs for several hours without terminating; we explain the cause of
the problem in Section 3.7.1.

For many DataGuidesgs, an “ approximate” sumary of the datals&'s structure can still be
beneftial, yetmuch cheaper to compute. We défipeox mate DataGuides (ADGs), which relax
certain aspects of the DataGuide defnition. An ADG allows some inaccuracy yetretains properties
that make ituseful in numerous situations. This section presents two general approaches for building
ADGs, describing algorithms and experimental results.

Recall our defniton of a DataGuide (Defniton 3.2.5), which has two requirements: (1) every
label path in the source database exists exacty once in the DataGuide; (2) every label path in the
DataGuide exists in the source database. Quite simply, an ADG drops the second requirement
that all DataGuide paths must exist in the original database. Therefore an ADG may have “ false
positives” butnever“ false negatives” conceming the existence of database paths.

Letus reconsider fire of the DataGuide uses described earlier in this chapter:

e QueryFormulation: As described in Section 3.5, exploring an interactive DataGuide can be
very useful for leamning the structure of the database and formulating meaningful queries.
A user exploring an ADG may see paths that do not actually exist in the database. If he
formulates an unfltered query over one of these “ false paths,” the query resultmay be empty,
whereas the same query over an accurate DataGuide will always return atleast one matching
object

e Satisics: As mentonedin Section 3.2.3, we can associate statistcahaion with database
label paths by annotating DataGuide nodes with values. We can still associate statistics with
every ADG object, hence we can store statistics for every rooted path in the database. How-
ever, some statisics may be based on a superset of the actual objects reachable along that
path.

e Path Index Anindex is expected to be exact, so using an ADG as a path index, as described
in Section 3.6, is notfeasible.
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Fgure 3.12: A sample OEM database and its strong DataGuide

e Path Bpressions: In Section 3.6 we explained how we can use the DataGuide to expand
wildcards and regular expressions at compilation ime. Using an ADG, we may expand to a
supersetof valid path expressions. Such an expansion will notaffect the correctness of query
results, butitmay degrade efftiency [MW99a].

e Vrnings: Using the DataGuide for query warnings was also described in Section 3.6. The
system may fail to warn the user that certain path expressions do notexist, but it will never
incorrecty wamn thata valid path does not exist

We propose several strategies for building effective ADGs. In each case, we identify “ similar’
portions of the DataGuide and merge them. Itis this merging process thatmay intoduce superfuous
paths. We see itas arequirementthat all merging occur during construction—  rather than as a post-
processing step— because constructing a (regular) DataGuide is exactly theaestobotieneck
we are trying to avoid. We discuss two general approaches to approximation:

e ObjectMatching: This approach is based on the hypothesis thattwo label paths in a database
are “ similar’ if the sets of objects reachable via those paths are similar, i.e., they have a
signifcantintersecton.

¢ RoleMatching: For this class of approximation, we decide whether two label paths are similar
based on the paths themselves, withoutregard to the objects they reach.

3.71 Object Matching

Recall from Section 3.2.1 that the target set of a path is the set of all objects reachable via that
path. In a strong DataGuide, each DataGuide object corresponds to the target set of all label paths
that reach that DataGuide object. Two label paths in the DataGuide pointto the same DataGuide
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Fgure 3.13: An OEM database, its stong DataGuide, and an approximate DataGuide

objectif and only if the target sets of both label paths are exactly the same in the original database.
Fgure 3.12 shows a small database and its strong DataGuide. Notice that padmslA.C in

the DataGuide pointto the same object because the target geB afdA.C are the same in the
database. The pafD gets its own objectin the DataGuide because its target setis different from
the others.

The algorithm presented in Fgure 3.4 creates a strong DataGuide by performing a depth-fist
exploration of the database, building up target sets of the label paths visited. Each target setis stored
in ahash table. Each time the graph exploration generates a targetset, the algorithm checks the hash
table to see if that target set has already been discovered. If not, then a DataGuide objectis created
for that specift target set, the target set is added to the hash table (along with its corresponding
DataGuide object), and the new objectis linked into the DataGuide according to the path used
reach the targetset If, on the other hand, we have already seen the target set, then we can fnd its
corresponding DataGuide object, and we add an edge in the DataGuide to that existing object

Suppose that instead of requiring target sets to be exacty equal before equating their corre-
sponding DataGuide objects, we instead allow DataGuide paths to pointto the same object when
theirtargetsets are “ almost’ equal. In doing so, we may introduce DataGuide paths thatdo notexist
in the database (false positives).

Consider Figure 3.13(a). Compare the target seBB@roup.GroupMe mber (52 objects) and
DBGroup.Proje ctProje ctMe mber (38 objects). Because the target sets are notidentical, each will
correspond to a different strong DataGuide object Note th&@rallipMe mbers have aName,
and one who is not Broje ctMe mber also has @&ax. Fgure 3.13(b) is the strong DataGuide for
Fgure 3.13(a).
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Suppose that when comparing the target sets fabthepMe mbers andProje ctMe mbers, we
merged the cormresponding DataGuide objects because of their signifcantintersection. We then build
the “ sub-DataGuide” over the union of t@&oupMe mbers and theProje ctMe mbers. This case is
shown in Fgure 3.13(c). Performing the merge of DataGuide objects can intoduce false paths: in
our case the ADG incorrectly suggests that at leasPooie ctvie mber has aFax.

This object-matching approach to DataGuide approximationintroduoaeinterestingssues:

e How do we defhe whethertwo sets are “ similar” ? One simple criterion (used in the remainder
of this section)is to consider two séfsandY” similarwhen X NY'| /max(| X |, |Y]) is above
some threshold

e How does the DataGuide construction algorithm change? Again, we need to make our ap-
proximations during construction rather than reducing a constructed (full) DataGuide. This
on-line approach unfortunately gives some importance to the way we traverse the original
database to construct target sets. For example, we may decide tatsetd” are similar
enough to merge them infB. At this point, the original sets disappeauppose we then
encounter another sBf. 17 may be similar toX', but not to the newly created sét If we
would have traversed the database differeAtyand X’ may have been merged. In addition,
we may wantto limitthe number of imes any given (original) target set can participate in a
merge operation in an effort to bound the difference between a target set and the fnal object
setitis a part of. Suppose that we have already constructed the “ sub-DataGuide” for some
targetseX. If we encounter some ftarget §éthat we decide is similar &, there are two
possible scenarios for the algorithm: Yif is a subset ofX’ we can simply merge the ADG
objects and halt further processing &f, since we know that” cannot infroduce any new
paths that were not considered when proces&ingon the other hand, i¥” is not a subset,
itis necessary to continue by examining the “ union” of the substructure of objeXtiith
those inY". We can reuse our incremental DataGuide maintenance algorithms (Figure 3.6) to
minimize the amount of redundantwork.

e How do we efftiently decide whether two sets are similar? Recentwork has shown that we
can efftienty determine whether wo sets have a high percentage of elements in common
[BGMZ97]. Butthe decision becomes more expensive as the threshold similarity percentage
drops, since we cannot disqualify a potential match as quickly.
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| Similarity Threshold Dbjects Edges False Paths |

100% (Stong) | 273 | 366 -
95% 241 | 308 0
90% 214 | 256 2
80% 200 | 241 6
70% 170 | 238 9
50% 117 | 140 9
30% 115 | 140 9
15% 110 | 138 9

1% 65 | 124 21

Table 3.3: Objectmaiching ADGs for timBGroup database

3.7.2 Object Matching Experiments

For our experiments, we focused on the size and accuracy of the ADGs rather than absolute speed
of construction, since for this work we used a simple, untuned B-tree-based data structure for com-
puting setsimilarity.

We begin by testing the objectmatching approach over alarger versioroB@weup database
used in Section 3.3. This version contains about 3600 objects and 4200 edges. The database is
highly cyclic, and while the overall structure is regular therenaagy “ islands” of irregularity and
incompleteness. The fistrow of Table 3.3 shows the size of the strong DataGuide. The remaining
rows show the different ADG sizes for varying similarity threshold percentages. Quantifying the
level of approximation is a challenge. As one simple metic, we countednmawy false paths
appear in the ADG but not in the strong DataGuide. Using depth-fist search, once we determine
that a pathp is false, we do not continue to count paths for whidh a prefk, since of course they
will be false as well.

Next, we attempted 0 analyze a 4MB subsetof the Intermet Movie database (www.imdb.com),
a highly cyclic semistuctured database with imfietion aboutmaies, actors, directors, producers,
writers, etc. The database has about 60,000 objects and 95,000 edges. Unfortunately, our strong
DataGuide algorithm did not terminate before exhausting resources: because of cerain kinds of
database cycles, the algorithm generatady very long paths (ové&000 labels) without fnding a
repeated target set. We were hopeful that the ADG would perform better, but unfortunately we hit
the same problem. The algorithm generatechtaoy small, nearlyidjointtarget sets that did not
merge. Thus, while objectmaiching ADGs are effcient and effectve when the number of target
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sets is manageable, the algorithm still is too expensive for certain larger, cyclic databases.

3.7.3 RoleMatching

Rather than approximating DataGuides based on target sets, another approach is to merge Data-
Guide objects based on label pataés). More formally, we consider building ADGs based on
Booleanpath nerging functions. If such a functiod (p 1, p2) retumsTue for label pathy ;| and
p2, then pathg | andp - will pointto the same ADG object We discuss two possible merging
functions.

Suffix Matching

In basicsuffk matching, the merging functod (p 1, p2) retumsTueif and only if the lastlabels
of p; andp, are the same. This approximation resticts the ADG o have one object per label.
Fgure 3.14(a) shows a sample database fragment, and its suffk-matching ADG is shown in FHg-
ure 3.14(b). Note thata suffik-matching ADG is essentially the same hd_iyaresentati ve Object
described in [NUWC97], the original Stanford paper on which DataGuides were based.

The suffk-matching ADG is straightforward to charazer While we can create it with a
merging variant of the DataGuide construction algorithm, a simpler method is justto build a hash
table: for each label, we store information about all of the labels that direédijow [ in the
database. For the fhal step, we can construct the ADG by identifying the root label and walking
whatis essentally an adjacency-listgraph representation inside the hash t@able. Constructiontime is
atworst quadratic in the size of the database, since building the hash table requires examination of
all paths of length 2.

The suffk-matching ADG is very effective when each label consistently identifes the “ same
type” of object As one example where it could be problematic, consided®@roup database,
where theAuthor label is used to identfy both the authors of group publications and authors of
members' favorite books. The suffix-matching ADG implies that Asimov, Salinger, and Kerouac
may have Stanford email addresses! To help alleviate such problems, a natural extension to this
approach is o match suffies of length 2, 3korAs described in [NUWC97], we can generalize
the hash-table approach islength suffkes, and that paper also proposes several algorithms for
building more compact representations.
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| Database |Approximation Qbjects Edges Filse Paths |

DBGroup Suffi 102 134 240

DBGroup Path-cycle 240 317 3
Movie s Suffk 38 63 -
Movie s Path-cycle 76 96 -

Table 3.4: Role-matching ADGs

Path-cycle M atching

As an alternative to matching suffikes of a particular length, we consider a different path merging
function that specifcally addresses DataGuide padoce problems caused byctic databases.
Note that a strong DataGuide can have cycles itself when target sets are repeated along a path. But
for larger databases, experience shows that paths grow to giantlengths before reaching an identical
targetset As mentioned in Section 3.7.1, the problem persists even when we are willing to settie for
similar target sets. Hence, we encode in a path merging function the following heuristic: if we see
a specift label more than once along a path from the root, we assume thatwe have hita“ semantic”
cycle and we merge the paths. For example, ilDB&roup database, suppose thatatsome pointwe
create an ADG objectfor the pdliBGroup.Paper. As we continue to explore this path, we create a
new ADG objectfolDBGroup.Paper.Author, butwhen we encount®BGroup.Paper.Author.Paper
we assume that seeifgiper again indicates a schema cycle. Hence, we point back to the ADG
object forDBGroup.Paper. This path-cycle matching ADG is shown in Fgure 3.14(c); note that
this approach avoids the suffi-merging problem of combining paper authors with group members'
favorite authors.

Within our merging function framework, the patiiete matching functor\/ (p 1, p2) retums
Trueif and only if p 1 is a prefk ofp o (orp, is a prefk ofp 1) and the lastlabels gf ; andp - are the
same.

3.74 RoleMatching Experiments

For our experiments we modifed the depth-fist object-matching algorithm to merge ADG objects
instead based on either suffkes or path-cycles. Table 3.4 shows experimental results for both types
of approximations on theBGroup andMovie s databases inroduced in Section 3.7.2. Again, the
false paths column is in comparison to the strong DataGuide, which we were unable to generate for
the Movie s database.
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Figure 3.14: A sample OEM database, its suffk-matching ADG, and its path-cycle matching ADG
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Note that the suffi approximation produced numerous false paths foBi3eoup database,
many of which were due o thauthor label problem described in Section 3.7.3. Using suffkes
of length 2 would fk the problem for this database. Another interesting fact is that the smallest
DBGroup objectmatching approximaton from Section 3.7.2 is actually smaller than the suffik-
maiching ADG, due  the fact that the database has mgegsiserving multple roles (e.g.,
members as authors, project members, advisors, efc.). As could be expected, in both databases the
path-cycle approximation is signifcantly larger than the suffk match. Perhaps the most striking
results are the tiny sizes of the role matching approximations fotdie s database, given thatwe
could noteven build the strong DataGuide (or the object-matching approximation)for this database.

3.75 Summary

Since the space of possible semistructured databases is enormous and varied, itis diffcultio choose
the best approximation for every situation. Nonetheless, we gamaiize the best and worst
features of strong DataGuides and the Approximate DataGuides introduced in this section.

e Srong DataGuides: Stong DataGuides are always accurate and can be used as a path in-
dex, something for which we cannotuse ADGs. For tree-structured, acyclic, or smaller cyclic
databases, strong DataGuides usually perform well. For larger cyclic databases, itmay be bet
terto use an ADG. For path indexing, [MS99] proposes a graph-based path indexing structure
that relaxes the DataGuide (and ADG) constraintof a database label path existing only once
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in the index. (Itwould be interesting to explore this approach in general, although for some
DataGuide uses we do depend on a path existing only once, such as for the user interface.)

e ObjectMatching: This approach approximates a DataGuide based on objects having multiple
incoming paths. Hence, itis an approximation for graph-structured databases only; for trees,
a strong DataGuide is generated. An adjustable threshold lets the level of approximation be
tuned. Unfortunately, however, the algorithm can still be prohibitively expensive for large,
cyclic databases.

e Suffk Matching: The best feature of suffk matching is its predictable constructon perfor-
mance. The algorithm also is not biased to rooted paths— it providesiafon about path
suffkes wherever they may appear in a database. Unfortunately, this approximation can yield
skewed summaries and statistics if labels are used in different ways throughout a database.
We can increase the suffi length thatwe match to increase accuracy, although doing so makes
the algorithm more expensive.

o Path-cycle Matching: This approximation addresses problems caused by cyclic data without
bias o paths of any specift length. Unfortunately, it is diffcult tarabterize just how
computationally expensive this approach is.

Ultimately, the “ best’ ADG may depend on the database we are sigimgarFurther, it may
be possible to combine some of the above techniques, such as path-cycle and object matching.

3.8 Related Wor k

DataGuides were inspired by initial work at StanfordRepresentative Objects [NUWC97]. This

work proposed the importance ofrsmaizing semistructured data via a NFA-to-DFA conversion.

A representative objectis defned as a function that can answer schema discovery questions about
objects in a semistructured database. A DataGuide is an effective implementation of whatis defned
as aFull Representative Object Work in [NUWC97] also focuses on enabling schema discov-
ery when only considering paths of length Such functons are callddRepresentative Objects

(kROs). A k-RO may describe a superset of the label paths that existin the source, therefore vio-
lating theaccuracy constraint of our DataGuide defnition. Indeed, as mentioned in Section 3.7.3,

a suffix-matching Approximate DataGuide is equivalentto the implementaiiot-&ssuggested

in [NUWC97].
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Related work from [NAM98] gives algorithms for finding “ approximate typings” of semistruc-
tured databases based on pattemns of incoming and outgoing edges. In comparison, we are less
concemed with extracting a set of objecttypes; rather, our goal is to provide a structnargu
that allows a semistructured database system (or a user of one) to quickly extramtiofoabout
label paths in the database.

Inotherrelated work, [BDFS97] describes how we can dgfiaph schemasfor graph-structrured
databases. However, their perspective is more traditional, since they assume that the database must
still adhere o the schema, and they provide algorithms for testing whether a database adheres to
a given schema. In contrast, DataGuides always conform to the database. However, choosing an
effective Approximate DataGuide can be thoughtof as fiing a“ good” graph schema to an existing
database ata paricular momentin time.

3.9 DataGuidelmpact

Since their introduction in 1997, DataGuides have become recognized as a core concept within
the feld of semistructured data. For example, a recent book about semistructured data aimed at
the mainstream technical community has numerous references to DataGuides [ABS99]. Further,
DataGuides have served as a springboard for research outside Stanford, including the following
projects.

¢ As mentioned in Section 3.7.5, Milo and Suciu have developed a new path indexing scheme
thatis related to our approach from Section 3.6, buttakes advantage of a relaxed DataGuide
defniton to offer better performance [MS99].

o Liefke and Suciu leverage DataGuides to improve the pedice of their XML compssion
tool, XMill [LSOQ].

e MiroWEB, a data integration projectat the University of Versailles, cites DataGuides as the
basis for their interactive query browser [BCSYDN*99].



Chapter 4

| nter active Query and Sear ch of
Semistr uctur ed Data

In this chapter we focus on the end-user's perspective of searching and querying a semistructured
database. As more and more semistuctured data is made available over the Web, itis important to
enable casual Web users o interact effectively with the data. In Chapter 2 we introduced the Lorel
guery language for semistructured data. While Lorel is a powerful declarative lantike@L it

is oo complicated for a casual end user to master. Itis possible o handle certain queries by having
users fll in hard-coded forms, but this approach by nature limits query flexibility. In Chapter 3

we showed how an interactive DataGuide simplifes the process of formulaiing a certain class of
queries over a semistructured database. Siill, even with a DataGuide, such an approach to querying
semistructured data does nottake into accounttwo important characteristics of typical Web users:

e Users are comfortable initiating a search with simple keywords.

e Users fnd it natural to explore the results of an initial search, perhaps refning their search
criteria iteratively until the desired infimation is faund.

Inthis chapter we presenta model for interactive query and search sessions over semistuctured
data that addresses these two points. First, we explain how we can implement searches based on a
single keyword over a semistructured database. {ppat searches based on multiple keywords,
we rely on ourproximity search techniques, described in detail in Chapter 5.) Second, to enable
users to refhe a search, we wantto expose and summarize the structure of the databased- surro
ing” any query result To create such a summary, we build dynamically eseémirto the user a

55
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DataGuide that sumniaes paths notfrom the database root (as in Chapter 3), butinstead from the
objects returned in the query result. A user can then repeat the process by submiting a query from
this“ focused” DataGuide or specifying additional keywords, ulimately locating the desired results.

Inthe contextof the query functionality matrix from Chapter 1, the contributions of this chapter,
along with Chapter 5 on proximity search, fll in Enty 4: enabling keyword-based search over
semistructured databases (Section 1.1.5).

Our discussions in this chapter are again in the contextdfifesproject(Chapter 2), involving
OEM, Lorel, and DataGuides (Chapter 3). However, our results are applicable to other similar
graph-based data models (e.g., [BDHS96]), as well as to XML [XML98].

Inthe restof the chapter, Section 4.1 presents a simple motivating example to illustrate why new
functionality is needed in a semistructured database systaipposinteractive query and search.
Our session model is described in Section 4.2, followed by three sections covering the new required
technology:

e Keyword search (Section 4.3): Effcient data structures and indexing techniques are needed
for quickly finding objects in a semistructured database that maich keyword search criteria.
While we may borrow heavily from well-proven infoation retieval (IR) tectwlogy, the
new context of a graph database is suffciently different from a simple set of documents

warrantnew techniques.

e DataGuide enhancements (Section 4.4): Computing a DataGuide over each query result can
be very expensive, so we have developed new algorithms for computing and presenting Data-
Guides piecewise, computing more of the DataGuide as needed.

e Inverse pointers (Section 4.5): To fully expose the structural context of a query result, itis
crucial to exploiinverse pointers (pointers to an objects parents) when creating the Data-
Guide for the result, browsing the data, and submiting refning queries. Winifeog for
inverse pointers may seem staightforward, the major proposed models for semistructured
data are based on directed graphs, and inverse pointers have notbeen considered in the pro-
posed query languages [AQM97, BDHS96, FFLS97]. Similarly, proposed query languages
for XML also do notsupportinverse pointers [DFFT99a, RLS98].

Many of the contributions of this chapter were fist published in [GW98].
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Fgure 4.1: A sample OEM database and its DataGuide

4.1 Motivating Example

In Fgure 4.1, consider a sample OEM database along with its DataGuide, as explained in Sec-
tion 3.5. In this exampleRublication objects appear in the database along several different paths:
directy undeDBGroup, undetDBGroup.Me mbe robjects, andinderDBGroup.Proje ctobjects. The
DataGuide reflects a user-specifed query to seleptajkct publications from 1997. The equiva-
lentLorel query is:

SelectDBGroup.Proje ctPublication
Where DBGroup.Publicaton.Year=1997

The result of this query is a singleton set containing object 10. More speciftally, when a query
retuns a result, a new object is created in the database with an incomingwiabedr, and all
objects inthe query resultare then made children oitissver. ' The newAnswer edge is available
as an entry point(as introduced in Section 2.2) into the database for successive queries, and the label
in this caBeplication.

