
1

Today’s Objectives

Define the Problem Domain

Define and give examples of objects

Define and give examples of classes

Define a glossary

Define stereotypes

Define Domain Model Diagram

2

Problem Domain

Problem domain refers to the real world concepts and things that are
related to the problem that we are investigating.

Domain modeling is the task of discovering objects/classes that represent
those things and concepts.

3

Truck

Chemical Process

What is an Object?

 Informally, an object represents some entity, either physical,
conceptual or software.

Physical entity

Conceptual entity

Software entity

4

A More Formal Definition

 An object is a concept, abstraction, or thing with sharp boundaries
and meaning for an application

 An object is something that has:

State

Behavior

Identity

5

Name: Joyce Clark
Employee ID: 567138
Date hired: March 21, 1987
Status: Tenured

Professor Clark

a + b = 10

An Object Has State

The state of an object is one of the possible conditions
in which an object may exist

The state of an object normally changes over time

The state of an object is usually implemented by a set
of properties (called attributes), with the values of the
properties, plus the links the object may have with
other objects

6

Algebra 101 Course

Assign Professor Clark

(Returns:confirmation)
Registration

System

a + b = 10

An Object Has Behavior

Behavior determines how an object acts and reacts

Behavior defines how an object reacts to requests from
other objects

The visible behavior of an object is modeled by the set
of messages it can respond to (the operations the
object can perform)

7

Professor “J Clark”
teaches Algebra

Professor “J Clark”
teaches Algebra

Professor “J Clark”
teaches Algebra

An Object Has Identity

 Each object has a unique identity, even if its state is identical to that of
another object

8

What are Classes?

There are many objects identified for any domain

A class is a description of a group of objects with
common properties (attributes), common behavior
(operations), common relationships to other objects
(associations and aggregations), and common
semantics

An object is an instance of a class.

A class is an abstraction in that it:

Emphasizes relevant characteristics

Suppresses other characteristics

Abstraction helps us deal with complexity

9

Objects

Class

Professor Smith

Professor Jones

Professor Mellon

The Relationship Between Classes and Objects

A class is an abstract definition of an object

It defines the structure and behavior of each object in the
class

It serves as a template for creating objects

Objects may be grouped into classes

Professor

10

Naming Classes

 A class name should be a singular noun that best characterizes the
abstraction

 Difficulty in naming a class may be an indication of a poorly defined
abstraction

 Names should come directly from the vocabulary of the domain

11

Style Guide for Naming Classes

 A style guide should dictate naming conventions for classes

 Sample style guide

Classes are named using singular nouns

Class names start with an upper case letter

Underscores are not used

Names composed of multiple words are pushed together
and the first letter of each additional word is capitalized

Example: Reservation,VehicleModel, RentalGroup

12

Look for the “WHATS” and ignore the “HOWS”Look for the “WHATS” and ignore the “HOWS”

Glossary

 After naming a class, a brief concise description of the class should be
made

Focus on the purpose of the class not on the
implementation

 The class name and description form the basis for a model glossary

13

As more and more about the problem is discovered, refine the class
definitions, and add any new classes to the model dictionary.

As more and more about the problem is discovered, refine the class
definitions, and add any new classes to the model dictionary.

Sample Model Glossary

 Name: reservation

Working Definition: A request by a person to rent a
EU_Rent vechile of a particular model on a specified
date and time for a specific location from a EU-Rent
location.

 Name: rental location

Working Definition: A EU-Rent business location at
which its vehicles are offered for rent.

14

Class Compartments

A class is represented using a compartmented
rectangle

A class is comprised of three sections

The first section contains the class name.

The second sections shows the structure (attributes).

The third section shows the behavior (operations).

The second and third sections may be suppressed if
they need not be visible on the diagram

15

Class model diagram elements – the basic notation

16

Stereotypes

Every class may have at most one stereotype

Common stereotypes

entity, boundary, controller, exception
Utility class

Stereotypes are shown in the class name compartment
enclosed in << >>

17

Common stereotypes

 A boundary class models communication between the system’s
surroundings and its inner workings

 An entity class models information and associated behavior that must
be stored

 A control class models control behavior specific to one or more use
cases

18

Class Diagrams in Context

stru
cture

behavior

functionality

interaction
co

nf
ig

ur
at

io
n

"We are here!" ~ static structure diagrams

Class
diagrams

Object
diagrams

Package
diagrams

Activity
diagrams

Deployment
diagrams

Collaboration
diagrams

Statechart
diagrams

Use Case
diagrams

Sequence
diagrams

System
Model

19

Class model

This is the central model in an "object oriented" approach.

