

programSyllabus.doc 1 of 3 rev 10/14/01

 Student Originated Software
Program Syllabus -- Fall 2001-2002

Monday Tuesday Wednesday Thursday Friday
10-12 Lectures
OOP & OOAD
 LIB 1316

10-12 Seminar
 LIB 2218
 LIB 2204

10-12 Lectures
OOP & OOAD
 LIB 1316

9-10 Kate’s Office Hour
10-12 Pgmg Help Session
 (ACC)

 Preparation
 Day

1-4 OOAD Workshop
 LIB 1316

1-2 Project Teams
2-5:00 OOP Lab
 (ACC)

 1-2 Judy’s Office Hour
1-2:15 Project Teams
2:30-4 Visitors & Projects
LIB 1316 available til 5pm

Even the best efforts of computer users and software engineers have not alleviated critical software
development problems: most software is late and over-budget, does not meet user needs or expectations,
or is socially irresponsible. The "software engineering" problem is not just a matter of technology, but a
problem of organization, psychology, artistic design, group dynamics and culture. In addition considerable
knowledge and understanding of the application area is required to design, implement, deploy, support and
maintain a successful system. Evergreen's Student Originated Software program is designed to address
these issues and to prepare students who already have learned the fundamentals of computer
science (i.e., Data to Information or equivalent) to face these problems. We expect that, by the end
of the academic year, successful students in the program will:
• Understand and gain practical experience in the software development life cycle.
• Learn the technical skills necessary for the analysis, design and programming of software systems.
• Understand issues behind difficulty inherent in writing software, including the socio-cultural, political,

and ethical milieu in which that software is written and used.
• Be able to work as part of an inter-dependent team.
• Be able to present technical material verbally and in written form to both large and small groups.

Program components (Project, OOAD, OOP, Case Study, and OOP) are designed to meet the above
learning objectives; see individual syllabi for details. The primary vehicle for learning how to write
software is a year-long software project for an identified real-world customer (or identifiable user
community). Most teams will follow a development schedule similar to the following: Fall: identify a viable
project and "customer", perform a preliminary systems analysis and feasibility study. Winter: develop and
evaluate a working prototype with user guides, systems analysis and design documents. Spring: refine the
prototype; complete the programming; finalize user's guides, maintenance plans and installation; and
evaluate the final system. Projects will be "completed" by the last week of spring quarter and demonstrated
at a software fair.

Planned Credit Distribution
Fall Winter Spring
4: OOP
4: OOAD
2: SE Case Study

2: Software Project Management
2: User Interface Design
or 4: Database Systems
or 4: Project-team Independent Study

4: advanced technical seminar
contemporary topic in SE,
 e.g., XML, Analysis Patterns

4: Seminar: software industry 4: Seminar (Current SE Topics) 4: Seminar and Lecture
 (Working as an SE’r;
Classic CS Problems)

2: Project Proposal 8: Project: Design &
 Implementation

8: Project: Implementation
 & Testing

In the fall, we will concentrate on object-oriented analysis, design and programming, and an introduction to
analysis and design and software engineering through a case study. For seminar, we will consider the nature of
software systems -- history, market, culture, and discipline. All students must take the program full time in the
fall, except a few part-time students who work full time. In winter, we will likely have a technical seminar on
persistent and domain-specific languages and two five week sessions on Software Project Management and User

programSyllabus.doc 2 of 3 rev 10/14/01

Interface Design. In spring, seminar will probably offer perspectives on jobs and working, and a lecture series
on classic problems in computer science, thus examining the software project experience within a broader context
of what it means and what it's like to work in this industry. The technical component will focus on some timely
topic in software development such as design patterns. Students are discouraged from taking more than 16
credits at any time during the year.

Fall Quarter Books Tim Budd, Understanding Object Oriented Programming in Java; Arnold, Gosling & Holmes The Java
Programming Language; Martin Fowler, UML Distilled; Quatrani, Visual Modeling with rational Rose 2000 and UML.
Seminar books (in order): Code Complete. Close to the Machine. Things That Make Us Smart. Mythical Man Month.
Insanely Great. The Microsoft Edge. Cathedral and the Bazaar. Where Wizards Stay Up Late.

Visitor’s Lecture: Thursdays, we will have a session where we work together to organize project work
or hear from and talk to a working professional in the field. We will invite a range of folks; if you have
suggestions for particular guests or for particular kinds of people, please let us know.

Papers and Exams: The program will involve different kinds of writing, including regular academic
papers, documents of the sort that software designers and developers are routinely expected to produce,
and short pieces focused on helping you think about, apply or clarify the program's materials and
experiences. There will also be a couple of synthesizing exams. Be aware also that the programs you write
are meant to be read by human beings (in more ways than one!), and as such represent examples of your
writing. Communication, written and oral, is a critical part of your education as a software developer.

Faculty Feedback on your work: We expect to hold several individual and team conferences with you
during the year to discuss your work. If you find you need or desire more evaluation than the considerable
amount you should be getting through the routine functioning of the program (comments from faculty and
fellow students, both written and spoken, on your work, both written and spoken), feel free at any time to
make an appointment with your seminar leader to talk about how you are doing.

Program Portfolio (and Year-Long Project Notebooks): Keep track of all your work; we will want to
see it again to prepare for evaluation conferences. Buy a notebook, a binder, or a portfolio immediately in
which you can keep all program handouts and all program work for the year. Don't throw anything away
until the year is over. There will be no basis for writing your evaluations unless you can resubmit all your
work in an organized fashion. If you start being organized right from the start, you won't lose anything, and
you will have no scrambles or frantic searches when evaluation week arrives.

Conclusion: As we work together over the next year, we hope to help you form a community of inquiry.
We expect to work hard, to learn a lot, and to have a terrific time together in the process.

Program Faculty
Judy Cushing: Judy came to Evergreen anxious to teach software development within the context of the
liberal arts. Before Evergreen, she worked in a variety of software development and support positions for
industry (IBM, Texas Instruments, start up firms), Cornell University and Universite de Bordeaux, University of
Texas Health Science Center at Dallas, the U.S. Public Health Service and several small startups. Recently, she
was on leave from Evergreen, at the Oregon Graduate Institute in Portland working scientific database research
with David Maier. She continues work in that area.
LAB I, 3006, (after September 20, 2065) 866-6000 x 6652, judyc@evergreen.edu.

Kate Cunningham: Kate arrives at Evergreen this year to teach SOS. For the past six years she held
technical management positions in internet start-ups working on systems such as E-Commerce and
Payment Processing, Membership Services, Search Engines, Localization and Translation,
Digital/Physical Good Fulfillment, Content Management, Internet/Intranet Sites, Data integration with
legacy systems, and XML with wireless devices. Earlier, she spent 10 years as a programmer in the
corporate world. SEM 4165, 866-6000 x5056, cunnningk@evergreen.edu.

programSyllabus.doc 3 of 3 rev 10/14/01