Now suppose a userwishes to fndalblicaions from 1997, a seemingly simple query. (Recall

for the children ofanswer is deduced from the query—

that our DataGuide query only found publications associated with projects.) Itis possible o write a
Lorel query with wildcards to find this result, but as discussed above, casual users will notwant o

'Lorel queries may create more complicated object structures as query results, but for presentation pur-
poses we do not consider such queries in this chapterpgiteazh and results in this chapter casilgade
generalized.
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Fgure 4.2: DataGuide constructed over result of finding all publications

enter a textual Lorel query. Suppose the user ties to use the DataGuide to locaterthatiorio

Evenin this simple case, there are nhumerous paths to all of the publications; in a larger database the
situation may be much worse. While the DataGuide does a good jolmfiauaing paths from the

root, a user may be interested in certain data independent of the particular topology of a database.

In this situation, a typical Web user would be comfortable entering keywords: “ Publicaion,”
“1997," orboth. Sippose for now the user searches for“ Publication” to getstarted. (We will address
the case where the user searches for “ 1997” momentarily, and we discuss the issue of multiple
keywords in Section 4.3.) If the system generates a collection Bfiblitation objects, the answer
is objects{2, 8, 10, again identifed by the new edgeswer. While this initial resulthas helped
focus our search, we really only wantedfhéblication objects from 1997. One approach would be
to browse all of the objects in the result, butin arealistic large database this may be diffcult Rather,
we dynamically generate a DataGuide over the answer, as shown in Figure 4.2. Notice now that
even thougfite andYe ar objects were reachable along numerous paths in the original DataGuide,
they are consolidated in Fgure 4.2. As shown in the DataGuide, the ussadahublication for
selection and enter a fltering condition ferar to retrieve all 199publicaions. Getiing the same
resultin the original DataGuide would have required three selectionfltering condition pairs, one
for each possible path toRaiblication.

The above scenario motivates the need for efftient keyword search, and for effcient (online)
DataGuide creation over query results. Next, we show how these features essentially force a system
to supportinverse pointers agell. Suppose the user had typed “ 1997” rather than “ Publication.”
This ime, the answer in our sample database is the singlet®h4etand the DataGuide over the
resultis empty since the resultis justan atomic object This example illustrates that the user needs
to see the area” surrounding” the resujeatts, not justtheir subobjectstructure as encapsulated by
the DataGuide. Given a setof objects, we can use inverse pointers to present theridswgrarea”
to the user; for example, we can give contextto a speeif objectby showing thatitis the child
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of aPublicaton object By exploring both child and parent pointers of objects in a query result, we
can create a more descriptive DataGuide.

4.2 Query and Sear ch Session Mode

Recall that our model is developed in the context of users interacting with Lore (Chapter 2). We
defne a Loresession over an initial databas®  , with rootr and inital DataGuidez  o(r), as a
sequence ofjueriesqq, g2, - - ., ¢n. A query can be a“ by example” DataGuide query, a keyword
search, or, for advanced users, an arbitrary Lorel query. Tleetsletumed by each queyy ; are
accessible via a complex object; with entry pointdnswer ;. After each query, we generate and
present a DataGuidé ;(a;) over the result, and users can also browse the objects in each query
result Perhaps counterintuiive to the notion of narrowing a search, we do notrestictthe database
after each query. In fact, the databd3ewill grow monotonically after each query ;. Afterg;,
D; = D;_1 U a,;. Essentially, each DataGuide helps focus the user's next query withoutrestricting
the available data. In the following the three sections, we discuss three technologies that enable
efftient realization of this model of interaction: keyword search, dynamic DataGuides, and inverse
pointers.

43 Keyword Search

Defning and implementing keyword search over a semistuctured database is a new problem. We
begin by discussing how we can process a search based on a single keyword, and then we touch
on the issue of how we handle ranked results. Chapter 5 focuses on new approaagsiting

searches over muliiple keywords.

431 SingleKeyword Search

Inthe IR arena, a search for a keyword typically returns a listof documents containing the specifed
keyword. In a semistructured database, pertinentrimddon is found both in atomic values of

type string (hereafter called “ textobjects” ) and in labels on edges. Thus, itmakes sense o identify
both text objects containing the specifed keyword, and objects with incoming labels matching the
keyword. For example, if a user enters “ Publication,” we would like to retun all objects pointed
to by aPublication edge, along with all text objects with the word “ Publication” in their data. This
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approach is similar in spirit to the way keyword searches are handled by Yahoo! (yahoo.com).
There, search results contain bothdhiegory andsite matches for the specifed keywords.

Often, results to keyword searches are ranked according to some scoring function. For now,
we assume that results of keyword searches are unranked; we will address the issue of ranking in
Section 4.3.2.

While a keyword search over values and labels is expressible as a query in Lorel, we need to
ensure speedy execution of keyword searches, so itis worthwhile to consider them as a special case.
Since the number of unique labels in a database is typically small, we can use a naive search to fnd
the labels that contain a given keyword; then, we can use a simple inverted-listindex to identfy
all objects with a given incoming label. In contrast, locating atomic text objects that contain an
arbitrary keyword expression is a larger challenge: we effectively need to build a full-text search
engine that can match keyword expressions to database objects.

Rather than build our own specialized full-text search engine, we decided to leverage work in
traditional text search engines, which match keywords to documents. In particular, we decided
to integrate the Glimpse [MW93] search engine to provide full-textindexipgart within Lore.

Givena collection of documents, Glimpse builds indexes thatenable fastregular expression searches
over those documents, including simple keyword searches. The resultof a Glimpse search is a set
of <documentidentfer, offsetpairs, identfying the positions in documents that match the search
expression. Our task was to exploitthis interface to provide the somewhat differentkeyword-search
functionality we needed in Lore.

Given the interface to Glimpse, we wantto map a Lore keyword search into a Glimpse search,
and translate Glimpse's results into a collection of Lore OIDs that represent the matching database
objects. Atone extreme, we could map each Lore objectintozsigefile, butthis approach could
easily overwhelm the fle system. Atthe other extreme, we could map the entire Lore database
into a single fle, along with additional informatiossciating database objects with their positions
within the fle. Of course, another option is to partiion the database objects across any number of
fles. Some initial experiments indicated that Glimpse was just as effective processing one large
fle as itwas with more, smaller fles. Hence, we developed our prototype by dumping each Lore
database into a single fle for Glimpse to index.

In more detail, the following steps explain how we create the Glimpse-based textindex for a
Lore database.

¢ \\e create one textflelimpse Data that will contain a sequential dump of all extobjects in
a Lore database.



CHAPTER 4. INTERACTIVE QUERY AND SEARCH OF SEMISTRUCTURED DATA 61

e e create one text fiGlimpseMap to serve as a map that allows us to translate Glimpse
search results back into Lore OIDs.

e We traverse the entire Lore database. For each atomic text ebjaa fist output o
GlmpseMap a record containing the current length ®@impse Data (representing theff-
set of the data for) and the OID ofo. Next, we output tlGlimps e Data the entire text of

0.

e e build an ISAM [Wag 73] indelimps e Inde x on top ofGlimps e Map thattakes as inputan
offsetinputOffset, and returns the OID associated with the largest offs@tiimps e Map less

than or equal tonputOffset.

e e deletsGlimps e Data; itis notnheeded since Glimpse builds its own indexes and any offsets
retumed as search results can be mapped o OIDs vialioys e Inde x overGlimps e Map.
(In our implementaion oG limps e Inde x we mustkeeGlimpse Map.)

Glimpse takes as input a search egzion. While Glimpseupports exg@ssions containing
more than one keyword, we have developed our own technology for effectively handling searches
of muliiple keywords across a database, as we will discuss in Chapter 5. Thus, we restrict our use
of Glimpse to only single keywords.

After Glimpse processes itmputkeyword, we take the following steps to translate Glimpse's
results into a set of matching Lore OIDs.

e First, we pasgeyword to Glimpse.

o If Glimpse returns no “ hits,” then of course the resultis empty. Otherwise, Glimpse retums a
setof fle offsets representing matches. (All matches are from the Shgles e Data fle, so
documentidentfers can be ignored.)

e For each retumed offset, we uS#mpselindex o translate the offsetinto a matching OID.
We keep track of the OIDs of all objects that mateyword. If one object matchekeyword
more than once, we maintain that informatiomaz|.

e By default, Lore and OEM are set-based, so the fhal step of generating a query resultis to
produce a set of matching objects. While Glimpse results are notranked, we discuss ranking
briefly in Section 4.3.2.
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With this approach, we leverage both the functonality and performance odsiimg special-
ized search engine. We do have the overhead at index creation ime of dumping the data into a
textfle, and at runime we have some overhead of a system call o Glimpse and additonal index
lookups. Still, this approach allows Lore to be loosely coupled with Glimpse and incorporate future
improvements or bug fkes to Glimpse. Further, it would require minimal effort to port our tech-
nigues to any other search engine that returns the fle offsets of search expression matches within
a document. If a search engine only returns matching document IDs, then we would need to map
each database objectto its own fle. Alternatively, we could map muliple objects to a fle, using
search engine results as justthe fist phase of identifying potentially relevant objects.

432 RankingResultsinLore

In environments that supportkeord-based or other types of “ fuzzy” search, ranking is an of-

ten criical component of the results. Through some kind of scoring function, system-generated
rankings help a user sift throughany potential matches affidcus on the most important data.

Typically, however, database management systems are based on sets or bags— datais either“ in” or
“ out’ of aquery result, and there is no built-in notion of rank. Lorel queries are no exception, since

the resultis simply a collection of OEM objects. Smooth integration of rankings into such a model

is a challenging problem, one we defer to future work (Chapter 8).

We do supportrankings in our keyword searches (andariipity search, described in Chap-
ter 5), for which we developed a simple standalkeyeord search interfacefor Lore. Through this
interface, we can return ranked results instead of justa flt collection of objects. However, because
this interface is separate from Lorel, these ranked results are currently unavaildioléot@ron
queries.

Glimpse itself does notrank its results, so we assign a score to each matching objectbased on
the amount of textin the object, the size of the text that matches the search, andbr the number of
matches within the object Currently, we use a simple score based on dividing the total amount of
matched textin the objectby the total size of the object

44 DataGuide Enhancements

As described in the motivating example of Section 4.1, we wish to build DataGuides over query
results, quickly enough taupport interactivesessions. For this section, let us temagty ignore
the issue of inverse pointers. As shown in Section 3.3, computing a DataGuide can be expensive:
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the worstcase running time is exponential indiee of the database, and for a large database even
linear running ime would be o slow for an interacession. We thus introduce two techniques
to improve the running ime of interactive DataGuide creation.

Frst, we can exploitthe auxiliary data structures that are builtto provide incremental DataGuide
maintenancetarge tHash andobje ctHash from Section 3.4. These structuresaguntee that, when
constructing the DataGuide for a query result, we never need to recompute a“ sub-DataGuide” that
has previously been constructed. In FHgure 4uppsse a user searches for all “ Projects,” a query
that would return the singleton sgt}. In this case, the DataGuide ovgt} is the same as the
sub-DataGuide reachable alobgGroup.Projectin the original DataGuide. We can dynamically
determine this fact with a single lookup ¢4} in targetHash (see Section 3.4), and no additional
computation is needed.

Second, we observe that an interactive user raily need to explore the entire DataGuide.

Our experience shows that even in the iniial DataGuide, users rarely explore more than a few
levels. Most likely, after a reasonable “ focusing” query, users will wantto browse the structure
of objects near the objects in the query result Hence, for interactive sessions we modifed the
original depth-frst DataGuide construction algorithm (Fgure 3.4) to instead work breadth-fist, and

we changed the algorithm o build the DataGuide “ lazily,” i.e., a piece ata ime. Fom the user's
perspective, the difference is transparent except with respect to speed. When a user clicks on an
arrow for a rgion that hasn't yet been computed, behind the scenes we send a requestto Lore to
generate and retum more of the DataGuide. Our maintenance structures make it easy to interrupt
DataGuide computation and continue later with no redundantwork.

45 Inver sePointers

Directed graphs are a popular choice for modeling semistructured data and XML, and the proposed
query languages [DFF 99b, AQM 97, BDHS96] are closely tied to this model. Powerful regu-
lar expressions in the languages traverse forward pointers (children), but essentially no language
support has been given to traversing inverse (parent) pointers. As our motivating exaSgte in
tion 4.1 demonstrates, a parentmay be justas importantas a child for locating relevant data during
an interactive session.

In this section we describe a simple modifcaton to the Lore data model that makes access o
inverse pointers as seamless as possible: for an @bjeith an incoming label “ X from another
objectP, we conceptually also makié a child of O via an edge with the new special labeXOf.
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Fgure 4.3: An OEM query resultand two potential DataGuides

(Physical implementation of inverse pointers depends ourttlelying data store; in Lore, for ex-
ample, an auxiliary hash-based index keeps track of the parents of every object) With this approach
of using speciaDf labels, inverse pointers can be treated for the most part as additonal forward
pointers. For example, the Lorel language can supgfaegnces to these spedidllabels without

any modifcaion. However, in the contextof DataGuides, the presence of inverse pointers may lead
to some counterintuitive results—  a topic we now address.

As motivated in Section 4.1, we wish o extend DataGuides itonsarize a database in all
directions, rather than only by following forward pointers. If th@©f” edges described above are
simply added to the database graph, then we need noteven modify our DataGuide algorithms. Un-
fortunately, this approach can yield some strange results. In OEM and most graph-based database
models, objects are identifed by their incoming labels. A “ Publication,” for example, is an ob-
ject with an incomingPublication edge. This basic assumption is used by the DataGuide, which
summaizes a database by grouping together objects with identical incoming labelsO&n €dge,
however, does a poor job of identifying an object For example, given an ébjeittt an incoming
Title Of edge, we have no way of knowing whethikis a publicaion, book, play, or song. Therefore,

a DataGuide may group unrelated objects together.

As a more detailed exampleympose a user's initial search over a library database fids some
Tile objects. Figure 4.3(@) shows three atomic objects in the result (shaded in the fgure), with
dashed“Of" edges o show their surrounding structure. Figure 4.3(b) shows the standard DataGuide
over thisAnswer. The problems with 4.3(b) should be clear: the labels shown Uitdedf are
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confusing, since the algorithm has grouped unrelated objects together. Further, the labels directly
underTite Of do not clearly indicate that our resultincludes tiles of books, plays, and songs.

To address the problem, we have modifed the DataGuide algorithm slightly to decompose fur-
ther all objects reachable along arOf’ edge based on the nonOf’ edges o those objects. In
particular, we temporarily ransform the source graph such taf auge that originally points
from objectX to objecft” is modifed to pointto a new nod€Y’; further, for each incoming edge
to Y with a nonOf label L, we add a new edge with lab&lfrom XY to Y. Figure 4.3(c) shows
the DataGuide built over this transformed graph—  a resultwe ¢aherarmic DataGuide. In this
DataGuide, we can see fiie Of leads to a new intermediate object (whose targetsetis all of the
new nodes in the transformed graph created fofikef edges). UndeTite Of in the DataGuide,
we can see that tielay, Book, andSong subobjects are now sajptedyielding a more intuitive
DataGuide for browsing. Of course, since OEM databases can havanatiiels and tagogies,
we have no guarantees that a Panoramic Data@uiltlbe the ideal stmary; stl, in practice it
seems appropriate fanany OEM datalses. Note that adding inverse pointers to DataGuide cre-
ation adds many more edges angeats than in the original DataGuide, making oupgort for
“ lazy” DataGuides (Section 4.4) even more important

As an alternative to using inverse pointers, a semistructured database systemcould“ remember’
the (forward) path traversed to evaluate a query. For example, consider the simple query from
Section 4.1 to fnd all projequblications from 1997. During query execution, the system could
remember the path from the root of the database used to reach the results objects— inthis case, the
singleDBGroup.Proje ctPublication path passing through objects 1, 4, and 10. The user could then
explore this path to see some of the results context Lore can in fact provide isaicheal path
for each query result However, when an execution strategy does notinvolve navigating paths from
the root, generating a matched path from the root would drastically increase query execution ime.
Further, a matched path still does not allow a user to arbitrarily explore the database after a query
result

46 Reated Wor k

For several of the topics covered in this chapter, such as modelling interactive query and search
sessions and exploiting inverse pointers, we know of no previous related work. The problem of
supporting kgword-based search in a database system has been addressaty @t the level
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of integrating document collections with relational database systems, sugbpastiag kgword-
search over specift table felds knownto contain documents [Ora99] or using virtual tables to model
a search engine within the contextof a SQL query [DM97, CDY 95, GWOO].



Chapter 5

Pr oximity Sear ch in Databases

In Chapter 4 we discussed the semantics and implementation of keyword-based searches in Lore
when the search term is a single keyword. Performing a keyword-based search over a semistruc-
tured database becomes more interesting and challenging when searching for multiple keywords. In
atypical information retieval (IR) setting, a search for two or more keywords identifes documents
containing all keywords “ close” together— atthe least, both keywords must be in the same docu-
ment, and often, a documentis considered a“ better’ match if the keywords are near each other in
the documenttext Theear operator is used in IR systems to perform explicitly sughosinity

search: searching for keywords close to each other within a document [Sal89].

In a graph-structured database, textual distance can be a poor measure of the relationship be-
tween keywords. In XML, for example, nesting structure can be far more importantin determining
the “ neamess” of document elements than the textual distance between them. As we saw in Chap-
ter 1, in an XML representation of a movie database, two actors in the same movie will both be
subelements of a specift movie element However, in a textual representation of the database, the
lastactor of one movie may actually be listed closer to a differentmovie element he has no relation
0. In a graph-structured database, measuring distance between objects or elements based on their
relationship within the database structure is more meaningful than measuring text-based distance in
a serialization of the database.

In this chapter we apply the general notion of proximity search to search across an entire
database for objects that are “ near’ other relevant objects. We consider a graph-based data model
such as OEM (Chapter 2), and proximity is defned based on shortest paths between objects. We
demonstrate how proximity search enables interesting multiple-keyword searches over a semistruc-
tured database with intuitive results. Our approach to proximity search requires only that data can

67
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be viewed as an interconnected graph— it need notbe “ semistructured,” nor need it be stored in a
database for semistructured data. As we will show in Section 5.2, itis quite straightforward to view
relational or object-oriented data as a graph. Thus, even though the implementaiion of our proxim-

ity search engine works within the Lore system, the techniques apply to taditonal structured data

as well as they do to “ true” semistructured data. Referring back to our query functionality matrix
(Section 1.1.5), our proximity search engine enables keyword-based search over both semistructured
databases (Entry 4) and tradiional databases (Entry 2).

Implementing proximity search in a graph-based database is signifcantly different from the
traditional IR approach. Traditionally, keyword proximity is measured along a single dimension
(text), and search is performed inside each textobject Itis easy to compute the distances between
words if we simply record the position of each word along this one dimension. In a graph-based
database, we measure distance as the length of the shortest path between data objects. For efftient
inter-object proximity search, we need to build an index that gives us the distance batypain
of database objects. Since there can be a huge humber of objects, computing this index can be very
time consuming. For traditional proximity search, on the other hand, we only need to know the
distance between words within a single object, a much smaller problem. In this chapter we describe
optimizations and compression schemes that allow us t© build indexes that can effciently report
distances between any pair of objects. Experiments show that our algorithms have modesttime and
space requirements and scale well.

In Section 5.1, we provide a concrete example o further motivate our notion of proximity search
in graph-based databases. Section 5.2 then defhes our probleraraed/érk in more defail. In
Section 5.3, we describe how we have builtproximity search into Loxgpost multige-keyword
search. Section 5.4 details our algorithms for effcient computation of distances between objects,
and experimental results are givenin Section 5.5. We discuss related work in Section 5.6.

The basis of this chapter originally appear in [GSVGM98].

5.1 Motivating Example

The Intemet Movie Database (www.imdb.com) is a popular Web site with information about more

than 140,000 movies and 500,000 findiistry workers. Regdets of whether the data is stored
natively as a semistructured XML or OEM database, in arelational database, or in an object-oriented
database, we can view the database as a set of linked objects, where the objects represent movies,
actors, directors, and so on. Inthis applicationitis very natural to defne a distance function based on
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the links separating ¢écts. For example, since John Travolta stars in the moviertia®yi Mlors,”
there is a close relaionship between the actor and the movie; if he had directed the movie, the bond
mightbe tighter.

Within our framework, gmximity searches are specifed by a pair of queries, each of which can
be any type of query that retuns a set of objects:

e A Find queryspecifes aind set of objects that are potentially of interest. For our example,
letus say that the fnd query is keyword-based. For instanEd' movie” locates all objects
of type “ movie” or objects with the word “ movie” in their body. In the Lore system, such a
keyword search would use the techniques described in Section 4.3.1.

e Similarly, aNear query specifes dear set The objective is © rank objects in thend set
according 1o their distance to tidear objects. For our examples we assume the near query
is also keyword-based.

For example, suppose a user is interested in all movies involving both John Travolta and Nicolas
Cage. This query could be expressed asntl movie Near Travolta Cage.” Notice that this query
does not search for a single “ movie” object containing the “ Travola” and “ Cage” stings. In this
database, the person named “ Travolta” is represented byespiect, and similarly for“ Cage.”
Movie objects simply contain links to other objects that defne the tile, actors, date, etc. Thus,
the proximity search looks for “ movie” objects that are somehow closely connected to “ Travol@a”
andbr“ Cage” objects.