Class Model concepts come in two flavors:

basic concepts:

broad usage

general consensus

advanced concepts:

usage-dependent

style-dependent

 Our emphasis will be on the "basic concepts."

(refer to Fowler Chapter 6 for the “advanced concepts.”)

20

Class model

A Class Model describes:

the kinds of objects in the system, in terms of:

structure ~ the various kinds of static relationships
things an object can be expected to "know"

its attributes

its relationships

behavior ~ the dynamics
things an object can be expected to "do"

its operations

rules
constraints and guidance an object is expected to follow

21

Class model

A Class Model defines the static structure of concepts, types, and classes.

concept – how users think about the world

~ the semantics

type – software component interface

class – software component implementation

note: in many 00 languages, the notion of ‘class’ combines both
‘interface’ & ‘implementation.’

but the distinction is important!
 "Program to a class's interface rather than to its implementation."

22

Class models & the development process

3 perspectives we can take when defining a class model:

Conceptual
the terms & facts of the problem space
i.e., the system glossary or domain model

typically, business-focused
Specification

the software, rather than the business
only the software "type" (the interface)

Implementation
language-specific realization
the implementation – "the classes that implement the type"
(or, “implement the interface”)

– one type (interface) specification can have multiple implementations.

 This course deals with the “conceptual” and “specification” perspective
class models; the Java course deals with the "implementation" perspective.

23

Class model diagram elements

Class – a description of a set of objects that share the same
responsibilities (attributes, relationships, operations, rules) and
semantics.

Attributes – the “value facts” the system records
the “variables”

Relationships between classes – 3 types:
association
generalization (supertype/subtype)
aggregation (“advanced”)

Operations – the behavior
the "methods"

Rules – the constraints that govern both structure
(relationships & attributes) and behavior (operations).

Many of these elements can be shown visually as a Class Model Diagram.

24

Class behavior – Operations

informal definition:

An operation specifies what an object can “do.”

– i.e., the processes a class knows how to carry out, when requested.

example:

An ATM machine knows how to “accept a deposit.”

A reservation knows how to “close a reservation.”

UML definition:

An operation is the specification of a transformation or query that an
object may be called on to execute.

25

Operations in perspective

Conceptual

operation = a responsibility (in a way that a business
person might describe)

For example, “I (an ATM machine) am responsible to know how to
accept a deposit.”

Specification

operation = signature specification (the “interface”)

Implementation (e.g., Java)

operation = realization = method (method body)

26

Operation properties

These are some of the things that can be specified about an operation:
visibility

public: +

protected: #

private: -

name (verb + noun phrase)
think: "I, an instance of class-ABC, know how to <verb + noun-phrase>"

e.g., "I, an instance of Order, know how to CloseAnOrder."

parameter-list

return-type

 We will come back to the topic of “operations” in a later lesson.

27

Class structure – Attributes

informal definition:

An attribute is a feature of a class that describes what an object of the
class can "know.”

example:

A customer “knows” its address.

An order “knows” its date-placed.

An order line “knows” its quantity.

UML definition:

An attribute is the description of a named slot of a specified type in a
class; each object of the class separately holds a value of the type.

28

Attributes in perspective

Conceptual

attribute = a kind of "fact" in the users' problem space
facts about the kinds of values that need to be recorded.

example:

A customer has a name (that can be any ‘String’ value).

An order has an order-price (that is numeric in USD to 2 decimal places)

Specification

attribute = responsibilitiy
an object is “responsible to know (and tell)” the value of its attributes.

Implementation (e.g., Java)

attribute = value and reference types

29

Attribute properties

The following things can be specified about an attribute:

name – noun or noun phrase

multiplicity
typically only 1 (“mandatory”) or 0..1 (“optional”)

type – datatype (built-in or user-defined)

initial value – system-supplied value at birth?

changeability – changeable, frozen, or addOnly?

visibility – (same as for operation)

encapsulation

Implementation perspective: Attribute values are considered hidden; an
attribute’s value must be requested.

Specification perspective: We will treat all attributes as visible
(“public” with an assumed accessor operation in the design model).

