Object Oriented Programming in Java

Week 1

OOP Concepts Abilities & Skills
e ODbject, Class, Type  Read adesign
* Methods, Messages e Design asmall program
* Behavior-based Design e Extract adesign
e Classlibrary, hierarchy « RunaVAJprogram
e Clamsfor Java e Change that program,
 Reading Budd, Ch 1-3, 4 using the class library
. Asdt (due next Mon)  Import/export VAJ code

represent the design for ClickMe as CRC Cards (lab pair hand in)
do programs and exercises for Ch. 4 (individual, no hand in)
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Object, Class, Type

Object - an encapsulation of state and behavior
Attributes

Class, Instance, Hierarchy

Abstract classes

Information hiding
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Methods, M essages
Behavior

 How different from a procedure call
e Method binding

e Polymorphism

 Method overriding

* Exception handling
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Responsibility-Driven Design
“The major problem in software development:

management of details and communication of information
between diverse portions of the project.”

* Delegateto aclass, responsibility for atask
o Components & Reuse
e Component-Responsibility-Collaborators

Component
Collaborators
* responsibility e class
* responsibility e class
* responsibility e class
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Interactive Kitchen Helper

— A PC based application that replaces index-card
recipes and assists in meal planning for a period
of time (e.g., aweek).

o User actions

— Browse recipe database
— Create menus

o System services
— Scale recipes for number of servings

— Print out menus for aweek, day or medal
— Print grocery list

Work with 5 othersto finish the IKH CRC design

(each person play role of one component)
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CRC Cards for Interactive Kitchen Helper

Greeter Date 3
Collaborators Maintain info about specific date Collaborators
e Displav initial m N * date (year,month, day) -- create new date  « planManager
. Of?graoy tion Chois(?e . DPI|3 M'\E/alnager » displayAndEdit() -- display date info in * Meal
P an Manager window, allow user to edit entries
* Pass control « buildGroceryList (List&) -- add items
*DB Mgr from all menus to grocery list
*Plan Mgr
Plan M anager M eal
Collaborators Collaborators
L d » Date L d
Recipe Database Recipe
Collaborators Collaborators
[ ] [ ]
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Interaction Diagrams

Greeter Database Recipe Planner Comment
> browse()
L display()

Ny makePlan()
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Design Process

Characterize behavior of the entire
application.

Refine the specification.
— “look and feel”

— Determine high level structure,
mapping activities onto
components

|dentify high level system
components

What-who cycle.

Scenarios.

Documentation & user manual
system design documentation

arguments for/against design
alternatives
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project schedule and project diary (status
reports)

formalize the interface

Define information required by and
mai ntained within each component

Review components and interface names.

Assign 1+ component to team members
to design data structure(s) and
algorithm(s) for each method.

| mplementation
|dentify “facilitator” components.

Characterize & document component
preconditions;

Unit test.
Integration.



Design and Development Hints
* When isacomponent “too big” or small?

e Anticipate change

 |solate s/'w from hardware

* Reduce coupling

« Component should have high cohesion

e Maintain records of design process
 Names should be [Keller 1990].

e |ntegrate iteratively, using stubs.

o Useregression testing.
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|s Javathe “silver bullet”?

Client-side computing ¢ Architecture neutral.

Simple e Portable.

O-0O to the core e High performance
Network savvy. e Multithreaded
|nterpreted.  Dynamic

Robust.

Secure.

Be prepared to argue for or against these
with specific language features and code
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Iln Lab Tomorrow....10-12

o \Work with your partner inthe ACC
o Gan familiarity with VAJ, take home a copy

e ClickMe (w/ modifications)
— advanced studentsto start on BallWorldin VAJ

* Assignment due Monday -- CRC cards for
ClickMe

SOS OOP Fall 2001



Java Program Structure
public static void main ( String [ ] args) { }

access modifiers method name  type
return type arguments

publ i c cl ass BankAccount {
private i nt accountBal ance = O;
public void display() {
Systemout.println
("the current account balance is " + accountBal ance);
}
public void main(String[] args) {
deposit (15);
w t hdrawal (10);
di splay();
[/ System out. println(account Bal ance);

Soso%ﬁfﬂlﬁo%l void withdrawal (int anount) {
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A simple class -- BankAccount

publ i c cl ass BankAccount {
private i nt accountBal ance = 0;

public void display() {
Systemout. println

("the current account bal ance is
}

public void main(String[] args) {
deposit (15); wthdrawal (10); display();
}

public void wthdrawal (int amount) {

account Bal ance = account Bal ance - anount;

+ account Bal ance) ;
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