To illustrate the effect of this query, we show results of issuing the query over a version of
the Internet Movie Database (IMDB) containing inf@tion about all997 fims, stored in OEM
format within Lore (Chapter 2). Our Lore implementation adpmity search is described in more
detail in Section 5.3. Fgure 5.1 shows the queriid movie Near Travolta Cage” along with
the top 10 results. As we mightexpect, “ FaceOff” scored highestsince it stars both actors. That
is, both actor objects are a short distance away from the “ FaceOff” movie object The next fie
movies all received the same second-place score, since each flm stars only one of the actors. (See
Section 5.2 for a detailed explanation of how ranking works.) The remaining movies reflectindirect
affliaions— thatis, larger distances. “ Original Sin,” for example, stars Gina Gershon, who also
played a partin “ FaceOff.”

To illustrate other queries, a user could issuerfd movie Near Colorado” 1t locate all movies
flmed in Colorado (or with the word “ Colorado” in their tiles). A user mightissudrid love Near
comedy” to fd all references o “ love” inacomedy— movie tites, actor names, trivia, etc. As a
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Fgure 5.1: Results of proximity search over the InternetMovie Database

fnal example, we mightwish to rank movies by the number of different locations where they were
flmed at by issuing “Find movie Near location.” Our prototype is available to the public on the
Web, as described in Section 5.3.

Proximity searches are inherently fuzzy. If one can precisely describe the desirethiitio
(e.g., what relation it occurs in, the exact path to it, the precise contents of felds) then traditional
database queries will usually be best. Siill, proximity search is very useful when itis impractical
to generate a specift query, or when a user simply wants o search based on the general relevance
of different data objects and then focus in on relevantdata, as with the interactive query and search
model discussed in Chapter 4.

No current database or IR systems provide general proximity search across interrelated objects.
Often, applications implement particular versions of proximity search. For example, the IMDB
Web site does offer a form for searching for movies with multiple specifed actors. Our goal is to
provide a general-purpose proximity service thatcan be implemented on top of any type of database
system, semistructured or otherwise. Further, we demonstrate that our techniques are practical by
implementing a proximity search engine within Lore.
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Fgure 5.2: Proximity search architecture

5.2 TheProblem

The problem, expressed in its most general terms, is to rank the objects in one giverFsad (the

set) based on their proximity to objects in another given set\@iae sef), assuming objects are
connected by given numerical “ distances.” W fistdiscuss our conceptual model in detail, and then
we formalize our notion of proximity.

521 Conceptual Model

Fgure 5.2 shows the components of our model. An existing database systtm— whether it be
semistructured, relational, or object-oriented— abstractly stores a set of data objects. Applications
generatd-ind andNear queries atthe undging database. Note thatwhile our motivating example
used keyword-based search to identifylear andFind sets, our framework is very general and is
open to other types of queries: itis designed simply to relate two sets of objects based on proximity
in a graph.

The database evaluates the queries and p&ssaésnd Near object result sets, which may
themselves be ranked, to tReoximity Engine. (For example, keyword search in Lore retumns
a ranked list of objects as a result, as described in Section 4.3.) Database objects are opaquely
exported to the Proximity Engine, which only deals with objectidentifers (OIDs). ! The Proximity
Engine then re-ranks ténd set, using distance information, anasgibly taking into account the
iniial ranks of theFind andNear objects. The distance irfimation is provided by ®istance
Module. Conceptually, th®istance Moduleis a black box that provides to the Proximity Engine a
setof tiplets ', Y, d), whered is the distance between “ adjacent’ database objects with identifers
X andY'. (Note thatthe distance module uses the same identifers as the database system.) In Lore,

'Most relational systems do notexpose explicitrow identifers; we can use primary key values or * signatures,” e.g.,
checksums amputed over all uple feld values.
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the Distance Module is simply the weighted edges that connect objects in the original database,
as we will discuss further in Section 5.3. The Proximity Engine then uses these base distances to
compute the lengths of shortest paths between all objects. Because we are concerned with “ close”
objects, we will compute the distance between any two objects exactly only up to some constant
K, returningoo for all distances greater thdti. This assumption enables improved algorithms, as
described in Secton 5.4.

To the Proximity Engine, the database is simplyuedirected graph witiveighted edges. In
our motivating example, the undigng database is indeed a Lore database. Still, our proximity
calculations work over traditional database systems as well, as long as the data is exported as a
graph-structured view. For example, the database system may be relational, as illustrated by the left
side of FHgure 5.3, which shows a small fragment of a normalized relational schema for the Intemet
Movie Database. The right side of the fgure shows how that relational data might be interpreted
as a graph by the Proximity Engine. Eadhvie andActor tuple is broken into multiple objects:
one object for the tuple and additional objects for each atribute value. Distances between objects
are assigned o reflect their semantic closeness. For instance, in Fgure 5.3 we assign small weights
(indicating a close relationship) to edges between a tuple and its atributes, larger weights to edges
linking tuples related through primary and éign keys, and the largest weights to edges linking
tuples in the same relation. (For clarity, the graph shows directed, labeled edges; our algorithms
ignore the labels and edge directions.) Of course, the distance assignments must be made with a
goodunderstanding of the database semantics and the intended typesie$.qliss simple
model object-oriented, network, or léechical data in a similar manner.

Currently, our prototype implementation of the proximity engine is implemented as an indexing
module within the Lore system, thoughitcould be implemented asagedepomponentthatworks
over OIDs exported from any database system.

52.2 Proximity and Scoring Functions

Recall that our goal is to rank each objgdh aFind setF’ based on its proximity to objects in a

Near setN. Each of these sets may themselves be ranked yntielying database system. We

use functions:  andr v to representthe ranking in each respective set. We assume these functions
retum values in the rang@, 1], with 1 representing the highestpossible rank. We defne the distance
between any two objeck € F andn € N as the weight of the shortest path between them in the
undelying database graph, referred oy, n). To incorporate the initial rankings as well, we
defne thebond betweenf andn (f # n):
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Figure 5.3: A fragment of the movie database relational schema and a database instance as a graph

re(f)rn(n)

= e

(5.1)

We seb(f,n) = r p(f)rn(n) whenf = n.) A bond ranges fronfi0, 1], where a higher number
indicates a stronger bond. The tuning expohésta non-negative real tat controls the impact of

distance on the bond.

While a bond refects the relationship between two objects, in general we wish to measure
proximity by scoring eachrind object based on all objects in tidear set Depending on the
applicaion, we may wish to take different approaches for interpreting bondsNeaheobjects.

We discuss three possible scoring functions:

e Addive: In the query from our motivaiing example toFind movie Near Travolta Cage,’
(Section 5.1), our intuiion leads us to expectthat a flm closely related to both actors should

score higher than a flm closely related to only one. To capture this intuition, we score each

objectf based on the sum of its bonds wilsar objects:

score(f) = Z b(f,n)

neN

Here the score can be greater than 1.

(5.2)
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e Maximum In some setings, the maximum bond may be more important than the total num-
ber. Thus, we may defne
score(f) = max b(f,n) (6.3)

In this case, scores are always between 0 and 1.

e Bdliefs: We can treatbonds as beliefs [Goo61] that objects are related. For exampplese
that our graph represents the physical connections between electronic devices, such that two
objects close together in the graph are close together physically as well. Assume further that
rn gives our belief that &lear device is faulty (1 means we are sure itis faulty). Similarly,
rr can indicate the known status of fiend devices. Then, for a devigée F and a device
n € N, b(f,n) may give us the belief thdtis faulty due tor, since the closef is to afaulty
device, the more likely itis to be faulty. Our belief tfats faulty (between 0 and 1), given
the evidence of all thdlear objects, is:

score(f)=1- H (1=0(f,n)) (5.4)
neN
Of course other scoring functions may also be useful, depending on the applicaton. We expectthat
proximity search engines can provide several “ standard” scoring functons, and thatusers submitting
gueries will specify their intended scoring semantics. This approach is analogous to how users
specify what standard function (e.g., COUNT, MAX, AVG)to use in a statistical query. Inthe Lore
implementation, we currently only use the additive scoring function.

53 Lorelmplementation

We implemented our proximity architecture and algorithms within the Lore database management
system (Chapter 2). Proximity search extends the keyword searching facility described in Sec-
tion 4.3 1o provide effective search using multiple keywords, across an entire database. Any OEM
database can serve as inputto ooxpnity engine, with one slight modifcation: we enable Lore

to store weights on edges. Withoutthis feature, experiments showed thatthe “ diameter” of atypical
database was justtoo small; in other words, there was litie variation in distances and tbo many un-
related objects ended up“ tying” in proximity measurements. By adding weights, we can emphasize
the intended strength of relaionships indicated by edges in the database. Each edge in the database
may be assigned a specift weight, alternatively, weights may be specifed according to incoming
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labels or label paths. As a simple example, we could specify that all edges labeleshould be
assigned a certain weight Note also that our proximity search engine ignores the directionality of
an OEM graph: the distance from a parBrib its childC' always is the same as the distance from
CooP.

In our Lore implementation, we generate fHed andNear sets using théeyword search
interface described in Section 4.3. Recall that in an OEM database, a keyword can identify an
objectwith a specift incoming edge label, an atomic text objectwhose data contains the keyword,
or both. The two “ Category” drop-down menus in Fgure 5.1 provide an alphabetical list of unique
labels in the database; the number of unique labels is generally small, and the list can be very
helpful for specifying meaningful searches. Choosing a label from either menu adds thatlabel as a
keywordin the corresponding feld. For each keyword, we execute a ranked, single-keyword search
as described in Section 4.3; we add all matching objects, with their rankings Fiowxther Near
set as appropriate. Note that if multiple keywords are used to gendfated set (orNear set),
then we generate the appropriate set by performing single-keyword search on each keyword and
computing the union of all matching objects; currently this case is notan interesting application of
using muliiple keywords since the relationship is expected o exist across théntivand Near
sets, notwithin them.

Based on informal usdlty tests, we chose t settuningrametet to 2 in our bond defnition
(Equation 5.1), to weight nearby objects more heavily; this setiing causes a bond to drop quadrat-
cally as distance increases. We use the additive scoring function (Equation 5.2) to scéii@aach
object Together, our choice of tuningrameter andcoring function will give aind objectf 1
thatis 1 unitaway from &lear objectn  ; twice the score of &ind objectf - thatis 2 units away
from two Near objectsn 2 andn 3. Inthe user interface, we linearly scale and round all scores to be
integers.

Fgure 5.4 summares the results of several proximity search queries over our DBGroup database,
describing the members, projects, pablicaions of the Stanford Database Group, as used through-
out this thesis. The database has been built from scratch in OEM, containing about 4200 objects
and 3600 edges. Inialipplied distances are similar to those shown in Figure 5.3; for example, a
root objectis connected to gdlblications, projects, and group members via edges of weight 10,
publicaions are connected to their tiles via edges of weight 1, and group members are connected to
their publications via edges of weight4. Examples show that proximity search is a useful comple-
ment to traditional database queries, allowing userartw in on relevant data without having to
understand the nature of all database relationships, and without faltyfygpg structural queries.
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Find picture Near Photos of 6 Chinese students, followed
China by Prof. Widom, who advises 3 of them,
and Prof. Ullman, who advises 2

Find publication Near | All of Prof. Garcia-Molina's publications,
Garcia followed by publications of his students

Find publication Near| The top publications are co-authored by
Garcia Widom Profs. Garcia-Molina and Widom,
followed by their individual papers

Find group_member | The top results are members born in
Near September September

Find publication Near | The top pub. has "OEM" in its title,
OEM followed by a pub. stored in "oem.ps,"
followed by one with keyword "oem"

Fgure 5.4: Summary of Stanford Database Group keyword searches

At the same time, proximity search provides more expressive power and useful results than the
simple single-keyword search introduced in Chapter 4. Note that even in the Lore context this im-
plementation reflects justone particular set of choices for instantiating our proximity model—  how
we generate th€indNear sets, our initial ranking functions  » andr x, our tuning exponeritin

the bond defnition, and our choice of scoring function.

54 Computing Object Distances

For our proximity computations to be practical, we need to fnd the distances between pairs of
objects efftienty. In this section we discuss the limitations of naive strategies and then focus on
our techniques for generating indexes that provide fast access at search time.

Frst, we discuss thadmework for our distance computations. Assdribed in Section 5.2.1,
the proximity engine takes aggutFind andNear sets of OIDs, and a set of base distances between
adjacentobjects. L&t be the setof objects. We assume the distances are provided by the Distance
Module of Fgure 5.2 as aadge-listrelaion £, with twples of the fomu, v, w), if vertces
u,v € V share an edge of weight For convenience, we assume tat ;| cont@ins{u, v, w), if
(v, u, wyisin E. LetG refer to the graph representedby ;.

In graphG, we defned (u, v) to be the shortestweighted distance betweandv. (We will
drop the subscrigt if itis clear which graph we are referring t0.) As mentioned in Secton 5.2.1,
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our proximity search focuses on objects that are “ close” to each other. Hence, we assume all dis-
tances larger than soni€ are treated aso. In our prototype, seting’ = 12 for the IMDB and
DBGroup databases yields reasonable results, given the ingiglied distances.

54.1 NaiveApproaches

Atone extreme, we could answer a distance query by performing all required computation atsearch
ime. A classical algorithm to compute the shortest distance between two vertices is Dijkstra's
single-source shortest path algorithm [Dij59]. The algorithm produces the shortestdistance using a
“ bestfist’ search to compute shortestpaths. Ateach iteration, we explerg the vertices adja-
centto some vertex. While the algorithmis efftient for graphs in main memory, exploing’)

may require| N (v)| random seeks for an amdity dsk-based graph, and computing the shortest
distance could take as many|#s ;| random seeks. Note that this behavior persists even when we
are only interested in distances no larger tharfurther, since a geneiidndNear query requires
multiple distance computations, we would have to call the algotittir(| F'ind|, | Near|) imes.

(Each call to thelgorithm fnds the shortest path from a single given vertex to all others; we must
therefore run the algorithm over each vertex infi@ set or each vertex in tisear set)

Atthe other extreme, we could precompute shortestdistances between all pairs of verices and
store them in a lookup table for fast access. The classical algorithm to compute all-pairs shortest
distances is Hoyd-Warshall's dynamic pesgming basedigorithm [Ho62]. An obvious disk-
based extension of the algorithm requifg$ scans ofG. The algorithm could be redesigned to be
more efftienton disk, and this approach is similar to the algorithm we inroduce in the nextsection.
There has been much work on the related problem of computing the transitive closure of a graph. In
Section 5.6 we discuss these approaches and why they are notsuitable for our problem.

In the nextsection, we propose an approach for precomputing all-pairs distances offat most
that is effcient for disk-based graphs, using well-known techniques for processing “ self-joins” in
relational databases. Section 5.4.3 shows how we can exploit available main memory to further
improve both the space and time requirements of index construction.

54.2 Precomputing DistancesUsing“ Self-Joins’

We compute shortest paths between nodes up to some maximum distance by joimngedge-
listrelaion with itself, joining thatresultwith itself, and so on. We begin with a high-level, intuitve
explanation of our approach and then provide the actual algorithm. Givepateje-listF 18s
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inroduced in Section 5.4, we joii ; with itself by fhding tuples that share exacty one vertex in
common: if we fnd(v ;, v;, wx) and{v;, v}, wy) in E1, wherev ; # v}, then we produce an output
tuple of the form(v ;, v}, wi + wy,). Intitively, by performing this step we are asserting that the
distance fromv ; o v, is no greater tham 1. + wy,.

Letus create a temporary relaigh / that contains all uples i@ ; in additon to any joined
tuples as above (i.e., ples of the fofm ;, v}, wx + wy)). Note that for verices ; andv’, EY
contains tuples representing the distances of all possible paths between those two vertices through
atmostone other vertex. However, since our goal is to compute minimum distances, we ulimately
wantonly the shortestdistance between ; andv ;. We call E') annonreduced edge-list, since itmay
contain many tuples reggenting different distances between verticesratfsce £ 5 by extracting
only the tuple representing the minimum distance for any given vertex pair, and inserting this tuple
into E'5. We call E', areduced edge-list For any two vertices ; andv ;, E'; has at mostone tuple
representing the shortest path between them through at most one other vertex.

We could perform a self-join o0&’ , and continue repeating the process to identify eventually
the shortest paths between all pairs of verices. However, remember that we are only interested in
shortestpaths up to soré Thus, during the self-joinaf |, we will add an extra condition thatthe
sum of the weights of both edges mustbe less than or eqlial Tis flter will of course reduce
the size ofF';,. Thus,E , contains (at least) all shortest paths less than or equal to 2, assuming non-
negative initial weights greater than or equal to 1. Now, let us repeat the self-join process with -
to generateF 3, this ime preserving distances atmost4. TikIS, 3 is guaranteed to contain (at least)
all shortestpath lengths up to 4. If we perfojftog 5 K| joins, the fhal relation will contain tuples
of the form(v ;, v, wy) for all vertex pairs ;, v; with shortestpath lengtr ;. units @ 1 < K).

The algorithm described above is given explicitly in Figure 5.5. Step [1] intoduces a loop that
will perform all of the needed self-joins. Steps [2] — [7] perform the self-joirEbf;, leaving the
nonreduced resulti&’ ;, ;. Steps [8] — [10] compute the appropriaie minimum distances for each
vertex pair, producing the reduced edgedist ;. We call the fhal edge-listrelation generated by
the algorithnDist (Step [11]). By building an index on the fist columnbifst (Step [12]), we can
use itas a lookup table to find theneighborhoods of all verices— i.e., for a given vertaxwe can
quickly find the lengths of the shortest paths to all vertices that are withimits of v. Further,
querying ford(v ;, v;) is also efftient since we indeist, we can access the K-neighborhood of
v;, and look for a tuple of the forffv ;, v;, wy). If there is such a tuple, we know the distance to be
wy. If no such tuple exists, the distance is greater iiaand we returmc.
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Algorithm: Distance self-join

I nput: Edge seF |, Maximum required distancey

Output: Lookup tableDistsupplies the shortestdistance (ugdp between any pair of objects
[1] Fori=11to[log 4 K|

[2] CopyEyinb Ej_ ;.

[3] SortE; on fistvertex,// To improve performance

[4] Scan sorted ;:

[5] For each(v, v;, wg) and(v,, v}, wy) in Ey wherev; # v}

[6] If (g + wy, < K)

[7] Add (v, v}, wi + wy,) and{v ;, vy, wi, + wy) O E], .

[8] SortE; , onfistvertex, and store il ;.

[9] Scan sorted ;4 1:

[10] Remove twpldu, v, w), if there exists another wpler, v, w '), withw > w’.
[11] LetDistbe the fnalE ;4.

[12] Build index on fist vertex imist

Fgure 5.5: “ Self-Join” distance precomputation

The algorithm in Fgure 5.5 runs with litle 1O overhead, since sorting the data enables sequen-
tial rather than random accesses. Note that other efftient techniques are possible for computing
the self-join (such as hash joins), and in fact given ; we can use standard SQL t genefate ;.
First, assume that all tables have three coluronstl, oi d2, anddi st . Then, the following code
shows how to go fronF ; to E'5; it could be parametzed and embedded within the outer loop
(Step [1] of Fgure 5.5) to compute the eniest table.

Insertinto E 2
Selectnew oidl, new oid2, min(new disft)
From
(Selecttl.oid2 as new oidl, £2.0id2 as new oid2, (tL.dist +t2.dist) as new dist
FFomE1t,EAR
Where (tl.oid1 =t2.0id1) and (t1.dist+12.dist <=K) and (t1.0id2 <> t2.0id2)
Union
Selectoidl as new oidl, oid2 as new 0id2, distas new dist
From E_1)

Group by new_oid1, new oid2

Unfortunately, the construction ddist can be expensive. In Steps [5] — [7] of Fgure 5.5,
we produce the cross-product of each vertex neighborhood with itself. The size the cross-product
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Fgure 5.6: Hub vertices

could be as large d%’| ? in the worst-case. For instance, when we executed the self-join algorithm
on the 4MB edge-list for the IMDB database described in Section 5.1 Avits= 8, the edge-

list grew to about one gigabyte— 250 times larger than the initigli Soring and scanning

the large nonreduced edge-lists could be expensive as well. (\We haverotges that a SQL
implementation of this algorithm will be any less expensive.) In the nextsection, we propose a new
technique to alleviate this problem.

