
OOP Week 3 1

Object Oriented Programming in Java
Monday, Week 3

• Interface PinBallTarget

OOP Concepts

• Last Week’s Assignment

• Arrays

• Collection Class -- vector

• Threads

• Exception Handling
• Reading Budd, Ch 7, 18; AGH Ch. 3
• Asst (due Thursday)

Ch. 7: Exercises 2,3,4 (5 optional), (8 everybody try!)
8,9 (for intermediate and advanced --
10 (for advanced)
and any other pinball enhancement of your invention!

OOP Week 3 2

Arrays

private Ball [] ballArray;

private static final int BallArraySize = 10;

ballArray = new Ball [BallArraySize];

for (int i = 0; i < BallArraySize; i++) {

ballArray[i] = new Ball (10,15,5);

ballArray[i].setColor (ballColor);

ballArray[i].setMotion (3.0+i, 6.0-i);

}

OOP Week 3 3

Arrays
• Creating an array does not create the objects that

are stored in the array.

• Two ways to create Java arrays
– 1. Button buttons[] = new Button[10];

– 2. int lookup_table[] = {1, 2, 4, 8, 16};

Menu m = createMenu(“File”, new String[]

{“Open…”, “Save”, “Quit”});

• The size of an array is not part of its type
String[] strings;

strings = new String[10];

strings = new String[20];

• Arrays behave “like” objects, e.g.,

x = ballArray.length

OOP Week 3 4

Collection Classes
(set, list, vector, ...)

• Collections (aka containers) are holders that letyou
store and organize objects in useful ways for efficient
access.

• java.util contains the general collection framework.

• java.lang.Comparable

public int size()
public boolean isEmpty()
public boolean contains

(Object elem)
public boolean remove

(Object elem)

Iteration
public boolean hasNext ()
public Object next()
public void remove()
public void add (Object elem)
public void set (Object elem)

Ordering (using Comparable and Comparator)
public int compareTo (Object other)
public int compare (Object o1, Object o2)

OOP Week 3 5

Collection Classes
The legacy collection types: Vector, Stack, etc.

• Vector. All methods that access the
contents of a Vector are synchronized.
Vector is analogous to ArrayList, and so
inherits from List.

• How are arrays and vectors alike, and how
different?

public final void addElement (Object elem)
public final void insetElementAt(Object elem, int index)
public final void removeElementAt(int index)
public final void removeAllElements ()

OOP Week 3 6

Last week’s homework….

• If not finished, do that before going on…

• if not happy with it - you will have a chance
to redo (& resubmit) BEFORE the midterm

• speaking of the midterm….
• Ok to put off til wed of week 6?

• Short answer (15 min) -- week 5?

• Robert Murphy????

OOP Week 3 7

This Week’s Lab & Homework
• Norman’s two kinds of cognition --

– experiential and what???

• Advice
– make yourself a map of the program space!

– Think how this might be different programming for you….
• use the API ref on help page or http://grace/jdk_1_3_1/index.html the

java API docs

– have a plan before you jump in!

• become better acquainted with the tool
– be aware of differences in browsers…

• PDF doc -- Integrated Development Environment

OOP Week 3 8

Threads

• Threads are independent parts of a program
that run simultaneously.

• Except on machines with more than one
processor, only one thread is actually
running at a time.

• Threaded programs are managed by a
process that deciddes which thread runs at
any given time.

• You can’t use them to sew on buttons…

OOP Week 3 9

Threads in Java

• Java is one of only a few programming
languages that support multiple threads.

• The implementation of threads in Java
differs among platforms.

• The differences can cause surprises if you
aren’t aware of the threaded nature of most
Java programs.

OOP Week 3 10

Concurrent Programming

• Multiple threads create many problems
related to the order in which events occur.

• For example, if two threads access the same
data field of an object, the results can
depend on the timing of the access.

• Access to shared data must be synchronized
in order to avoid unpredictable, incorrect
results.

OOP Week 3 11

Concurrency Example

• Consider the following two code fragments
that are executing concurrently,
unsynchronized, and accessing the variables
a,b,c, from the same object. Assume b=3
and c=2, initially:

Thread 1
a = b + 10;
c = a + 5;

Thread 2
b = c - 4;

What is the final value of a?
of b?
of c?

OOP Week 3 12

Synchronization

• Java provides synchronization so that
situations such as the example don’t occur.

• Code that accesses shared data is kinown as
a critical section.

• Critical sections are synchronized by
obtaining exclusive access to the data they
modify.

OOP Week 3 13

Synchronization Example

• With synchronization, only two orders of
execution are possible in our example.
– S1, s2, s3

– s3, s1, s2

• The third possible ordering of the statements is
presented by the synchronization.

• The possible orders produce different values,
but each is a predicatable result that doesn’t
depend on a so-called “race condition”.

OOP Week 3 14

Control of Threads

• Java provides methods that allow:
– Suspension of a thread

– Termination of a thread

– Creation of new threads

– Synchronization of threads

OOP Week 3 15

Creation of Threads

• There are two ways to define classes that can
run as separate threads:
– extending the class Thread

– implementing the Runnable interface.

• Which you choose depends on the situation
– Implementing Runnable makes sense if you want to

inherit from a class that is not a subclass of Thread.

OOP Week 3 16

Exception Handling

OOP Week 3 17

Interfaces -- PinBallTarget

• 3 domain classes -- Peg, Wall, Hole and
Spring share the same behavior (type), but
have no structure in common.

• The behavior may be implemented
differently.

• A variable can be declared to hold a value
of PinBallTarget type (and thus a value of
either Peg, Wall or Spring)

