Object Oriented Programming in Java

Week 1

OOP Concepts Abilities & Skills
e ODbject, Class, Type Read adesign
* Methods, Messages e Design asmall program
* Behavior-based Design e Extract adesign
e Classlibrary, hierarchy « RunaVAJprogram
e Clamsfor Java e Change that program,
 Reading Budd, Ch 1-3, 4 using the class library
. Asdt (due next Mon) Import/export VAJ code

represent the design for ClickMe as CRC Cards (lab pair hand in)
do programs and exercises for Ch. 4 (individual, no hand in)

SOS OOP Fall 2001

Object, Class, Type

Object - an encapsulation of state and behavior
Attributes

Class, Instance, Hierarchy

Abstract classes

Information hiding

SOS OOP Fall 2001

Methods, M essages
Behavior

 How different from a procedure call
e Method binding

e Polymorphism

 Method overriding

* Exception handling

SOS OOP Fall 2001

Responsibility-Driven Design
“The major problem in software development:

management of details and communication of information
between diverse portions of the project.”

* Delegateto aclass, responsibility for atask
o Components & Reuse
e Component-Responsibility-Collaborators

Component
Collaborators
* responsibility e class
* responsibility e class
* responsibility e class

SOS OOP Fall 2001

Interactive Kitchen Helper

— A PC based application that replaces index-card
recipes and assists in meal planning for a period
of time (e.g., aweek).

o User actions

— Browse recipe database
— Create menus

o System services
— Scale recipes for number of servings

— Print out menus for aweek, day or medal
— Print grocery list

Work with 5 othersto finish the IKH CRC design

(each person play role of one component)
SOS OOP Fall 2001 (seep. 39)

CRC Cards for Interactive Kitchen Helper

Greeter Date 3
Collaborators Maintain info about specific date Collaborators
e Displav initial m N * date (year,month, day) -- create new date « planManager
. Of?graoy tion Chois(?e . DPI|3 M'\E/alnager » displayAndEdit() -- display date info in * Meal
P an Manager window, allow user to edit entries
* Pass control « buildGroceryList (List&) -- add items
*DB Mgr from all menus to grocery list
*Plan Mgr
Plan M anager M eal
Collaborators Collaborators
L d » Date L d
Recipe Database Recipe
Collaborators Collaborators
[] []

SOS OOP Fall 2001

Interaction Diagrams

Greeter Database Recipe Planner Comment
> browse()
L display()

Ny makePlan()

SOS OOP Fall 2001

Design Process

Characterize behavior of the entire
application.

Refine the specification.
— “look and feel”

— Determine high level structure,
mapping activities onto
components

|dentify high level system
components

What-who cycle.

Scenarios.

Documentation & user manual
system design documentation

arguments for/against design
alternatives

SOS OOP Fall 2001

project schedule and project diary (status
reports)

formalize the interface

Define information required by and
mai ntained within each component

Review components and interface names.

Assign 1+ component to team members
to design data structure(s) and
algorithm(s) for each method.

| mplementation
|dentify “facilitator” components.

Characterize & document component
preconditions;

Unit test.
Integration.

Design and Development Hints
* When isacomponent “too big” or small?

e Anticipate change

 |solate s/'w from hardware

* Reduce coupling

« Component should have high cohesion

e Maintain records of design process
 Names should be [Keller 1990].

e |ntegrate iteratively, using stubs.

o Useregression testing.

SOS OOP Fall 2001

|s Javathe “silver bullet”?

Client-side computing ¢ Architecture neutral.

Simple e Portable.

O-0O to the core e High performance
Network savvy. e Multithreaded
|nterpreted. Dynamic

Robust.

Secure.

Be prepared to argue for or against these
with specific language features and code

SOS OOP Fall 2001

Iln Lab Tomorrow....10-12

o \Work with your partner inthe ACC
o Gan familiarity with VAJ, take home a copy

e ClickMe (w/ modifications)
— advanced studentsto start on BallWorldin VAJ

* Assignment due Monday -- CRC cards for
ClickMe

SOS OOP Fall 2001

Java Program Structure
public static void main (String [] args) { }

access modifiers method name type
return type arguments

publ i c cl ass BankAccount {
private i nt accountBal ance = O;
public void display() {
Systemout.println
("the current account balance is " + accountBal ance);
}
public void main(String[] args) {
deposit (15);
w t hdrawal (10);
di splay();
[/ System out. println(account Bal ance);

Soso%ﬁfﬂlﬁo%l void withdrawal (int anount) {

~ Arint DAl An A — A ATt DAl arv A 2 Arnmnriint -

A simple class -- BankAccount

publ i c cl ass BankAccount {
private i nt accountBal ance = 0;

public void display() {
Systemout. println

("the current account bal ance is
}

public void main(String[] args) {
deposit (15); wthdrawal (10); display();
}

public void wthdrawal (int amount) {

account Bal ance = account Bal ance - anount;

+ account Bal ance) ;

SOS OOP Fall 2001