543 Hub Indexing

We now proposéub indexing, which allows us t compute shortestdistances using far less space
than required by the self-join algorithm of Section 5.4.2, with litle sacrifce in access time. We use
Fgure 5.6 to explain whéiubs are and how they can be used to compute distances efftienty. If
we execute our simple self-join algorithm from the previous section on the given graph, we will
explicity store distances for all pairs of vertices in the graph. In Figure 5.6 we see thatif we remove
p andg, the graph is disconnected into two sub-graghendB. 2 Rather than storing all4| x | B|
distances,gppose we store only the |+ | B| shortestdistances o the| A| 4| B| shortestdistances
to ¢, and the shortestdistance betwpemdg. Of course, the query procedure for such an approach
is slightly more complex. We can see that the shortest-path betweeA andb € B can be one
of a ~ p ~ b (notthroughy), a ~ ¢ ~ b (hotthrougtp), e ~ p ~ g ~ b, 0ra ~ ¢ ~ p ~ b. We
can computél(a, b) by finding these four distances and choosing the smallest

The above description gives the reader a rough idea of our approach. By fistismguch as
p andg, we can reduce sharply the storage required for a distance index, and we will show how to
handle the more complex query procedure efftiently. In addition, we can choose a hub set so that

2{p, q} is known as aeparaior in graph theory.
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the shortestdistances between them can be stored in main memory. As we will see in Section 5.5,
as we allocate more memory for hub storage, our total index size shrinks. Effectively choosing
hubs in an arhiéry graph is a ctienging problem, and is not the subjectof this thesis. However,
good hub selection algorithms basedalanced separators[LR88] do existand are discussed in
[GSVGM98]. Assuming we have a sethiibs, thefollowing sections describe how to build a hub
index and then answer distance queries using it

Constructing Hub I ndexes

As suggested by the above discussidmandexis represented by two key componentsulaset
H C V and atable of distances between pairs of objects whose shortest paths do not cross through
elements ofH. We redefne thd®ist lookup table from Section 5.4.2 to be this new table. As we
will discuss shortly, we actually transforf into a square matrix of inter-hub distances to increase
the speed of the overall hub index.

Given H, we can reuse the algorithm of Figure 5.5 almost verbatim to construct th®isew
table. The only required change is to Step [6], which we replace with:

[6'] If (wp+ w), < K)andv; ¢ H

By checking that ; is notin H we make sure that we do not consider any paths that cross hubs.
(Paths with hubs as endpoints are still considered.) Foreach’, Diststores all vertices reachable
within a distance of’ without crossing anyubs; we call this set of vases the “ hub-bordered”
neighborhood of.

As we will explain in the next section, pairwise distances betwaéis must be consulted
many times to evaluate a distance query. Fortunately, experinisaisssgled in Section 5.5 show
that even a small set of hubs greatly reduces total isdex Hence, our query algorithm assumes
thatthe pairwise distances of hllbs are available in main memory. Atindex creaion ime, we cre-
ate a square, in-memory adjacency matidbs such thatHubs[ i][h;] gives the shortest distance
betweerhubsh ; and’ ;. To do so, we frstinitialize each entry blubs to oo. Then, with one se-
quential scan oDist, for each edgéh ;, h;, wy), whereh;, h; € H, we seHubs[h ;][ ;] = wy. This
step“ short-cuts” the need to recompute all distances from scratch. Finally, we use Hoyd-Warshall's
algorithm to compute all-pairs shortest distancekblifs. We must conceptually consider paths
through non-hubs, but these were alreadyoanted for when generatimyjst tuples for paths from
one hub to another. Hoyd-Warshall works in-place, without requiring addiional memory. Because
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Algorithm: Pair wise distance querying

Input: Lookup table on diskDist, Lookup matrix in memoryHubs,
Maximum required distances’, Hub setH
Vertices to compute distance betweenw (u # v)

Return Value: Distance between andv: d

[1] If u,v € H, retumd =Hubs[u][v].

[2] d =0

[B]fueH

[4] Foreach(v,v;, wy) in Dist

[5] If e H //Patw~uv,;~wv

[6] d = min(d, w-+Hubsv;][u])

[7] If d > K, retund = oo, else returnl.

[8] Steps [4] — [7] are symmetic stepsiife H, andu ¢ H.

[9] // Neitheru norv is in H

[10] Cache in main-memong( ) all {u, v;, wy) from Dist

[11] Foreach(v, v/, wy) in Dist

[12] If (] = u)

[13] d =min(d,w},) // Patwu ~ v withoutcrossindwubs

[14] Foreachedgéu, v ;, wi) in E,

[15] If oy € Handv;, € H //Pathu ~ v ; ~ v} ~ v through hub vertices

[16] d = min(d, wy + wj,+Hubs[v ][v;])

[17]11f d > K, retund = oo, else returnl.

Figure 5.7: Pairwise distance querying

this matrix needs only to be created once, we fully materidtiales at index creation ime; there-
fore, itis actuallyHubs andDist that comprise the hub index on disk.

Since we keefhubs and their distances in memory, a hub index has the nice property that
answering a distance query requires less work on disk as more memory is made available. In fact, if
the entire adjacency matrix fts in memory, we can chddde bel” and eliminate query-time disk
access entirely. Our approach reveals a smooth transition to Hoyd-Warshall's algorithm as main
memory increases. The Proximity Engine administ(atyone in charge of building a hub index)
can specify a limitfor the number of hub points based on available memory.
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Querying Hub I ndexes

Given the disk-baseDist table and the in-memory matriidubs, we can compute the distance
between any two objectsandv using the algorithm in FHgure 5.7. The algorithm performs a case-
by-case analysis. To help explain the algorithm, we refer back to the graph in Figure 5.6, assuming
H = {p, q}. Steps [1] through [8] are straightforward, since these steps handle the case where one
or both ofu andv are inH. (In terms of FHgure 5.6, suppose thaandbry are in{p, ¢}.) Steps

[10] through [17] address the case where neither input vertexis. isteps [12] — [13] consider

the case where the shortest path frerlo v does not go through any of the vericesHnand its

distance is therefore explicity storedist. (In Figure 5.6, consider the case where both vertices

are inA.) Steps [14] — [16] handle shortest paths through verticd$,isuch as a path from any

a € Atoanyb € B inthe fgure.

If both u andv are inH, no disk 10 is performed. Recall tatstis indexed based on the fist
vertex of each edge. Hence, if eitheor v is in H, one random disk seek 2 is performed to access
the hub-borderedaighborhood ot or u (Steps [4] — [8]). If neither norv is in H, two random
disk seeks are performed to accesstite-borderede@ighborhoods of both andv (Steps [10] and
[11]). The algorithm implicity assumes that theb-bordered @ighborhood for any given vertex
can be cached into memory (Step [10]). Since we use hubs, and givEnithgenerally small, we
expectthis assumption to be safe. Additional buffering techniques can be employed if needed.

Generalizingto Set Queries

The previous section discussed how o use a hub index to look up the distance between a single pair
of objects. As described in Section 5.2.1, howevéindNear query needs the distance between
eachFind and eachNear object For instance, we may need to look up the pairwise distances
betweenFind = {v1,v2} andNear = {vs, vy, v5} The naive approach is o check the hub index
for each of{vy, v}, {v1, v4}, {v1, 05}, {v2, v3}, and so on. When we haZé Find objects andV
Near objects, this approach will require ab@uk F' x N disk seeks, impractical i and N are
large. If theDisttable data for all of either thEind or the Near objects fis in main memory, we
can easily perform alFindNear distance lookups i + N seeks. If not, we can still buffer large
portions of data in memory to improve performance.

In some cases, evehn + N seeks may stll be o slow. Our movie database, for example,
contains about 6500 actors. Hence, fnding the resultto a query Hitel“actor Ne ar Travolta”  will

3 For clarity of expositon, we do not menton aagidiionalseeks required © navigate the index. “ One” seek may
ranslate o wo or three, depending on the index.
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take at least 6500 seeks. To avoid such cases, we allow engine administrators to specify object
clustering rules. For example, by clustering all “ actors” togeth@isiwe avoid random seeks

and execute the queries efftienty. Our engine is general enough to cluster datiyaldzised on

user speciftcaions. In our Lore implementation (Section 5.3), we cluster based on labels, such as
“ Actor,” “ Movie,” “ Producer,” etc. Note that this approach increases the space requireménts of
because these clusters need not be disjoint To mitigate the replication, preliminary investigation
suggests that we can signifcanty compress vertex neighborhoods on disk, discussed further in the
nextsection.

55 Perfor mance Experiments

We now study some performeerrelated aspects of building hub indexes. Questions we address in
this section include:

1. Given a small, fked number of hubs, what are the space and time requirements of hub index
constructon?

2. How do the algorithms scale with larger databases?
3. Whatis the impact of selecting fewer or mbigbs on the index construction ime?

4. How fastis query execution? For our experiments, we used a Sun SPARCRIta 200
MHz) running SunOS 5.6, wita56 MBs of RAM, and18 GBs of local disk space.

To answer the above questionsin a realistic scenario, we experimented with the IMDB database
inroduced in Section 5.1. Since the database is relatively small (the IMDB edge-listis about4MB),
we builta generator that takes an inpugedist and scales the database by any given factive
do not simply copy the database to scale it rather we compute statistics on the small database and
produce a new, larger database with similar charaatsrigtor instance, the percentage of popular
actors will be maintained in the scaled-up version, and this set of actors will be acting in a scaled-
up number of new movies. Similarly, movies will have the same distribution of actors from the
common pool ofS imes as many actors, and the ratio of “ romance”vi@eto “ action” movies will
stay aboutthe same. Since our generator produces the graphs based on a real database, we believe it
gives us a good testbed to evaluate our algorithms empirically. While we think the structure of our
data is typical of many datadas, of course itdoes notrefect every possitpetigraph.
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Fgure 5.8: Space required with varying K Fgure 5.9: Index creation ime with varying K

Frst, we discuss index perfoance when the number ofibs is fked ata “ small” number.
Recall from Section 5.4.3 that the algorithm requires teargastorage (for the nonreduced edge-
lists) before creating and indexing the fnal reduced edg®ilsst For our experiments, we build
an ISAM index over the fnal edge-list other indexing techniques, such as a B-tree or a disk-based
hash table, are of course possible. Figure 5.8 shows theremnpod fhal space requirements of
the Dist table for different values of<. We defie the space required as a multiple of the size of
the original hput For this graph, we set scaling factoe= 10 and we choose no more thards %
of the vertices atiubs. For this case (about 40MB of data), we requiesd than 250K of main
memory o store oudubs matiix. We see that both the temporary and fhal space requirements for
Dist can getlarge. Fak = 12 (the K used for our prototype in Section 5.3), the temappand
fnal space requirements are about12 times and 6 times larger than the geplistdespectively.
Similarly, FHgure 5.9 reports the total ime to create a hub index for different valugs &k see
guadratic growth of both space and ime requirements, due to the quadratic growth in the size of a
vertex neighborhood. Momentarily we will show thatincreasing the numbeutas reduces space
and time requirements.

Next, we consider how our algorithms scale as the databases grow in size. In Figure 5.10 we
show the total storage required to store the fnal index when we (again) choose no maig/thah
vertices afubs, fork = 12. The key pointto note from this graph is thatthe storage consumption
scales linearly, despite the fact that the large scaled databases are tightly interconnected (i.e., have
many eges).
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Fgure 5.10: Total storage with varying scale Fgure 5.11: Space ratio vs. number of hubs

In Fgure 5.11, we see that relatively small increases in the number of hubsacaichlly
reduce the storage requirements oflhg table. Again, we consider the case wh&re= 10 and
K = 12. Frst, notice thatif we choose fewer a3 % of vertices adubs, we needignifcanty
more space  store tidist table; recall that we degenerate to the self-join algorithm when no
hubs areselected. If we can choose upif of veriices ashubs we see that the storage ratio
for the fhal Dist table drops o abo®.93. As we mentioned earlier, the graph shows that our
algorithm smoothly transitions into a main-memory shortestpath computation as more memory is
made available. The index construction ime also follows a trend similar to the space requirements,
as shown in Fgure 5.12.

Finally, we give some examples of query execution time. As can be expected, query imes
vary based on the size of theput sets. Consider yet again the querfifid movie Near Travolta
Cage.” Inour (unscaled) IMDB databask;ind| ~ 2000 and|Near| = 2. With “ movie” objects
clustered together and no more t2ad% of the vertices atubs, the query takes 1.52conds
(beyond the=indNear queries executed by Lore). For the querfitid movie Nearlocaton,” where
|F'ind| ~ 2000 and|Near| ~ 200, execution takes 2.78 seconds. To measure the impacbsf
on gquery time, fistwe setall vertices to habs andecorded the average query tipéor several
“ representative” queries such as those proposed in Section 5.1. Then, we varied the ntwitr of
and issued the same queriesymaizing the query time by. As seen in Fgure 5.13, query time
improves as more hubs aelected; coupled with the large decrease inindex size and creation ime,
hub indexing is a promising technique.
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56 Related Wor k

Most existing approaches fougporiing poximity search in databases are resticted to search-

ing only within specift felds in relational databases known to store unstructured text [Ora99,
DM97]. Searches do notconsider interrelationships between differentfelds, unless manually spec-
ifed through a query. One company, Data Testbgies Lid. (www.dt.co.il)marketed technology

for plain language search over databases, buto the bestof our knowledge their algorithms have not
been made public.

There has been extensive work on the problem of computingahgtive closure of a disk-
residentdirected graph, stricly more general than the problem of computing shortestdistances up to
somek . [DR94] examines manygorithms for this problem andipplies comgrative performance
evaluation, as well as discussion of useful measures of rpgfee. In principle, itis @ssible
to apply these algorithms to our problem. However, full transitve closure is a somewhat more
general problem from our shortest-paths problem, so our specialized algorithms perform better.
Furthermore, the algorithms in [DR94] perform all computaiions at query ime.



Chapter 6

XML Supportin Lore, DataGuides, and
Proximity Sear ch

The recent emergence BIML (the eXtensible Markup Language) as a new standard for data rep-
resentaion and exchange on the World-Wide Web has drawn signifcant attention [XML98]. As
discussed in Chapter 1, there is a striking similarity between XML and semistructured data models
such as OEM (Chapter 2). Until now, this thesis has focused on OEM, which formed the original
basis for most of our research. This chapter describes the modiftations and extensions we have
made to apply our work to XML as well. In Section 6.1, we provide some background on XML.
Next, in Section 6.2, we defne an XML data model— a subtly challenging task given that XML
itself is justa textual language. In Section 6.3 we give an overview of how we can encode our XML
data model in OEM. We describe briefly changekdoel, Lore's query language, in Section 6.4.
Next, we focus on how we can change DataGuides (Chapter 3) and proximity search (Chapter 5)
to work with XML, in Sections 6.5 and 6.6, respectively. We pay special attention to how we can
incorporate the inherent ordering presentin XML data, since our original work was in the context
of the unordered OEM model.

Some of the work in this chapter frst appeared in [GMW99].

6.1 XML Background and Comparison With OEM

XML is a textual language quickly gaining in popularity for data representation and exchange on the
Web [XML98]. XML datais specifed in documents, containing nested, tagigednts. Lexically,
each tagged element has a sequence of zero or more atributei/alue pairs, and a sequence of zero or

88
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moresubel eents. These subelements may themselves be tagged elements, orthey may be “ tagless”
segments of textdata. Consider the following simple example.

<DBGroup>
<Member Name= Smith” >
<Age >28<Age >
<Member>
<Member>
<Name >Jones <Name >
<Advisor>Ulman<Advisor>
<Member>
<Project>
< Title >Lore </Title >
<Project>

<DBGroup>

Note that XML poses no restiictions on consistency acrosshagse is an atfribute of on#le mber
element, and itis a subelement of the other.

Because XML was defned as a textual language rather than a data model, an XML document
always has implicitorder— an order thatmay or may notbe relevantbutis nonetheless unavoidable
in a textual representation. vell-formed XML document places no restictions on tags, attribute
names, or nesting patemns. Altermatively, a document can be accompanidabbynaent Type
Defiition (DTD), essentially a ggmmar for resticting the tags and structure of a document. An
XML document satisfying a DTD @mmar is consideradlid. While not exactly a data model,

a standardocunent Object Model (DOM) for XML has been defned [ABea98], allowing XML
to be manipulated by software. The DOM defnes how to translate an XML document into data
structures and thus can serve as a starting pointfor any XML data model.

In contrast, recall that OEM (Chapter 2) is not an ordered data model: each objecthas an un-
ordered set of subobjects. Further, OEM does not have an analogous concept of atibutes— only
subobjects. More subtly, in OEM labels on edges are used only as entry points (Section 2.2 and
to denote relationships— an OEM object need not have a single label thatit“ owns.” In contrast,
the XML DOM specifes that each (hon-text) element contains its own identfying tag. Another
difference is that the XML DOM today does not support graph structure directly, no doubt an arti-
fact of XML's document orientation. Currently, XML uses special atiribute types to encode graph
structure. An element can have a single atribute of iogas specifed in the DTD) whose value
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provides a unique identifer that can be referenced by atributes of B&- or IDREFS from
other elements. Letus extend the above example o have such atributes:

<DBGroup>

<Member Name= Smit” Advisor=' m1” >
<Age >28<Age >

<Member>

<Member ID=" m1” Project= p1” >
<Name >Jones <Name >
<Advisor>Ulman<Advisor>

<Member>

<ProjectID= p1” Member= ml1” >
< Title >Lore </Title >

<Project>

<DBGroup>

Assume atiributdD is of type ID, and that atiributeBroje ct, Advisor, andMe mber are of type
IDREF. The above example encodes a graph wher&dheber, Project, and Advisor attributes
serve as labeled references to the elements with correspoDditiiputes. !

XML's “ second-class” w@gpportof graph structure leads t interestiegidions in specifying a
true data model and query language. Should an XML data model be a tree thatcorresponds to XML's
text representation (like ti@BOM), or a graph that includes the intended links? Our view is that
both approaches are important. In some situations, an application may wish t process XML data
as a literal ree, where IDREHS) atributes are nothing more than text stings. In other situations,
an application may wish to process XML data as its intended semantic graph. Our decision is
to support both modes—Iliteral andsermantic— that a user or application can select between. The
choice of mode has a directimpact on query evaluation and results, as we will see later.

6.2 LoresXML DataModd

In our data model, an XML elementis modeled as afgif, value), whereeidis a uniquesl emrent
identifer, andvalue is either an atomic textstring or a complex value containing the following four
components:

L Unforunately, as of this writng a DTD is required iesify atribute types, so day itis common o use inelegant
heuristics © deduce IDIDREFIDREFS types when a DTD is notavailable. \We assume that any atributrnamed
of ype ID, and tat any atribute whose value is appelaswvhere as db value is of ype IDREF If the atribute is a
sequence of space-separdizdalues, we assume type IDREFS.
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1. A stiing-valuedtag corresponding to the XML tag for that element.

2. Anordered listof atiribute-nameatomic-value pairs, where each atribute-name is a sting and
each atomic-value has an atomic typé drawn frominte ger, real, string, efc., oD, IDREF, or
IDREFS.

3. An ordered list ofcrosslink subelements of the form (label, eid), wherelabel is a sting,
inroduced via an attribute of typeREF or IDREFS.

4. Anordered listohormal subelements of the form(label, eid), introduced via lexical nesting
within an XML document

We differentiate normal satbements (4) from crosslink subelements (3) so we capat both
literal and semantic modes, as motivated in Section 6.1.

An XML document is mapped easily into our data model. Note that we ignore comments and
whitespace between tagged elements. As a base case, textbetween tags is translated into an atomic
text element, we do the same thing fODATA sections, used in XML o escape text that might
otherwise be interpreted asarkup [XML98]. Othewise, a document elementis translated into a
complex data element such that

1. The tag of the data elementis the tag of the documentelement

2. The listof atribute-nameAtomic-value pairs in the data elementis derived directly from the
documentelements atiribute list

3. For each atiribute valueof type IDREF in the document element, or comporieoik an
atribute value of type IDREFS, there is one crosslink subele(haioel, eid) in the data
element, wheréabel is the corresponding attribute name adiidentifes the unique data
elementwhoséD atiribute value matche's

4. The subelements of the document element appear, in order, astia suelements of the
data element. The label for each data subelementis the tag of that document subelement, or
Texif the document subelementis atomic.

Once an XML documentis mapped into our data model itis convenientto visualize the data as
adirected, labeled, ordered graph. The nodes in the graph representthe data elements and the edges

ZWhile the XML speciftation does not include atribute types, some extensions do and we have chosen o include
them.
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Figure 6.1: An XML documentand its graph

represent the elementsubelement relationship. Each node representing a complex data element
contains a tag and an ordered list of atiribute-nameaAtomic-value pairs; atomic data element nodes
contain string values. There are two different types of edges in the graph: (i) normekireaht

edges, labeled with the tag of the destination subelement, (jii) crosslink edges, labeled with the
atribute name that introduced the crosslink. Notice that the graph representaion is isomorphic to

the data model, so they can be discussed interchangeably.

As mentioned earlier, itis useful to view the XML data in one of two modesantic orliteral.
Semantic mode is used when the user or applicaion wishes to view the database as an interconnected
graph. The graph representing the semantic mode omits attributes of type IDREF and IDREFS, and
the distinction between subelementand crosslink edges is gone. Literal mode is available when the
user wishes t view the database as an XML document IDREF and IDREFS atiributes are visible
as textual strings, while crosslink edges are invisible. In literal mode, the database is always a tree.

Figure 6.1 shows the small sample XML document from Section 6.1 and the graph represen-
tation in our data model. Eids appear within nodes and are writen as &1, &2, efc. Atrribute-
nameatomic-value pairs are shown nextto the associated nodear{daddy{}), with IDREF
atributes in italics. Subelementedges are solid and crosslink edges are dashed. The order between
subelements is left-to-right We have not shown the tag associated with each element since itis
straightforward to deduce for this simple database. (For example, hode &3 hasviseris and
notAdvisor.) Note thatthe roottag of the XML documentis modeled as an objectwith an incoming
label, in the spirit ofentry points as introduced in Section 2.2. In semantic mode, the database in
Fgure 6.1 does notinclude the (italicized) IDREF atributes. Inliteral mode, the (dashed) crosslinks
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are notincluded.

6.3 Encoding XML in OEM

In Lore, we decided to encode our XML data model in OEM. Because the graph-based XML model
defned in Section 6.2 is so similar to OEM, the mapping is quite staightforward. Further, an
encoding strategy allowed us to reuse many of the s#gagitams and much of the same code in
Lore for XML. In particular, as we will discuss in Sections 6.5 and 6.6, we were able reuse our
existing approaches for computing DataGuides and proximity search over OEM for XML as well,
with only a few changes discussed in those sections.

The graph presentedin Fgure 6.1 is“ almost’ OEM,; itrepresents much of our encoding scheme.
In particular, elements correspond to objects, and incoming objectedges are labeled with either the
tag of the destination subelement (formal sulelements) or, for crosslink edges, the attribute
name thatintroduced the crosslink. (In literal mode, crosslink edges are left out entirely.)

We assume that an XML graph is ordered. While OEM itself is unordered, we assume that
a system gpporting OEM (such as Lore) can indeedg@rve the order of data as it is loaded.
Thus, when XML is encoded in OEM within Lore, we createoetiered OEM graph. This order is
preserved during query processing, assuring that an XML query will retum data in the same order
itwas created.

There are two important differences in our actual OEM encoding. Frst, each non-crosslink
atiribute A of an elemenk is encoded as an atomic subobféct 4 of the objectcorresponding o:
the labelA is marked specially so that the system knows the subobject represents an attribute and
nota subelement, and the value of atribliis stored as the value 6f 4. Second, every objectcan,
when necessy, store secial “ metadata” thatcontains its tue XML tag, along with imfiation that
differentiates between noal sulelements and crosslinks. Intentionally, most of the Lore system
does notneed to be aware of this special metadata.

Note that Lore has no problem processing and displaying raw OEM as XML. Subobjects are al-
ways translated t subelements, since OEM has no notion of atributes. Atomic values are translated
to free text Further, since there is no special “ metadata,” tag names are always derived from the
incoming edge label traversed to display the element, and there are no crosslinks. Finally, several
differenttechniques are available for breaking OEM cycles for the purposes of serial XML output
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| Qualifcation Symbol Example Yemantic Matches Literal Maiches |
Subelements only|> DB.Member>Name &6 &6
DB.Member>Advisor &3, &7 &7
Atributes only Q DB.Member.@ Name  *“| Smith” “ Smith”
DB.Member.@ Adisor |enpty ' ml”
None None DB.Member.Adisor &3, &7 &7," ml”

Table 6.1: Path expression qualifers

64 LoresXML QueryL anguage

We now briefly discuss modifcations we have made to the Lorel query language (Chapter 2) to
accommodate the differences between our new XML data model and OEM, and to exploit XML
features notpresentin OEM. Although nota core contribution of this thesis, this work was a natural
extension of our efforts to make the Lore systampport XML “ across the board” Recall that a
database in our XML data model can be interpreted eitraaniantic node or inliteral mode. For

simplicity letus assume thatthe desired mode is selected for each query posed againstthe database.

Distinguishing between attributes and subelements. Recall from Chapter 2 thaath expres-

sions are the basic building blocks of Lorel, and that during query evaluation, path expressions are
maiched to paths in the database graph. For XML, we extend the meaning of path expressions o
navigate both attributes and subelements, and we intrquicexpression qualifersin order o
distinguish between the two when desired. We use the optional syniiiefiore a label to indicate
matching subelements only, and the optional syr@bab indicate matching atiributes only. When

no qualifer is given, both atributes and subelements are matched— we expect this © be the most
common case. Table 6.1 shows simple examples of path expressions with qualifers applied over
the database in Figure 6.1. Recall from Section 6.2 thatin semantic mode IDRENS) atributes are
notvisible, while in literal mode IDREHS) are treated like other atfributes and crosslink edges are
notvisible.

Comparisons. We anticipate thanany different kinds of compaions may be useful in queries
over XML data. For example, constants mightbe compared against atribute values or againstele-
menttext In other settings, we mightwantto compare againsta serialization of all textelements in
an XML subtree, ignoring markup. In graph-structured data, we might wantto testfor eid equality.
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Rather than supparany distinctcompason operators, we decided instead that for the purpose of
comparisons we would treat each XML component as some kind of atomic value, either through
default behavior or via explicittrangfmation functions.

Atribute values are always atomic. For elements, Table 6.2 describes several built-in functons
that can be used to transform an element into a sting, and can be used outside of comparisons if
desired, e.g., in theelectclause. (Each function returhBJLL if called over an atribute instead of
an element) Since itis inconvenientfor a user to have to specify functons for every comparison,
keeping in the spiritof Lorel we set default semantics when functions areppitesd based on our
impression of the mostcommon and intuitive uses:

1. Foran aomicText) element, the defaultvalue is the textitself.

2. For elements that have no atributes and only one or moteelements as children, the
default value is the concatenation of the children's text values (a resticted cas€arfi-the
catenate function).

3. For all other elements, the default value is the elements eid represented as a sfiiag (the

function).

Banple: Suppose we are looking for a group member whose advisoris “ Ullman” . In the original
version of LorelDPBGroup.Me mber.Advis or=" Ullman” does the trick. Based on Figure 6.1 itappears
that for our XML data model we mustwriBBGroup.Me mber.Advisor.Text=" Ullman” ,and indeed

this expression will give us the correct answer. However, the former comparison also will give
us the correct answer by virtue of default semantics case (2) above. In general, we have found that
mostLorel queries designed for an OEM database can be used unmodifed on a corresponding XML
database, such as the simple example we have justshown.

Additional features. Lorel has been extended with several additional features related to XML,
described in [GMW99]. These features incluadege qualifersfor requesting specift ranges of
subelements based on the order of subelements with a given tag; a way to order query results based
on order in the original document; ransf@tion and restructuring of query results; and modifca-

tions to the Lorel update language.



CHAPTER 6. XML SUPPORT IN LORE, DATAGUIDES, AND PROXIMITY SEARCH 96

| Function | Description \
Hatten¢) Ignoring all tags, recursively serializes all textvalues in the subtree rooted
atelement (following normal sulelements only).

Concatenate] Concatenates all immediate textchildren of an elementand ignores

all other subelements.

Tage) Returns the XML tag of an element
Eid(e) Retumns a string representation of the eid of element
XML(e) Transforms the graph, starting with elemerihto an XML document.

Note that there is no single “ correct’” way to generate an XML
document from graph-structured data, so itwill be diffcultto use this option
to compare againststring constants.

Table 6.2: Functions to produce differentinterpretations for comparisons

6.5 DataGuidesfor XML

As described in Chapter 3 ataGuideis a concise, accurate structurahsuary of a semistruc-
tured database. DataGuides are constructed and maintained dynamically from a database, and they
have proved useful for a variety of purposes: browsing, query formulation, storing statistics, query
optimization, and most recently compression of XML data [LS00]. DataGuides were defned in
Chapter 3 in the context of the OEM model: DataGuides summarize unordered OEMeaigtaba
and a DataGuide is itself an unordered OEM object. Recall from Chapter 3 that a DatéGafide
a graph-structured source databses itself a graph such that every label path from the roddof
appears exactly once (s, and every label path from the rootGfappears irD.

Itis straightforward to use our original DataGuide algorithms to create and maintain unordered
XML DataGuides over XML data. We take advantage of the fact thatthe XML is encoded in OEM,
as discussedin Section 6.3. First, we decide whether the OEM encoding should refiect literal mode
(in which the case the OEM database is a tree) or semantic node (in which the database is a graph).
In either case, we run the original DataGuide algorithm as-is over our OEM encoding, and the
resulting structure can be interpreted (exported) as well-formed XML. Because atomic values are
by defnition left out of DataGuides, atfributes in an XML DataGuide are empty (AYIE= "),
and any free textbetween tags is omitied as well. Alternatively, the XML DataGuide can be explored
as graph in the same way we explore OEM DataGuides (Chapter 3}—  with the small difference that
atributes are marked with@ and other subelements arerked with g>. Currently the special
“ metadata” mentioned in Section 6.3 is ignored during DataGuide creation. Tree structured data is
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Fgure 6.2: Graph repsentation of XML for DataGuide example

not affected, but for graph-structured data the notion of an elementsargti tag islost; instead,
tag names are derived based on incoming edges during traversal as described in Section 6.3, and
sublements links are notdistinguished from crosslinks.
Before further discussion of XML DataGuides, let us address briefly the relationship between
XML DTDs and DataGuides. Recall from Section 6.1 that a DTD isaangnar that resticts the
tags, atributes, and nesting structure of an XML document DTDs are notrequired to accompany
XML; when a DTD is notsupplied, the notion of a DataGuide is justas important for XML as for
OEM. When aDTD is available, we can build4mprox mate DataGuide (see Section 3.7) from the
DTD that can be used by the Lore system, such as in the user interface and for the query warning
system (Chapter 3). Note that DTDs currently do nprt graph structure beyond restricting
atribute types to ID and IDREFS), so DataGuides are more expressive than DTDs in this regard.
Inthe remainder of this section, we address the issue of ordering in XML DataGuides. Consider
the following tiny snippet of abstract XML data, contrived to illustrate a point

<X> <AL <AB<BE<ChH<K>
<X> <A< Ch<DE><X>

<X><Bb<AB<CLE<DE<K>
<X><AB<BE<CE<DE<K>

The graph representaiion of this XML is shown in Fgure 6.2; in this case, since there are no at
tributes or free text, translation to and from OEM is tivial. (The OEM graph is actually ordered on
disk, as discussed in Section 6.3; however, the original DataGuide algorithm ignores order.) Using
our standard DataGuide algorithm over this graph, the resultis shown in Figure 6.3. The output
of the original DataGuide algorithm is an unordered graph. For this example, our challenge is o
impose a useful order over the subelemen® @f somehow reflect the order of the original data.
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In particular, one possible permutaton is:

<X><Ab><Bb<CH<DbE< K>

Given the DataGuide graph, each remaining permutation of,8eC, andD subelements forms
an equivalentrepresentaion of Fgure 6.3.

When we take order into account, we would like to preserve the original defnition of a DataGuide
as much as possible, but extend the defnition torearize the order of setements as well as
the overall structure. We thus propose o keep the size of the ordered DataGuide the same as the
size of the unordered DataGuide, choosing the “ best’ subelementordering for each elementin the
DataGuide. (If we wantto store further information about the actual orderings, vesmzate the
DataGuide elements, as described in Section 3.2.3.)

In our example, intuitive W ABCD does the best job of approximating the subelement order for
the X instances in the source datais the frst subelementin 75% of the instandg@$pllows A in
two instances and precedes itin o@dpllows A andB in all three instances where they all appear;
andD is lastin the three instances its a part of. While itmay be easy to choose a“ best’ order for
this simple example, itis a challenge to defne the “ best’ order for an XML DataGuide in general,
and the defnition could easily change depending on the applicaton. Hence, we have devised several
strategies for smmarization and report on their effectiveness through an experimental framework.

6.5.1 Problem For mulation

The problem of ordering a DataGuide can be broken down recursively into the problem of ordering
the subelements of each DataGuide element (If we also wish to order the atiributes of each element,
the problem can be treated in the same way.) Suppose we create an XML Dat@@didesource
databasé). Consider any elemeain G, reachable frond's rootby some sequence of ag¢By
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the defiition of a strong DataGuideis the only element it reachable vig; see Section 3.2.1.)
LetT be the setof elements in databd3eeachable by. (In Secton 3.2.1 we defri€ as the
target set of p in D.) By the original DataGuide defhiion, each unique subelement tag of the
elements irf" appears exactly once as a subelementtag ad as discussed above we retain this
requirementin the presence of order. To order the DataGuide, we must order the subelements of
each such elemeat We will do so based on subelementordering in all of the elemeiffits in

The problem can be stated more formally (and abstractly) as follows. Considefa=set
{o1,...,0n}, Where eaclr ; is a sequence of labels. Constructa single sequemddabels that
“ best” summadees the sequencesihwheres contains each label appearing inany ; exactly once.
S corresponds to targetsBio 1, ..., 0, o the elements i, and eaclr ; encodes the subelement
ordering of one elementd. In our simple example at the start of this secti®nr={AABC, ACD,
BACD, ABCD} and we constructed =ABCD.

6.5.2 Algorithms

We now describe three proposed algorithms for solving the problem specifed in Secton 6.5.1. Note
that for the simple example given atthe beginning of Section 6.5, all three algorithmsAggect

(which was seen to be the “ best’ permutation). The algorithms are evaluated experimentally in
Section 6.5.3.

Greedy

One option is o use a simple greedy algorithm to generdtem S = {o¢  ,...,0,}. To begin,
selectthe label. thatappears atthe head of the largestnumber of sequergelsabel . becomes

the fist label inoc. Remove all instances df from .S, and repeat the process until all sequences

in S are emptys will contain all labels exactly once. This algorithm is simple and can effectively
summarizesequence order imany caes, but there are several situatons where it can produce
counterintuitive results. Consider:

S ={BABB, BABB, BABB, ABB, ABB, XABB}

For this input, the greedyigorithm will constructBAX. However, this choice does a poor job of
reflecting the fact tha precede® in the data far more often th&nprecedes.
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Edit Distance

A more intricate algorithm can be constructed usiingng edit distance [Gus97], which measures
the minimum number of character inserioralgtions, or changes required to transform one string
into another. (For example, the wordsll andstil have an edit distance of 3: starting wital, we
can change the to s, change they to t, and insertan Note that edit distance is symmetic.)
With a brute force approach, we can consider as candidatesdibpermutations of all labels
in any ;. Then we compute the sum of the edit distances from each candidatell of the
sequences 5. The ¢ permutation with the minimum overall edit distance is selected. For the
example sequenceabove ABX andAXB tie as the best permutations according to this algorithm.
There are manygssible ways to further tune this approach. For example, different costs may
be assigned to different edit functions: to account for consecutive labelsnpasequence, we
mightwantto setthe costof a label deletion to be cheaper if its exacty the same as either adjacent
label. Another possibility is 1o use a non-linear combination of the edit distancessfrionthe
sequences iff 1o enhance (or mitigate) the impact of any particular sequence within the set
Unfortunately, this algorithm can be extremely expensive computationally, so pruning strategies
would be essential to making it practical in general.

Weighted Aver ages

For our third algorithm, we calculate the average sequence position for every label across all se-
guences irb and then pick a fhal sequence thatmost closely matches the average sequence number
for each label. Here, we explicitly collapse consecutive identical labels to compute sequence posi-
tions.

More speciftally, conside$ = {o 1,...,0,}. Arst, for eachv ; and each unique labdl in
o;, We computepos(L, o ;): the average positon df in ¢ ;, after collapsing consecutive identical
labels. As a simple examplgys(B, AAABBBCC)is 2, since after collapsing consecutive laliels
the second label. When a label appears in more than one positionin a sequence, we use the number
of consecutive instances at each position to weightthe fnal average. For exas({BeBBBAB)
is 1.5:(3 x 1+ 3)/4, while pos(B, BAB)is 2: (1 + 3)/2. Finally, letS , be the setof sequences;
in S such thaf. appears ir ;. The fhal average position fdris computed as:

Z pos(L, 0;)

o,€5],
|SL|
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To illustrate this algorithm, consider the followingput data.
S ={AAABCDC, BAC, AMACCCDC}
For this data, we compute the following positions:

pos(A, o1) =1; pos(A, o 2)=2;pos(A, o 3)=1
pos(B,01)=2;pos(B, o 2)=1

pos(C, 01) =4; pos(C, o 2) =3;pos(C, o 3) =2.5
pos(D, 01) =4; pos(D, ¢ 3) =3

The fhal positions foA, B, C, andD are approximately 1.3, 1.5, 3.2, and 3.5, respectively, leaving
ABCD as the fhal choice far. For the example sequengen Section 6.5.2, this algorithm selects
XAB.

6.5.3 Experimental Framewor k and Per for mance Results

To evaluate our different algorithms over large data sets, we created a simple program thatgenerates
sets of label sequences with varyinguatterists. The language of possible labels consists of the
lettersA- Z, both in upper and lower case. The program takes a lottery-based approwdting p

labels to constructa sequence. Givenrgutinteger prametet, the fist label picked will be

times more likely to be aa than any other letter (each of which has an equal chance to be picked).
The second label picked will keimes more likely to be & than any other letter, and so on, for up

to [ letters, wherd is an input prameter that can vary from 1 to 26. The lower-case |etidrde

addressed momentarily. Each ime a label is selected, we have another * lottery” 1o determine how
many cosecutive instances of that label to include in the sequence. We make itequally likely that
1,2, 3,..., f consecutive instances are included, wheie an input @rameter. A third parameter

is n, for noise, intended to model the occasional inclusion of atypical labels— as may happen with
semistructured data. Before selecting each new label for the sequence, with chancesiveit of

will inserta randomly selected lower-case leter into the sequence.

As an example let us s&t (for 5 upper-case lalis),t=20 (making the odds 2024 that the
rightlabel will be picked at each step, since the other four labels all have an equal chance of being
picked),f=5 for moderate repetition, amd:10 for some noise. The following results representone
run to generate 10 sequences.

CABBBBBBEEEE
cAAAABBBBADDDDBB
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AAAACCCCDDDE
AAAABBBBCCCCDDDEEEE
hAAABNCCDDEE
AAAAAhCCDDDDEE
AAAAAAACDDDDbEE
AEEEECCCBEEE
ABCCCCaDDE

ABBBBCCCDE

To compare the effectiveness of our algorithms from Section 6.5.2, we measure how often each
algorithm chooses a“ correct’ permutaiion as we varyripatirameters. In this setiing, we say
a permutation is “ correct’ iR, B, C, and so on all appear within the permutation in lexicographic
order. ThatisA precede®, which precede€, and so on. We ignore any noise labels when deter-
mining whether a permutation is correct. A good algorithm should selecta “ correct’ permutation
more often ag increases (since labels are more likely to be chosen in order) andnaseases
(since noise is less likely to be added between labels). Furthermore, if an algorithm can consistenty
selectthe cormectresultfor smalteandn, then itis likely to do well in practice atfnding intuitive
permutations.

Note thatwe are not measuring running time in these experiments, only effectivesekxin
ing a good permutation. Both the weighted averages and greedy algorithms are lineairig r
time with respect to the total number of labels in all the sequences, while the edit distance algo-
rithm shows factorial space and ime growth in the number of distinctlabels across sequences. The
number of different” noise” labels quickly makes the editdistance algoritiminfeasible, so in our ex-
periments we make one small adjustment we consider all permutations of the “ primary” Agbels (
B, C, efc.) only, then measure edit distances to the original sequences, which includente pri
and noise labels.

We compare the effectiveness of our algorithms in Figure 6.4. Six graphs are presented, cor-
responding to six different values fofrom 2 to 7). In each graph, we show the effectiveness of
all three algorithms (WA for weighted averages, ED for edit distance, and GR for greedy) for six
differentvalues of:, again from 2 to 7. For each combinatiort@ndr, we ran all three algorithms
over 20 independent sets of 100 sequences. The effectiveness is the percentage of the 20 runs that
retumn a correct permutation. We get 5 and f = 5 for all experiments, though we observed
similar results for other values.
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Fgure 6.4: Comparison of ordered DataGuide algorithms

The results show quite conclusively that the editdistance algorithm is the most effective, reach-
ing about 100% effectiveness for &> 3, at any value of.. When noise isare, the other two
algorithms are similar to each other in accuracy, approaching 100% effectiveness wheand
n > 6. The greedy algorithm is the most susceptible to large amounts of noise: itis less effective
than the weighted average algorithm whet 3.

6.6 Proximity Search

Proximity search is a concept from information retrieval (IR) that we Bpg to searching graph-
structured databases, described in Chapter 5. Our proximity search technique is general: itcan be
used over any database that can be modeled as a graph of interconnected objects. As we described
in Section 6.3, XML does have a straightforward mapping to OEM; hence, proximity search works
withoutchanges over XML data. For example, by representing elementattributes as children of their
parentnode, our proximity search technique can identify thatan elements atributes are “ near” their
parent. As with our DataGuide work, however, our original work on proximity search was based
on an unordered model. In the remainder of this section, we show how to augment our graph
representation of XML data such that shortest path computations account for subelement order.
We demonstrate the impact of our changes in a sample scenario where subelementorder is clearly
relevantto proximity search.
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Figure 6.5: Original XML graph

Consider the following sample XML data, representing three DBGpuulgticaions within a
larger XML database.

<Publication>
< Tile >DataGuide s: Enabling Query Formulaton and Optimization in Semistructured
Databases </Tite >
<Author>R. Goldman<Author>
<Author>J. Widom<Author>
<Publicaton>
<Publication>
<Tile >Lore: A Database ManagementSystem for Semistructured Data<Tite >
<Author>J. McHugh<Author>
<Author>S. Abite boul<Author>
<Author>R. Goldman<Author>
<Author>D. Quass <Author>
<Author>J. Widom<Author>
<Publicaton>
<Publication>
< Title >Proximity Se arch in Databases </Tite >
<Author>R. Goldman<Author>
<Author>N. Shivakumar<Author>
<Author>S. Ve nkatas ubramanian<Author>
<Author>H. Garcia-Molina<Author>
<Publicaton>
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Fgure 6.6: XML graph transformed for ordered proximity search

Consider a search thattries to identify publication ites “ near’ J. Widom. The traditional defnition
of textual proximity does notwork well in this case:J! Widom” is closer in the textto “Proximity
Searchin Databases” thanto“ Lore” , eventhough she isn'tan author of the former. Our initial work
on proximity search addresses exactly this situation (Chapter 5). We model the data as a graph, as
described in Section 6.3, and users can optionally add weights on edges to indicate the “ strength”
of object-subobject relationships. Distance between data objects is then measured based on the
shortest weighted path in the graph, and a special index is builtto speed up the computation, as
described in Chapter 5. Even with uniform weights, the graph encoding and shortest path approach
to proximity search solves the Tite near J. Widom” problem above.

Now let us consider the impact of order. In the example above, the order of authors is a very
importantaspect of the data. If we wantto fnéublicaton near Goldman” , the publications where
“ R.Goldman” is afrstorsecond author should rank higher than those wh&eGoldman” is alater
author. To incorporate order into our proximity seanamfework, we prepicess each XML data
graph before building our proximity search index, adding new objects and weighted edges thatadjust
the weighted shortest paths between objects in order 1o reflect ordering. For example, Figure 6.5
shows the XML data above modeled as a graph as in Fgure 6.1, with some simple weights to
illustrate our approach.® Fgure 6.6 shows the transformed graph for the rightmost publication
subtree. As can be seen, the fisthor is distance 1 from the parent publicaion element, the
second author is distande+ ¢ (for some small value), the third is distancé + 2¢, etc. The

% For improved presentaion, here we simplify the XML graph slightly and it subelements, instead showing
textas atomic values of tag elements. Note that the transformations descrigglydto our full encoding of the the
XML data model, including atributes affdxtelements. Further, by showing the thpélicaionsunder a root glect
we are assuming that the XML publicaion elements are partof a larger XML document
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distance between the frstand second aut®rise, the same as the distance between the second
and third author and the distance between the third and fourth.

In this case we decided thatthige subelementand the fisithor should be the same distance
from the parent However, if we preferred to take into account the fadtithairecedes the fist
Author, we could insert an edge between nodds ; andd ; and remove the edge froih 5 to p.

In the general case, consider an elenperi\e partiionp's list of subelements into sublists,
where order is relevantwithin but not between sublists? For each subelement; of p, we “ discon-
nect’ ¢ from p and create a new pareht ; of ¢;. The weighton thel ; — ¢; edge is the weight
from the originalp — ¢ ; edge. We then connectadjacént; nodes within each sublistwith edges of
weighte, and fnally add an edge with weighfrom p to the fistd ; for each sublist Note thatitis
well-defned to perform this transfmation on arbitrary graphs.

The transformation effects some important prageriConsidep and one of its sublis such
that the weight fronp to every elementird is V. Frst, we see that any wo adjacentsiblings are
now 2V + ¢ apart. More generally, théh andjth siblings ar@ W + (|i — j| x €) apart, assuring that
sibling distances grow monotonically as their separation withiish@creases. Also, the distance
from p to theith element (counting from 0) of is W + (i x €), assuring that distance from the
parentto its children grows monotonically beginning with the frst child.

6.6.1 Examples

To demonstrate the impact of our transformation, we built axipnity indexes over an XML
version of the DBGroup database used throughoutthis thesis. One index was based on the original
graph, and the other based on the transformed graph to take ordering into account The format of
the publicaton data is similar to the XML shown above, though there is only one XML element per
unique author, referenced (via an IDREF) from all of his orhdalications.

We performed several searches using both indexes and compared results. Recall that the result
of a proximity search is a ranked listBind elements, where the score of each is based on proximity
to all elements in th&lear set. The score also is infuenced by several wunangrpeters escribed
in Chapter 5; we use the same default parameters as in Chapter Sesévbe results from two
representative searches.

First, we performed the searchFind Publicaton near Goldman” . All publications where R.

*This partiioning could be provided by the XML contentauthor. As a defaultwhen notspecifed, we either create one
sublist containing all subelements or we partiion based on repeatiing XML tags. Ireooplextagdite andAuthor
partiion the subelements into wo sublists. When present, XML atributes can be grouped into their own sublist
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Goldman was the fist author received the highest score, followemlitljcations where he was
the second author, efc. Inthe original scheme, all of R. Goldmpahlgatons received the same
score.

Next, we performed the searchFind Authornear Goldman.” The XML elementfor R. Goldman
received the highestscore. Nextwas an eightway tie among S. Abiteboul, S. Chawathe, A. Crespo,
H. Garcia-Molina, J. McHugh, D. Quass, N. Shivakumar, and V. Vassalos. All were adjacentto R.
Goldman in an author list except for A. Crespo and V. Vassalos. The latter two are non-adjacent
co-authors of R. Goldman's, but they have other relationships to R. Goldman in the database (e.g.,
they worked on the same research project). The lowest non-zero scores were given to both S.
Venkatasubramanian and Y. Zhuge, eamting the largest” safation” betveen R. Goldman and
his co-authors. (On one paper, R. Goldman was fistauthor and S. Venkataanibn was fourth,
and on another, R. Goldman was second and Y. Zhuge was fith.) In the original scheme, all of R.
Goldman's co-authors tied for second place behind the element for R. Goldman himself.

6.7 Reated Wor k

Database supportfor XML is a popular gt drawing much attention both in research auatlis-

try. In the research community, work on the XML-QL query language was the fist effort to apply
ideas from semistructured data research directly to XML [DFFT99a]. Like our work, XML-QL
supports both an ordered an unordered model, though they do not model XML's graph structure
as throughly as we do. Lorel's syntax is more similar to OQL's (or even SQL'S) in comparison to
XML-QL, though both languages are similar in expressive power.

Researchers at the University of Wisconsin are developingadiag comprehensive XML
guery system. Itincludes mechanisms to identify relevant XML fles across the Web and deal with
remote data sources [NDea00]. Niagara also has investigated using a relational database manage-
ment systemto store XML [STH199], in contrast to a native storage system like Lore.

In industry, XML activity is heating up agell. Most prominently, Microsoft led a coaliion
of companies o propose XQL, another XML query language [RLS98]. Currently, XQL is not as
expressive as either XML-QL or Lorel, relying on a compact * URL-style” syntax for expressing
gueries. Companies such as Microsoft, Oracle, and IBM are working hard to enable their relational
databases to publishand import XML, as well as allowing a database o be administered remotely via
XML messages [SQL]. Finally, eXcelon Corporation, formerly ObjectDesign, sells adata server for
managing XML data, including supportfor nateement-based storage and XQL queries [EXC].



Chapter 7

WSQDSQ: Combined Querying of
Databases and the Web

Ourwork on semistructured data (Chapters 2 — 4) will be useful in the future as more and more data
passes across the Interetas XML (Chapter 6). Proximity search (Chapter 5) enables powerful and
intuiive keyword-based searches that exploit structure in traditional database systems. However,
as of today we see two extremes of how data is managed and queried in practice. Atone extreme,
most enterprises store their operational data in relaional database systems, and queries are issued
via SQL. Atthe other extreme, search engines such as AltaVista and Google continually crawl and
index millions of Web documents, butsuch systems omppert simple keyword-based search.

In this chapter we propose a new approach that combines the existing strengths of traditional
databases and Web searches into a single query sysRIDSQ (pronounced “ wisk-disk” )stands
for Vieb-Qupported (Database) QueriesDatabase-Supported (Véb) Queries. WSQDSQ is not a
new guery language. Rather, itis a practical way to exploitexisting search engines to augment SQL
gueries over a relational database (WSQ), and for using a database to enhance and explain Web
searches (DSQ). Interms of the matrix in Chapter 1, WSQDSQ is a bridge that couples two enties
at opposite corners: itties together Entry 1, representing expressive queries over structured data as
supported by tradiional databasgstems, with Entry 6, representing keyword-based search over
unstructured data as supported by search engines. In termsloyatg|ity, we believe WSQDSQ
could be deployed more quickly than the other contibutions in this thesis because it builds on
mature technologies thatare already used widely.

The basic architecture of WSQDSQ is shown in Figure 7.1. Each WSQDSQ instance queries
one or more traditional databases via SQL, and keyword-based Web searches are routed to existing

108
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Fgure 7.1: Basic WSQDSQ architecture

search engines. Users interacting with WSQDSQ can pose queries that seamlessly combine Web
searches with tradiional database queries.

As an example of WSQ (Web-Supported Database i€s)euppose our local database has
information about all of the U.S. states, including each state's population and capital. WSQ can
enhance SQL queries over this database using Web search engines to pose the following interesting
WSQ queries (fully specifed in Secton 7.2.1):

e Rank all states by how often they are mentioned by name on the Web.

e Rank states by how often they appear, normalized by state population.

e Rank states by how often they appear on the Web near the phrase “ four comers” .

o Which state capitals appear on the Web more often than the state itself?

e Getthe top two URLSs for each state.

¢ If Google (www.google.com) and AltaVista (www.altavista.com) both agree that a URL is
among the top 5 URLSs for a state, retum the state and the URL.

WSQ does notperform any “ magic” interpretation, cleaning, or fliering of data on the Web. WSQ
enables users to write intuitve SQL queries thatautomatically execute Web searches relevantto the
query and combine the search results with the structured data in the database. With WSQ, we can
easily write interesting queries that would otherwise require a signifcant amount cérproigng
or manual searching.

DSQ (Databasepported Web Quas) takes the converse approach, enhancing Web keyword
searches with information in the database. For examgbpose our database contains information
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about movies, in additon to infamation about U.S. states. When a DSQ user searches for the
keyword phrase “ scuba diving” , DSQ uses the Web to correlate that phrase with terms in the known
database. For example, DSQ could identify the states and the movies that appear on the Web most
often near the phrase *“ scubadiving” , and mighteven fnd statemoviescuba-diving tiples (e.g., an
underwater thiller fimed in Horida). DSQ can beupported using theystem and techniques we
presentin this chapter, but we focusnmeirily on Web-supported queries (WSQ), leavingitieda
exploration of DSQ for future work.

Much of the work presented in this chapter originally appeared in [GWOO].

7.1 WSQ Overview

WSQ is based on intoducing twartual tables, WebPages andWebCount, to any relational
database. A virtual table is a program that “ looks” like a table to a query processor, but returns
dynamically-generated tuples rather than tuples stored in the database. WemadliZe our vir-
tual tables in Section 7.2, but for now it suffces to thinkvgébPages as an infhite table that
contains, for each possible Web search expression, all of the URLs retuned by a search engine for
that expressionde bCount can be thoughtof as an aggregate view eMebPages: for each possi-
ble Web search expression, itcontains the total number of URLS retumned by a search engine for that
expression. We uséke bPage s AV andWe bCount AV o denote the virtual ables corresponding to
the AltaVista search engine, and we can have similar virtual ables for Google or any other search
engine. By referencing these virtual tables in a SQL query, and assuring that the virtual columns
defning the search expression are always bound during processing, we can answer the example
gueries above, and many more, with SQL alone.

While the details of WSQ query execution will be given later, it should be cleamtuay
calls 1o a search engine may be required by one query, and itis not obvious how to execute such
queries effcienty given typical search engine latency. One possibility is to modify search engines
to acceptspecialized calls from WSQ database systems, butin our work we instead show how small
modiftations to a conventional database query processor can exploit properies of existing search
engines.

When query processing involvesny search engine requests, the key observations are:

¢ The latency for a single requestis very high.
e Unless itexplicitly sipports prallelism, the query processor is idle during the request

e Search engines (and the Web in general) can handle many concurrentrequests.
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Thus, for maximum efftiency, a query processor mustbe able to msaoe Web requests concur-
rently while processing a single query. As we will discuss in Section 7.3, traditional &nalfef)
guery processors are not designed to handle this requirement We might be able to confgure or
modify a parallel query processor to help us achieve this concurrency. Howarabe|muery pro-
cessors tend o be high-overhead systems designed for multiprocessor computers, geared towards
large data sets andbr complex queries. In contrast, the basic problem of issningoncurrent
Web requests within a query has a more limited scope that does not require tracitiatheligm
for a satisfactory solution. Taupport our WSQ famework, we introduce a query execution tech-
nique calledasynchronous iteration that provides low-overhead concurrency for external virtual
table accesses and can be integrated easily into conventional relational database systems.

The main contributions discussed in this chapter are:

o Aformalization of thewe bPage s andwe bCountvirtual tables and their integraioninto SQL,
with several examples illustrating the powerful WSQ queries enabled by this approach, and a
discussion of gpportfor such virtual @bles irxesting systems (Section 7.2).

e Asynchronousiteration, a technique that enables non-parallel relational query processors
execute multiple concurrent Web searches within a single query (Section 7.3). Although we
discuss asynchronous iteration in the contextof WSQ, itis a general query processing tech-
nique applicable o other scenarios as well, and itopens up interesting new query optimization
issues.

e Experimental results from our WSQ prototype (Section 7.4), showing thatasynchronousiter-
ation can speed up WSQ queries by a factor of 10 or more.

7.2 Virtual Tablesin WSQ

For the purpose of integrating Web searches with SQL, we can can abstract a Web search engine
through a virtualve bPage s table:

WebPages(SearchExp, T1, T2, ..., Th, URL, Rank, Date)

whereS e archExp is a parametized sting representing a Web search expressielarchExp uses
“%1" ,“ %2" ,and so onto refer to the values thatare bound during query processing to aliibutes
T2, ..., Tn, in the style ofprintf ors canf [KR88]. For example, iSearchExpis “ %1 near %2” , T1is
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boundto “ Colorado” and2 is boundto “ Denver’ , then the corresponding Web searchdslorado
near Denver” . For a givenSearchExp and given bindings forl, T2, ... Tn, WebPages contains O
or more (virtual) tuples, where atributg&L, Rank, andDate are the values returned by the search
engine for the search expression. The fist URL retumed by the search engienkas1, the
second haRank =2, and so on. Itis only practical to ugébPages in a query where e archExp,
T1, T2, ..., Tn are all bound, either by defauliggussed below), through equality with a constant
in the Where clause, or through an equi-join. In other words, these atiributes can be thought of
as “ inputs” to the search engine. Furthermore, because retrieving all URLs for a given search
expression could be extremely expensive (requiniagy additional network requests beyond the
iniial search), itis prudentto restriRtink to be less than some constant (eRgunk < 20), and this
constantalso can be thoughtof as an inputto the search engine.

A simple butvery useful view ovate bPages is:

WebCount(SearchExp, T1, T2, ..., Tn, Count)

whereCount is the total number of pages returned for the search expression. Many Web search
engines can return a total number of pages immediately, withoutdelivering the actual URLs. As we
will see,We bCountis all we need for many interesting qiges.

Note that for both tables, not only are tuples generated dynamically during query processing,
but the number of columns is also a function of the given query. Thatis, a query might bind only
columnTLl for a simple keyword search, or it might bimd, T2, ..., T5 for a more complicated
search. Thus, we really have an infnite family of infnitely large virtual @ables. For convenience in
queriesSearchExp in both tables has a default value of61 near %2 near %3 near ... near %n” .
ForWebPages, if no restiction onRank is included in the query, currenty we assume a default
selection predicarank < 20 to prevent” runaway” queries.

Note also that virtual able/e bCount could be viewed instead as a scalar function, with input
parameters earchExp, T1, T2, ..., Tn, and output valu€ount. However, sincaVebPages and
other virtual tables can be more general than scalar funcions— they can “ return” any number of
columns and any number of rows—  our focus in this chapter isippasting the general case.

! For search engines such as Google tat do notexplicilpmthe “near’ operaor, we use ‘%1 %2 ... %n” as
the default
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721 Examples

In this section we useke bPages andWebCount to write SQL queries for the examples presented
informally in this chapter's introduction. In addition to the two virtual tables, our database contains
one regular stored table:

State s(Name, Population, Capital)

For each query, we restate itin English, write itin SQL, and show a small fraction of the actual
result The population values used for Query 2 are 1998 estimates from the U.S. Census Bureau
[Uni9g]. Queries 1- 5 were issued to AltaVista, and Query 6 integrates results from both AltaVista
and Google. All searches were performed in October 1999.

Query 1: Rank all states by how often they appear by name on the Web.

SelectName, Count
From States, WebCount
Where Name =T1
Order By CountDesc

Note that we are relying on the default value of61” for WebCountSearchExp. The fist fve
results are:

< California, 4995016 > <Washington, 4167056> <New York, 3764513 >
<Texas, 2724285> <Michigan, 1621754> ...

Readers mightbe unaware that Texas and Michigan are the 2nd and 8th most populous U.S. states,
respectively. Washington ranks highly because itis both a state and the U.S. capital; a revised query
could exploitsearch engine features to avoid some false hits of this nature, but remember that our
currentgoal is hotone of “ cleansing” or otherwise improving accuracy of Web searches.

Query2: Rank states by how often they appear, normalized by state population.

SelectName, CountPopulaton As C
From States, WebCount

Where Name =T1

OrderBy C Desc
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Now, the fistfize results are:
<Alaska, 1149> <Washington, 733> <Delaware, 690> <Hawaii, 635> <Wyoming, 603> ...
Query 3: Rank states by how often they appear on the Web near the phrase “ four comers” .

SelectName, Count
From States, WebCount
Where Name =T1 and T2 =four corners'

Order By CountDesc

Recall that“ %1 near %2” is the defaultvalue fowe bCount.SearchExp whenT1 andT2 are bound.
There is only one locationin the United States where a person can be in four states atonce: the “ four
comers” refers to the pointbordering Colorado, New Mexico, Arizona, and Utah. Notarthatid

dropoff inCount between the fistfour results and the ffth:

<Colorado, 1745> <New Mexico, 1249> <Arizona, 1095> <Utah, 994> <Calfornia, 215> ...

Query4: Which state capitals appear on the WWeb more often than the state itself?

SelectCapital, C.Count, Name, S.Count
From States, WebCount C, WebCount S
Where Capital =C.T1 and Name =S.T1 and C.Count> S.Count

In the following (complete) results, we again see some limitaions of text searches on the Web—
more than half of the results are due to capitals that are very common in other contexts, such as
“ Columbia” and*“ Lincoln” :

<Aflanta, 1053868, Georgia, 958280> <Lincoln, 669059, Nebraska, 385991 >
<Boston, 1409828, Massachusets, 1006946> <Jackson, 1120655, Mississippi, 662145>

<Pierre, 663310, South Dakota, 283821 > <Columbia, 1668270, South Carolina, 540618>

Query5: Getthe top two URLSs for each state. We omitquery results since they are not particularly
compelling.

SelectName, URL, Rank

From States, WebPages

Where Name =T1 and Rank <=2
Order By Name, Rank
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Query6: If Google and AltaVista both agree thata URL is among the top 5 URLSs for a state, return
the state and the URL.

SelectName, AV.URL

From States, WebPages AV AV, WebPages Google G
Where Name =AV.T1 and Name =G.T1 and AV.Rank <=5 and G.Rank <=5 and

AV.URL=G.URL

Surprisingly, Google and AltaVista only agreed on the relevance of 4 URLSs:

<Indiana, www.indiana.e dutopyrighthtml> <Louisiana, www.usl.e du>

<Minnesota, www.lib.umn.edu> <Wyoming, www.s tate .wy.us s tate ive lcome .html>

7.2.2 Supportfor virtual tablesin existing systems

Both the IBM DB2 and Informix relational database systems curramiigartvirtual tables in some
form. We give a quick overview of the supportoptions in each of these produtisigring how
we can modify our abstractvirtual able defnitions to work on such systems. (Atthe ime of writing
we understand that Oracle also expects to supportvirtual tables in a élikase.) See [RPI8] for
more information aboutgport for virtual tables in database products.

In DB2, virtual ables are supported throughl e functions, which can be written in Java or C
[IBM]. A table function must export the number and names of its columns. Hence, DB2 cannot
support a variable number eblumns, so we would need to introduce a family of table functons
WebPages1, WebPages2, efc. to handle the different possible number of arguments, up to some
predetermined maximum; similarly faebCount. To the query processor, a table function is
aniterator supporing method®pen, GetNext, andClose [Gra93]. Currently, DB2 provides no
“ hooks” into the query processor for pushing selection predicates into a table function. At frst
glance, this omission apparently prevents us from implemewdsigPages or We bCount, since
both tables logically contain an infhite number of tuples and require selecton conditions to become
fnite. However, DB2 table functions suppoarameters that can be correlated todbkimns of
other tables in &om clause. For example, consider:

SelectR.c1,S.c3
From R, Table (S (R.c2))

Inthis querys is atable function thattakes a single parameter. @BZreate a new table function
iterator for each tuple iR, passing the value af2 in that tuple t theOpen method ofS. (DB2
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requires thatreferences$ocome afteRr in the From clause.) With this feature, we can implement
We bPages andwe bCount by requiring thas e archExp and then search terms are supplied as table
function parameters, either as constants or usingdre clause join syntax shown in the example
guery above. In the case Wk bPages, we must pass the restiction Biank as a parameter to the
table function as well.

Informix supports virtual ables through B tual able interface [SBH98]. Unlike DB2, In-
formix provides hooks for a large number of functons thafli@MS uses to create, query, and
modify tables. For example, in Informix a virtual table scan can access the assatietedcondi-
tions, and therefore can process selection conditions. However, the Informix query processor gives
no guarantees abguoin ordering, even when virtual ables are involved, so we cannotbe sure that
the columns used o generate the search expression are bound by the ime the query processor tries
to scarWebPages orWebCount. Thus, Informix currently cannotbe used to implenwabPage s
or We bCount (although, as mentioned earligve bCount could be implemented as a user-defned
scalar function, which is supported in Informix).

7.3 WSQ Query Processing

Even with an ideal virtual table interface, tradiional execution of queries involviigCount or
WebPages would be extremely slow due to many high-latency calls to one or more Web search
engines. [CDY95] proposes optimizations that can reduce the number of external calls, and caching
techniques [HN96] are important for avoiding repeated external calls. But these approaches can
only go so fa— even after extensive optimization, a query involMiagCount orWebPage s must
issue some number of search engine calls.

A query planis a strategy for executing a query, typically a tree of operatorsdhat join,
fiter, aggregate, andsorttheir inputs. As mentioned briefly Bection 7.2.2, query plans are usually
executed usingerator sthat recursively drive query execution by asking operatorggplyg tupes.
There is a costassociated with each operation in a query plan (usually based on predicted CPU and
10 time), and itis the job of thqueryoptinizer to estimate the costof different potential plans and
choose the plan that it predicts will be the least expensive to exda@3, GMUWOO].

In many situations, the high latency of the search engitielominate the entire executontime
of the WSQ query. Any tradiional non-parallel query plan involvivigoCount or We bPage s will
be forced to issue Web searches sequentially, each of which could take one or more seconds, and
the query processor is idle during each request Since Web search engines araippittimany
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concurrent requests, a traditional query processor is making poor use of available resources.

Thus, we wantto fihd a way to issueraany concurrentWeb searches asgible during query
processing. While agsallel query processor (such as Oracle, Inforf@amma [DGS  +90], or
Volcano [Gra90]) is dogical option to evaluate, itis also a heavyweightapproach for our problem.

For example, suppose a query requires 50 independentWeb searches (for 50 U.S. states, say). To
perform all 50 searches concurrently, a parallel query processor mustnotonly dynamically parttion
the problem in the correct way, it must then launch 50 query threads or procesggmrisg
concurrent Web searches during query processing is a problem of resticted scope that does not
require a full paralleDBMS.

In the remainder of this section we descrésgnchronous iteration, a new query processing
technique that can be integrated easily into a traditional acedi@l query processor to achieve a
high number of concurrent Web searches with low overhead. As we will discuss briefly in Sec-
tion 7.3.2, asynchronous iteraion is in fact a general query processing technique that can be used
to handle a high number of concurrent calls to any external sources. As described in the following
subsections, asynchronous iteration also opens up interesting new query optimization problems.

7.3.1 Asynchronouslteration

Letus startwith an example. Suppose in our relational database we have a simglig&ilame),
identfying the different ACM Special Interest Groups, called “ Sigs” — e.g.,MIB, SIGOPS,
etc. Now we wantto uséke bCount to rank the Sigs by how often they appear on the Web near the
keyword“ Knuth” ?

Select*

From Sigs, WebCount

Where Name =T1 and T2 =Knuth'
Order By CountDesc

Fgure 7.2 shows a possible query plan for this query. For this plan, and for all other plans in
this chapter, we assume an iterator-based execution model [Gra93] where each operator in the plan
tree supportOpen, GetNext, andClose operations. Théependent Join operator requires each

GetNext call to its right child to include a binding from its left child, thus limiting the physical join
techniques that can be used to those of the nested-loop variety (although work in [HN96] describes

2Incidentally, the results (in order) from AliaVista are: SIGACT, SIGPLAN, SIGGRAPH, SIGMOBCEIMM,
SIGSAM. For all other Sig€Countis 0.
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)

Sort:
WebCount.Count

—

Dependent Join:

Sigs.Name =
WebCount.T1
NS J

Sean: EVScan:
Si s‘ WebCount
9 (T2 = 'Knuth’)

Fgure 7.2: Query plan foBigs ™ WebCount

hashing and caching techniques that can improve performance of a defeimjiefbe EVScan
operator is an external virtual table scan. We assume that we are working with a query processor
that can produce plans of this sort—  with dependentjoins and scans of virual tables— such as IBM
DB2 (recall Section 7.2.2).

Without parallelism, EVScan performs a sequence of Web searches during execution of this
guery plan (one for eacBetNext call), and the query processor may be idle for a second or more
each time. Intuitively, we would like the query processor to issaay Web searches simultane-
ously, withoutthe overhead of a parallel query processor. For this small data set— 37 tuples for the
37 ACM Sigs— we would like to issue all 37 requests atonce. To achieve this behavior we propose
asynchronous iteraion, a technique involving three components:

1. A modifed, asynchronous version of EVScan that weAtAlcan.

2. A new physical query operator callBegSnc (for “ RequestSynchronizer” ), which waits for
asynchronously launched calls to complete.

3. A global software module callegeqPunp (for “ Request Pump” ), for managing all asyn-
chronous external calls.

The general idea is thatwe modify a query plan to incorporate asynchronous iteration by replac-
ing EVScans with AEVScans and inserting one or more ReqSync operators appropriately within the
plan. AEVScan and ReqSync operators both communicate with the global ReqPump module. No
other query plan operators need to be modifed to supportasynchronous iteration.

Now we walk through the actual behavior of asynchronous iteration using our example. Con-
sider the query plan in Fgure 7.3. In comparison o Fgure 7.2, the EVScan has been replaced by
an AEVScan, the ReqSync operator has been added, and the global ReqPump is used. When tuples
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Fgure 7.3: Asynchronous iteration

are constructed during query processing, we allow any atribute valuettarked with a special
placeholder that serves two roles:

1. The placeholder indicates that the atiribute value (and thus the tuple its a part of) is incom-
plete.

2. The placeholder identifes a pending ReqPump call associated with the missing value— that
is, the pending call that willigoply the true atiribute value when the call fhishes.

Recall thatall of our operators, including AEVScan and ReqSync, obey a standard iterator interface,
including Open, GetNext, andClose methods. We now discuss in tum how the operators in our
example query plan work.

The Scan and Sortoperators are oblivious to asynchronous iteration. The Dependent Join (here-
after DJ) is a standard nested-loop operator that also knows nothing about asynchronous iteration.
Now consider the AEVScan. When DJ gets a new tuple f&gs, it calls Open on AEVScan and
then callsGetNext with Sigs.Name. AEVScan in tum contacts ReqPump and registers an external
call C' with T1 =Sigs.Name andT2 =Knuth'. (C' is a unique identfer for the call.) ReqPump
is a module thatissues asynchronous network requests and stores the responses to each requestas
they retumn. In the case of cdll, the returned data is simply a value foount, ReqPump stores
this value in a hash tablgegPunpHash, keyed onC'. To achieve concurrency, as soon as AEVS-
can registers its call with ReqPump, itretumns to DJ (as the resBhibEX) oneWe bCount tuple
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T where theCount atfribute contains as a placeholder the call idendferDJ combined” with
Sigs.Name and returns the new tuple t its parent (RegSync).

Now letus consider the behavior of ReqSync. Whe®jisn method is called from above by
Sort, RegSync call®pen on DJ below and then callSetNext on DJ until exhaustion, buffering all
returned (incomplete) tuples inside ReqSync. We choose this full-buffering implementation for the
sake of simplicity, and we will revisitthis decision momentarily. ReqSync needs t coordinate with
ReqPump 1o fll in placeholders before retuming tuples to its parent The problem is a variation
of the standard “ producertonsumer” synchronization problem. Each ReqPump call is a producer:
when a callC'’ completes (and its data is stored in ReqPumpHash), ReqPump signals to the con-
sumer (ReqSync) that the data fOr ' is available. When signaled by ReqPump, ReqSync locates
the incomplete tuple containig '’ as a placeholder (using its own local hash table), and replaces
C" with the Count value retrieved from ReqPumpHash. When ReqSy@etdext method is called
from above, if ReqSync has no completed tuples then itmustwaitfor the nextsignal from ReqPump
before itcan retum a tuple to its parent. Note thatin the general case, tuples that do notdepend on
pending ReqPump calls may pass directly through a RegSync operator.

In our simple implementaion of ReqSyn©pen method, all (incomplete) tuples generated by
DJare buffered inside ReqSync before ReqSync can return any (completed) wples to its parent. In
the case of very large joins it might make sense for ReqSync to make completed tuples available to
its parent before exhausting execution of its child@an. As with query execution in general, the
guestion of materializing empay results versus retuming tuples as thegdme available is an
optimization issue [GMUWOO].

As we will show in Section 7.4, asynchronous iteration can improve WSQ queryrparfce
by a factor of 10 or more over a standard sequential query plan. However, there are siill three
importantlingering issues thatwe will discuss in Sections 7.3.3, 7.3.4, and 7.3.5, respectively:

1. As seen in our example, an external call\arbCount always generates exactly one result
tuple. Buta call fowe bPages may produce any number of tuples, including none, and the
number of generated tuples is notknown until the call is complete.

2. When a query plan involves more than one AEVScan, we mustaccountfor the possibility that
an incomplete tuple buffered in ReqSync could contain placeholders for two or more different
pending ReqPump calls.

3. We need to properly place ReqSync operators in relation to other query plan operators, both
to guarantee correctness and maximize concurrency.
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Monitoring and controlling resource usage is also an importantissue when we use asynchronous
iteration. So far we have assumed that during query execution we can safely issimanded
number of concurrent search requests. Realistically, we need to regulate the amount of concurrency
to prevent a search engine from being inundated with anwelzome” number of simultaneous
requests. Similarly, we may want to limit the total number of concurrent outgoing requests to
prevent WSQ from exhausting its own local resources, such as network bandwidth. It is quite
simple to modify ReqPump t© handle such limits: we need only add one counter to monitor the
total number of active requests, and one counter for each external destination. An administrator can
confgure each counter as desired. When a call is registered with ReqPump but cannot be executed
because of resource limits, the call is placed on a queue. As resources free up, queued calls are
executed.

7.3.2 Applicability of asynchronousiter ation

Before delving into details of the three remaining technical issues outlined in the previous subsec-
tion, letus briefly consider the broader applicability of asynchronous iteration. Although this chap-

ter describes asynchronous iteration in the speciftc contextof WSQ, the technique is actually quite
general and applies to most situations where queries depend on values provided by high-latency,
external sources. More speciftally, if an external source can hasagiie concurrentrequests, or if

a query issues independent callsrany different external sazes, then asynchronous iteration is
appropriate. Our WSQ examples primarily illustrate the fist ¢as@y concurrentrequests to one

or wo search engines). As an example of the second case, asynchronous iteration could be used
to implementa Web crawler: given a table of thousands of URLS, a query over that table could be
used to fetch the HTML for each URL (for indexing and t fnd the nextround of URLS). In this
scenario, WSQ can exploitall available resources withoutburdening any external sources.

As mentioned earlier, if we try 1o use arpllel query processor to achieve the high level of
concurrency offered by asynchronous iteration, then we would need to parttion tables dynamically
into many small fragments and spawn many query thread®oegses. Issuingany threads can
be expensive. For example, the highest performance Web servers do notuse one thread per HTTP
request, rather, many network requests are handled asynchronously by an eveltajivétnin
a single process [PDZ99]. By implementing the ReqPump module of asynchronous iteration in a
similar manner, we can enable many simultaneous calls with low overhead. &leasitas future
work itwould be interesting to conduct experiments comparing the ipeafice of asynchronous
iteration againsta parall@BMS for managing concurrent calls to external sest
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Fgure 7.4: Query plan fa8igs X WebPages

7.3.3 ReqSynctuplegeneration or cancellation

The previous example (Figure 7.3) was centered on a dependent joiii®ount, which always
yields exactly one matching tuple. BivebPages, and any other virtual table in general, may
return any number of tuples for given bindings— including none. Because we want AEVScan o
return from aGetNext call withoutwaiting for the actual results, we always begin by assuming that
exactly one tuple joins, then “ patch” our results in ReqSync.

Consider the following query, which retrieves the top 3 URLSs for each Sig.

Select*
From Sigs, WebPages
Where Name =T1 and Rank <=3

For each Sig, joining witWebPages may generate 0, 1, 2, or 3 tuples. Assume a simple query
plan as shown in FHgure 7.4. As in our previous example, AEVScan will use ReqPump to generate
37 search engine calls, and ReqSync will inifially buffer 37 wples. Now consider what happens for
a tupleT’, waiting in a ReqSync buffer for a call to complete. Whed' retumns, there are three
possibilites:

1. If C returns no rows, then ReqSync deléfeom its buffer.

2. If C returns 1 row, then ReqSync flls in the atiribute valuedT@s generated by

3. If C' retumsn rows, wheren > 1, then ReqSync dynamically creates- 1 additional copies

of 7', and flls in the atribute values accordingly.

In our example, since all Sigs are mentioned on at least 3 Web pages, 111 tuples are ulimately
produced by ReqSync.
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Fgure 7.5: Query plan faBigs X WebPages AV X WebPages_Google

7.34 Handling multiple AEV Scans

Now let us consider query plans involving muliiple AEVScans. For example, the following query
fds the top 3 URLS for each Sig from two different search engines.

Select*
From Sigs, WebPages AV AV, WebPages Google G,
Where Name =AV.T1 and Name =G.T1 and AV.Rank <=3 and G.Rank <=3

Fgure 7.5 shows a query plan that maximizes concurrent requests. Note that there is only one
ReqSync operator, notone for each AEVScan. The placementand merging of ReqSync operators is
discussedin Section 7.3.5. Inthis plan, the botiom DependentJoin will generate 37 tuples, each with
placeholders identfying a ReqPump call fve bPages AV. The uppejoin will augment each of
these tuples with additional placeholders corresponding to a ReqPump &l bPages Google.
Hence, ReqSync will buffer 37 incomplete tuples, each one with placeholders for two different
ReqPump calls.

The algorithm for tuple cancellation, completion, and generation at the end of Secton 7.3.3
applies inthis case as well, with a slightnuance: dynamically copied tuples (case 3 in the algorithm)
may proliferate references o pending calls. For examplgpase one of the incomplete tuples
T in the ReqSync buffer is waiting for the completion of two calls, indicated by two different

3The query actually finds all combinations of the top 3 URLs from each search engine, butit nonetheless
serves to illustrate the point of this section.
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placeholders: one for call' 4 o AltaVistaand the other for call’  to Google. IfC' 4 returns fist,
with 3 tuples, then RegSync will make two additional copied ofVhen copyindl’, references o
pending callC’ ¢ are also copied. Ong€ ¢ retums, all tuples referencing ¢ mustbe updated.

7.35 Query plan generation

Recall that converting a query plan to use asynchronous iteration has two parts: (1) EVScan opera-
tors are converted to AEVScans, and (2) ReqSync operators are added to the plan. In this section we
describe an algorithm for placing ReqSync operators within plans. @uargrgoal is to introduce
a correct and relatively simple algorithm that (1) attempts to maximize the number of concurrent
Web searches; (2) attempts to maximize the amountof query processing work thatcan be performed
while waiting for Web requests to be processed; and (3) is easy 1o integrate into existing query com-
pilers. ReqSync operators can signifcantly alter the cost of a query plan, and the effects on query
execution ime will often depend on the specift database instance being queried, as well as the
results returned by search engines. Fully addressing cost-based query optimization in the presence
of asynchronous iteration is an important, interesting, and broad problem thatis beyond the scope
of our work.

We assume thatthe optimizer can generate plans with dependentjoins [FLMS99] and EVScans,
but knows nothing about asynchronous iteration; a plan produced by the optimizemiguti® i
our algorithm. We continue to assume an iterator model for all plan operators. We now describe the
three steps in our placement of ReqSync operdinssrtion, Percolation, andConsolidation.

ReqSync I nsertion

Recall that we frstconverteach EVScan operator inuutiplanP to an asynchronous AEVS-

can. Next, a ReqSync operator is inserted directly above each AEVScan. Muoatfpfor each
AEVScan; in P, we insert ReqSyng into P as the parent of AEVScan;. The previous parent of
AEVScan; becomes the parent of ReqSync This transformation is atiously correct since no
operations occur between each asynchronous call and the blocking operator that waits for its com-
pletion.

ReqSync Per colation

Next, we try to move ReqSync operators up the query plan. Intuitively, each ime we pull up a
ReqSync operator we are increasing the amount of query processing work that can be done before
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blocking to waitfor external calls to complete. Sometimes we can rewrite the query plan slightly to
enable ReqSync pull-up. For example, if the parent of a ReqSync is a selection predicate that de-
pends on atfribute values flled in by ReqSync, we can pull ReqSync higher by pulling the selection
predicate up fist Similarly, if a join depends on values flled in by ReqSync, we can rewrite the
joinas a selection over a cross-productand move the ReqSync above the cross-product

Our actual algorithmis based on the notion of an opetaidiashing with a ReqSync operator,
in which case we cannot pull ReqSync abéveletReqSync ;.4 denote the set of atiributes whose
values are flled in by the ReqSyn¢ operator as RegPump calls complete, i.e., the atributes whose
values are substituted with placeholders by AEVScan We say tha® clasheswith ReqSync ; iff:

1. O depends on the value of any atiribute in ReqSyng A, or
2. O removes any attribute in ReqSyng.A via projection, or

3. O is an aggregation or existential operator

Case 1 is clear: an operator clashes if it needs the attributes flled in by ReqSyncto continue
processing. Case 2 is a bitmore subtle. If we projectaway placeholders before the corresponding
calls are complete, then tuple cancellation or generation (Section 7.3.3) cannot take place properly,
and extra tuples or incorrect numbers of duplicates may be retumed. Case 3 is similar to case 2:
aggregation (e.g., Count) and existential quantifcation require an accurate tally of incoming tuples.
For each ReqSyngin the plan, we repeatedly pull ReqSyng above any non-clashing operators.
If an operaioilO does clash, we check o sedlfis a projection or selection; if so, we can pQil
above its parent fist Otherwise,df is a clashing join, we rewrite it as a selection over a cross-
product. Other similar rewrites are possible. For example, a set union operator must examine each
complete twple to perform duplicate elimination; we can rewrite this clashing operator as a“ Select
Distinct’ over a non-clashing bag union operator. Our percolation algorithm clearly terminates since
operators are only pulled up the plan. Also, the order in which we percolate ReqSync operators
does not matter— the only potential effectis a different fnal ordering between adjacent ReqSync
operators, something thatis made irrelevantby ReqSync Consolidation, which we discuss next We
will illustrate the percolation algorithm through examples momentarily.

ReqSync Consolidation

After percolation, we may fnd thattwo or more ReqSync operators are now adjacentin the plan. At
this pointwe can merge adjacent ReqSync operators since they perform the same overall function,
and a single ReqSync operator can manage multiple placeholder values in tuples as discussed in
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Section 7.3.4. When merging ReqSynawith ReqSync;, ReqSyng.A U ReqSyng.A is the set of
atiributes that must be flled in by the new ReqSync operator.

Plan gener ation examples

We now show three examples demonstrating our ReqSync placement algorithm. We point out the
performance gains asynchronous iteration can provide, along with some potential pitfalls of our
current algorithm.

Example 7.1: Fgure 7.6 shows how our RegSync placement algorithm generates the query plan
we saw earlier in Hgure 7.5 for ttigigs X WebPages AV X WebPages Google query. WWe omit
ReqPump from these (and all remaining) query plans. Fgure 7.6(a) shows the inpugoritiera

a simple left-deep query plan without asynchronous iteraion. FHgure 7.6(b) shows the plan after
ReqSync Inserion: the EVScans are converted to AEVScans and a ReqSync operator is inserted
directy above each EVScan. Fgure 7.6(c) shows the plan after ReqSync Percolation. We fist
move ReqSyng above both dependent joins, since neither join depends on any values returned by
WebPages AV (i.e., URL, Date, Rank). ReqSync, is then pulled above its parent dependent join.
The fhal plan after ReqSync Consolidation is shown in Figure 7.6(d). With this plan, the query
processor can process all 74 external calls (37 Sigs per join) concurrently.

This example demonstrates some interesting advantages of asynchronous iteration over possible
alternatives. Frst, one might consider simply modifying the dependent join operator to work in
parallel: change the dependentjoin to launemy threads, each one foining one left-handriput
tuple with the right-hand EVScan. While this approach will provide maximal concurre noyeioy
simple queries, it prevents concurrency among requests from multiple dependent joins: the query
processor will block until the fist join completes. Another approach, as discussed in Section 7.3.2,
is to use a (modifed) parallel query processor for this query. However, performing both dependent
joins in parallel requires a nontrivial rewrite to ransform our 2-join plan into a 3-join plan where
both dependentjoins are children of afnal “ merging” join.

Example 7.2: Consider the following query, where a cross-product with a meaninglessRiable
introduced for illustrative purposes:

Select*
From Sigs, WebCount AV AV, R, WebCount Google G
Where Name =AV.T1 and Name =G.T1
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Fgure 7.6: Generating the query plan &igs < WebPages AV X WebPages Google inFigure 7.5
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Fgure 7.7(a) shows the result of running oefSync placement algorithm over a left-deejuit
plan in which the cross-productwitis performed between the two virtual table dependentjoins.
With or without asynchronous iteration, this input plan is problematic: by performing dss-cr
product before the join withive bCount Google, a straightforward dependent join implementation
will send|R| identical calls to Google for each Sig. Thus, incorporating a local cache of search en-
gine results is very importantfor such a plan. Furthermore, when using asynchronous iteration with
the plan in Fgure 7.7(a), theass-product with tabl& will generate|R| copies of the incomplete
tuples fromwe bCount AV that must be buffered and then patched by ReqSync. Depending on the
data, itmay be preferable to use wo ReqSync operators as shown in Figure 7.7(b). By doing so, we
reduce the total number of atribute values to be patchd8igg| - (|R| — 1), or roughly a factor
of 2 for reasonably largéR|. On the down side, we will block after the frst join, preventing us
from concurrently issuing the Web requests\ie&rbCount Gaogle. Had the cross-product wil
been placed lastin the originagut plan, another alterative would be to place a singlgIync
operator above the dependentjoins but below the cross-product

This contiived example serves o illustrate the challenging query optimization problems that
arise when we inroduce AEVScan and ReqSync operators. Stibrig cases our simpleeBSync
placement algorithm does perform well, as we will see in Section 714.

Example 7.3: As a fhal example suppose that we also have a @BIEields (Name) containing
computer science felds (e.g., “ databases” ,“ operating systems” ,“ artftial intelligence” , etc.). Con-
sider the following query, which fnds URLSs that are among the top 5 URLSs for both a Sig and a
CSFHeld.

SelectS.URL

From Sigs, WebPages S, CSFields, WebPages C
Where Sigs.Name =S.T1 and CSFields.Name =C.T1 and S.Rank <=5 and

C.Rank <=5 and S.URL=C.URL

Aninputquery plan is shown in Figure Te§ Note that theriput plan is bushy, and tjein at the

the root of the plan may well be implemented as a sort-merge or hash join. After inserting the two
ReqSync operators, we frst pull them above the dependentjoins. To pull the ReqSyncs above the
uppetrjoin, we rewrite the join into a selection over a cross-product, as described in Section 7.3.5.
(Because the join depends on atiributgigplied by WebPages, we can't pull the RegSync above it
withoutthe rewrite.) FHgure 7.8(b) shows the fihal plan.
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Fgure 7.7: A query plan mixing two dependentjoins with a cross-product
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Fgure 7.8: Generating the query plan for query ®&igs andCS Fie lds

In this query, given that th€igs andCSFields tables are tiny, rewriing the join as a cross-
productis a big performance win: itenables the quesg@ssor to execute all external calls (from
both the left and rightigbplans) concurrenty. However, in other situations, such as if ¢&ser
productis huge, this specift rewrite could be a mistake.

This example illustrates one more importantissugpm®se thata Sig does nothave any URLs
on a given search engine. Indeed, assume for the moment that all Sigs have no URLs, so all Sig
tuples generated will ulimately be canceled. In that case, pulling the ReqSync operator up as in
Fgure 7.8(b) results in an unnecessary cross-product between placeholder wupkeBiédds and
WebPages, since ulimately the cross-product (and therefore the join) will be empty. In the general
case, because AEVScan always retums exacty one matching tuple before the fnal resultis known,
aplan could perform unnecessary work—  work thatwould notbe done if the query processor waited
for the tue Web search resultbefore continuing.

To summadee, the above examples demonstrate how our ReqSync placement algorithm fo-
cuses on maximizing the number of concurrent external calls for any given query plan. If external
calls dominate query execution ime, then asynchronous iteration can provide dramatic performance
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improvements, as we demonstrate in Section 7.4. Nevertheless, there are several potential per-
formance pitfalls that are best addsed by a complete costbased query optiimizer incorporating
asynchronous iteration:

¢ Manipulating query plans to use asynchronous iteration may change their relative perfor-
mance. Given wo equivalentinput pladsand B, whereCost(A) < Cost(B), there is
no guarantee that the asynchronousieer of A will remain cheaper than the asynchronous
version of B.

e The ReqSync operator buffers tuples, possibly proliferates them, and flls in missing attribute
values. In some situations itis possible that the amount of work required by ReqSync offsets
the advantages of asynchronous iteration.

¢ Asynchronous iteraion assumes non-empty join results and continues processing, patching
results later as necesy. If join results do um out to be empty, then our “ optimistic” ap-
proach will have performed more work than neeegs

¢ In order to pull ReqSync operators higher, we may move or rewrite operators imptite i
query plan, such as replacing joins with selections over cross-products. Additional work
induced by these rewrites could offsetthe beneft of additional concurrency.

7.4 Implementation and Exper iments

We have integrated the two WSQ virtual tables and our asynchronous iteration technique into a
homegrown relatonal database management system EaliBdse. (RedBase is constructed by
students at Stanford in a course on DBMS implementation.) RedBase supports a subsetof SQL for
select-projectjoin queries, and it includes a page-level buffer and iterator-based query execution.
However, it was not designed to be a high-perfancesystem: the only available join technique
is nested-loop join, and there is no query optimizer although users can specify a join ordering
manually. Nevertheless, RedBase is stable and sophisticated enouglpdat he experiments
in this section, which demonstrate the potential of asynchronous iteration. Our experiments show
the considerable performance improvementiohing WSQ queries with asynchronous iteration as
opposed to conventional sequential iteration.

Measuring the performance of WSQ queries has some inherent difcfirst, perfanance
of a search engine such as AltaVista can fuctuate considerably depending on load and network
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delays beyond our control. Second, because of caching behavior at search engines beyond our
control, repeated searches with identical keyword expressions may run far faster the second (and
subsequent) imes. To mitigate these issues, we waited atleasttwo hours between queries thatissue
identical searches, which we verifed empirically is long enough to eliminate caching behavior.
Also, we performed our experiments late at nightwhen the load on search engines is low and, more
importantly, consistent

In order to run many experiments without waiting hoursMeetn each one, we ugsrplate
gueries and instantiate multiple versions of them that are structurally similar but resultin slightly
different searches being issued. Consider the following template.

Template 1:

SelectName, Count
From States, WebCount
Where Name =T1 and WebCountT2 =V1

V1 represents a constantthat is chosen from a pool of different common constants, such as “ com-
puter’ , “ beaches” , “ crime” , “ politics” , “ frogs” , etc. For our experiments, we created 8 instances
of the template by choosing 8 different constants from the pool. After iming all queries using
asynchronous iteration, we waited two hours and then timed all queries using the standard query
processor. For corroboration, we repeated the testwith 8 new query instances.

The results for this template (and the two below) are shown in Table 7.1. For each template,
we list the results of two runs. The times listed are the average execution ime in seconds for the
8 queries, with and without asynchronous iteration. AltaVista is used for the fist wo templates;
the third uses both AltaVistaand Google. Experiments wenelacted on a Sun Sparc Ultra-2 (2 x
200Mhz) 256MB RAM machineunning SunOS 5.6. The computer is connected to the Interetvia
Stanford University's network.

Tenplate 2:

SelectName, Count, URL, Rank
From States, WebCount, WebPages
Where Name =WebCountT1 and WebCountT2 =V1 and
Name =WebPages.T1 and WebPages.T2 =V2 and WebPages.Rank <=2

In this query template, we issue two searches for each tupBsaitas, one forWebCount and
one forWebPages. When instantiaing the template we wanted o ensure/ihaé V2, so we
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| Synchronous (secs)]Asynchronous (secs) Improvement

Template 1
Run 1 (8 queries) 23.13 3.88 6.0x
Run 2 (8 other queries) 32.8 35 9.4x
Template 2
Run 1 (8 queries) 70.75 5.25 13.5x
Run 2 (8 other queries) 64.25 5.13 12.5x
Template 3
Run 1 (8 queries) 1225 6.25 19.6x
Run 2 (8 other queries) 76.13 4.63 16.4x

Table 7.1: Experimental results

selected 16 distinctconstants to create 8 query instances. In our prototype system, the join order is
always specifed by the order of tables in Brem clause, so for this query we join€date s with
We bCount, then joined the resultwitve bPage s. Results are shownin Table 7.1.

Terrplate 3: The following template is similar to the example in Section 7.3.4 (Fgure 7.5), with the
added constamtl. Again, we created 8 queries by instantiatitigwith constants, and results are
shown in Table 7.1.

SelectName, AVURL, G.URL

From Sigs, WebPages AV AV, WebPages Google G,

Where Name =AV.T1 and Name =G.T1 and AV.Rank <=3 and G.Rank <=3 and
AVT2 =V1 and G.T2 =V1

Our results show clearly that asynchronous iteration can improve the performance of WSQ
gueries by a factor of 10 or more. Of course, all of the example queries here are over very small
local tables, so network costs dominate. These results in effectillustrate the best-case improvement
offered by asynchronous iteraiion. For queries involving more complex local query processing over
much larger relations, the speedup may be leasaic, and the results of any such experiment
would be highly dependent on the sophistication of the database query processor (independent of
asynchronous iteration). Further, as illustrated in Section 7.3, complex queties may introduce opt-
mization decisions that could have a signifcantimpact on pedoace.

We have created a simple interface that allows users to pose limited queries over our WSQ
implementation, available at http: ivww-db.stanford.eduivsq.
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75 Reated Wor k

The techniques we know of that most closely relate to WSQDSQ are reported in [CDY95] and
[DM97]. Wiritten before the explosion of the World-Wide Web, [CDY95] focuses on execution
and optimization techniques for SQL queries integrated with keyword-based external text sources.
There are three main differences between [CDY95] and our work. Frst, they aim to minimize
the number of external calls, rather than providing a mechanism to launch the calls concurrently.
Nevertheless, some of techniques they propose are complementaryrimeawork and could be
incorporated. Second, they assume that external textsources return search results as unordered sets,
which enables optimizations that are not always possible when integrating SQtankiad) \Web

search results. Third, some of their optimizations are geared towards external text searches that
return small (or empty) results, which we believe will be less common in WSQ given the breadth of
the World-Wide Web. [DM97] discusses approaches for coupling a search engine with SQL, again
without focusing on the World-Wide Web. A query rewrite scheme is proposed for automatically
translating queries that call a search engine via a user-defned predicate into more effcient queries
that integrate a search engine as a virtual table. While we also use a virtual table abstracton for
search engines, [DM97] does not address the issue of high-latency external sources, which forms
the core of much of this chapter.

The integration of external relations into a cost-based optimizerfor LDL is discussedin [CGK89].
The related, more general problem of creating and optimizing query plans over external sources with
limited access patierns and varying query processing capabilies has been considered in work on
data integration, e.g., [HKWY97, LRO96, Mor88, RSU95, YLGMU99]. In contrast, we focus on
a specift scenario of one type of external source (a Web search engine) with known query capa-
bilites. [BT98] addresses the situaiion where an external source may be unavailable at a particular
time: a query over muliiple external sources is rewritien into a sequence of incremental queries over
subsets of sources, such that the query results can be combined over time to form the fhal result
Although the asynchronous iteraion technigue we introduce shares the general spiritof computing
portions of a query and flling in remaining values later, our technique operates at a much fner
(tuple-level) granularity, it does not involve query rewriting, and the goal is to enable concurrent
processing of external requests rather than handling unavailable sources.

Work in [UFA98] suggests a technique for improving response time of queries over high latency
sources. In their approach, a query plan may be rescheduled or modifed dynamically in response
to delayed tple arrival. In contrast, our asynchronous iteration technique optimistically assumes
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that external sources continually and immediately retumn tuples. These retumed tuples, though po-
tentially incomplete, allow the query processor to continue working withoutdynamic rescheduling.
The statically placed ReqSync operators ensure thatthe fhal values returned by the external sources
are handled correctly by the query processor.

As we saw in Section 7.3, we rely aependent joinsto supply bindings to our virtual tables
when we integrate Web searches into a SQL query. Hence, previous work on optimizing and effi
cienty executing queries involving dependent joins is highly applicable. A general-purpose query
optimization algorithm in the presence of dependent joins is provided in [FLMS99]. A caching
technique that can be applied to improve the implementation of dependent joins is discussed in
[HN96].

Much of the research discussedin this sectionis either preliminary or complementary to WSQDSQ.
To the best of our knowledge, no previous work has taken our approach of enabling aatah-p
database engine to suppoény concurrentcalls to external sources during the execution of asingle

query.



Chapter 8

Conclusions and Futur e Wor k

This thesis covers several contributions toward the challenging goal of unifying query functionality
over structured, semistructured, and unstructured data.

We described our contributionsltore (Chapter 2), enabling expressive queries over semistruc-
tured data— data that need not adhere to an explicitly declared, static schema. Our focus was on
DataGuides (Chapter 3), which replace tradiional schemas in a semistructured environment A
DataGuide is a dynamically generated and maintained summary of the structure of a semistructured
database. DataGuides enable query formulation and optimizaton, and they also have been used
both inside and outside of Stanford for other projects related to managing semistructured data.

Next, we focused on enabling interactive query and search sessions. In the contextof a semistruc-
tured database, a user may wish to search, explore, and query a data setiteratively, until the desired
datais reached. We described our model for enabling such interactive sessions in Chapter 4. As part
of this model, basic single-keyword search for semistructured databases was introduced in Chap-
ter 4. In Chapter 5, we described a more general approach to keyword-based search: we introduced
proxinmity search in databases, building on the traditional imf@ion retieval notion of “ xim-
ity.” Our work in Chapter 5 applies to semistructured databases as well as to tradiional stuctured
databases.

In Chapter 6, we described how we extended our work on DataGuides and proximity search to
apply to XML, the emerging standard for data interchange on the Web. XML is very similar to the
original data models proposed for semistructured data, including the OEM model on which much
of our work is based. But key differences needed to be addressed. Having the mostimpact, XML
is inherently an ordered data model, whereas our algorithms for DataGuides and proximity search
assumed unordered data.

136
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Finally, in Chapter 7 we describ&tBDSQ, a platform for effcient, ighty-coupled queries
over existing relational database systems and Web search engines. Together, online relational
databases and search engines combine to manage much of the Web's total data. WSQDSQ pro-
vides a platform for querying a relational database and searching the Web in a single framework,
and the query processing techniques we introduced can improve overaiinzexe by more than
an order of magnitude over a naive approach.

In Section 8.1, we describe directions for future research related o each of the contibutions of
this thesis. Taking a longer-term view, much work remains t be done toward the ulimate goal of
unifying all types of queries over all types of data. Thus, Sections 8.2 and 8.3 conclude this thesis
with a discussion of two broad avenues of research that will move us closer to the vision of one
ulimate data management system for all of the world's online data.

8.1 FutureWork Related to Thesis Contr ibutions

In the following five subsections, we describe potential future work corresponding to the topics of
Chapters 3 — 7, respectively.

8.1.1 DataGuides(Chapter 3)

For many semistructured databa, the perfimance of DataGuide creation with respect to space

and time is easily adequate. However, computing DataGuides for some databases is extremely
expensive, especially for highly cyclic data. A challenging avenue of future work istaliae the
database characteristics thatleagdod (or poor) DataGuide perfoance. Heuristics that gpkly

identfy databases that may resultin poor DataGuide performance would also be helpful.

While our work on Approximate DataGuides (ADGs) helps offset some of the DataGuide per-
formance pitfis, there are interesting potential extensions to the ADG work as well. In particular,
among the several techniques we provided for approximation (object matching, suffk matching,
and path-cycle matching), it may be possible to combine these technigues to generate the “ best’
approximation. An interesting avenue of research is to devise strategies that can effciently analyze
a database and selectan approximation that will be quick to create and reasonably accurate as well,
perhaps with statistical guarantees on the quality ofcagmation. Another interesting issue to
pursue is ADG maintenance. While we can use a variation of our incremental DataGuide main-
tenance algorithm (Figure 3.6), there may be opportunities for betempearfoe. For example,
any ADG will remain an ADG after a database deletion (by defiition). Another possibility is to



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 138

use invalidation rather than incremental maintenance. An ADG may siill be quite useful even if
particular regions amnarked “ invalid” due to updates. Thesgi@ns could be recomputed in batch

in the backgrand, or perhaps the entire ADG could be regenerated when the percentage of invalid
regions crosses some threshold.

8.1.2 Interactive Query and Sear ch (Chapter 4)

Atthe highestlevel, we see much room for blurring the distinction between formulating and issuing
aquery. In our proposed model, we create a new DataGuide over the resultof each query. However,
these steps can be integrated. For example, simply adding a fltering condition to a DataGuide could
trigger a query that automaticallypdates the DataGuide, perhagsminating DataGuide paths

that are no longer relevant based on the given conditon. To be effective in real-ime, such tight
integration requires high-performanceordinaiion between query processing, DataGuide creation,

and the user interface.

8.1.3 Proximity Search (Chapter 5)

In terms of performance, otub-based indexinggorithm is open to further improvements. In
particular, itmay be possible to identify betier heuristics for selebifig than those gsented in
[GSVGM98], especially when we can determine certain properiies ohiw graph. Abstractly,
we intoduced hubs because the space requirements of storikgraighborhoods on disk are
enormous; if there were some way to effectively compig€sseighborhood storage on disk, query
times could be improved dramatically. Another ldraging direction is gpport for ppcessing
incremental changes to the uriglatg data; currently, the entire index mustbe recomputed.

As for functionality, we think it would be very interesting to add support for telBan op-
eratorsand, or, andnot to the contextof searching databases. Reconsider the motivating example
from Chapter 5, “Find movie Near Travolta Cage.” Suppose a user really only wants movies near
both Trawolta andCage. Currently, our proximity search treats bitar objects uniformly. Hence,
if there were many “ Travol®” gbcts butonly one “ Cage” object, a proximity query might highly
rank amovie near all of the “ Travolia” objects, evenif itis notnearthe “ Cage” object Implementng
alogicaland requires either more sophisticated scoring functions or schemes for combining results
from multiple proximity searches. Ata higher level, there are signiftant opportunities for integrat-
ing proximity search with tradiional database languages and models, as we discuss in Sections 8.2
and 8.3.
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814 XML SupportinLore (Chapter 6)

Ourwork on XML has focused on the impactof order on DataGuides and proximity search. Another
interesting avenue for future research is the impact of Document Type Defhitions (DTDs).

We can build an Approximate DataGuide from a DTD (as described in Section 6.5), butitmay
also be interesting to combine DataGuides with DTDs: itis easy to envisiona scenario where DTDs
are available for specift portions of an XML database, but the overall database is still semistruc-
tured. We can build a DataGuide over the porions notgoverned by DTDs, with appropriate links
to DTDs where appropriate. Itis a challenge to coordinate these two structures to provide a unifed
view to users and applications, especially in the facepofates o the undging XML data.

For proximity search, a DTD could be a useful tool for pruning the search space. For example,
if we know that tags specifed in a proximity search are resticted from ever appearing near each
other, we can reduce the work required to perform the search.

Atthe highestlevel, a DTD may be suffcientto enable effective modeling and storage of XML
in a tradiional relational or object-oriented database system. As we discuss briefly in Section 8.3,
an important long-term goal is to manage data effectively based on its inherent stucture— notthe
particular encoding used to express it

8.15 WSQDSQ (Chapter 7)

Asynchronous iteration was introduced as a technique to enable effcient WSQ queries, butitis a
promising approach fananyscenarios involving queries over external sources, notjust\Web search
engines. For example, our WSQ approach could be used to compare prices of ittms stored ina local
database at many different online vendors, obtaining concurrency across many different Web sites
insetad of across many different calls to the same Web site.

Optimizing asynchronous query plans is a very challenging problem, and it requires a cost
model that accounts not only for total work, but for response time as well. Further, modeling the
latency and performance of external sources is inherently diffcult It would also be worthwhile to
compare the performance of asynchronous iteration against a traditiotial pprary processor.
Alternatively, asynchronous iteration could be integrated into more radical approaches to query
processing such axdies [AHOQ], which continuously adapt and optimize query processing at
runime based on the delays of external sources.

Of course, given the tite of our work, an obvious unexplored direction is to focus on DSQ,
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Database-&oported (Web) Quars. Keyword-based search still dominates searching on the In-
termnet, and we feel there amany opporunities to enhance this experience by leveraging known
relationships within a tradional database system. A software module built on top of WSQ could
translate a user's keyword search into one or more WSQ queries and then rank the query results for
presentation back to the user.

8.2 Language Integration

We have performed some initial steps toward unifying query functionality across relational databases,
semistructured data, XML, and search engines, buttoday each type of system has its own language.
SQL and Lorel are similar in spirit, but Lorel is most closely related to OQL[Cat94]—  which is fast
becoming obsolete. We mustacknowledge that SQL is probably here to stay, and the bestapproach
may be o integrate the mostimportant features of Lorel into SQL. In the world of search engines,
there is no standard query language; at best, there is the general acceptance that a keyword-based
“ query” is a boolean expression of keywords, using operators suahdasr, andnot (And as

our work suggests, theear operator may well have a different meaning depending on whether the
undelying data is a set of documents or an interconnected database.) An open question is whether
we can integrate keyword-based search into SQL as well. Alternatively, perhaps SQL itself should
be integrated or embedded within a larger, more comprehensive query language.

8.3 Modd Integration

Relational data is setoriented, based on relations containing sets of tuples. Semistructured data
proposes an unordered, directed graph as its data model. XML data can be viewed as an ordered
directed graph. To search engines, data is essentially a flt collection of documents. An ambitious
goal is to provide a universal data model and storage management system thppoaral such

types of data yetnotsacrifce any performance oresqive power provided by the native systems.

The graph-based models of semistructured data may be universal enough to handle translation from
other models, butthe perfbanceissue has notbeen addressed to signifcantdepth. In other words,
we cannotexpectthe world to translate their relational databases to XML (or OEM) if performance
drops signifcantly. If we can export a universal data model yet still take advantage of specift
structures and patierns of different data sets for higher performance, we may be able o slowly
migrate the world toward a single view of data.
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A strong beneft of the relational model is that the resultof a query is itself a relation, which can
be queried further. Work on Lore and other semistructured data management systems has enforced
this idea as well, assuring thatitis easy to query the resultof an OEM or XML query. However, this
approach becomes complicated in the world of keyword-based or other“ fuzzy” searches: rankings
and scores are an extremely important aspect of any such query result, and the system usually
cannotmake a simple binary decision of whether datais “ in” or“ out’ of the result There has been
striikingly litte work in unifying the worlds of setbased results with ranked andbr scored results
(see [Fag96] for one important paper on this topic). However, we see this topic as being a critical
component of merging tradiional database queries with keyword-based search in an interactive,

online seting.
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