OOAD Workshop 5 Understand Collaborations

Student Originated Software
OO Analysis & Design (OOAD) Workshop Exercise 5
Fall 2001
Due Monday, Oct. 22

Understand the collaborating objects that realize each use case

At this point, we have analyzed the static aspects of the system (as the core concepts, reflected
in the Domain Model) and the dynamics aspects of the system (as the required functionality,
reflected in the Use Cases). We are ready to begin the transition from analysis -- the 'what' -- to
design -- the 'how.’

We do this by investigating the ways that the systems objects will collaborate behind the scenes
("behind the interface™) to realize each of the use cases. We can document this work in two
ways: as a simple matrix and as a Collaboration Diagram.

Major Goals
To perform a sanity check on your use cases -- confirm that the behavior in your use case
text is reasonable (and possible) given the set of objects you have to work with.
To continue to refine the system classes -- discovering classes, attributes, and
relationships that may have been missed during domain modeling.

To transition to design -- beginning to develop the Class Model.

Refer to the background material you have for the "Surplus Stock Disposal” system (EU-Bid), as
needed, when you complete the steps outlined below. As you develop these new artifacts, also
continue to capture any new terms and their definitions in the system glossary -- and to improve
on existing terms and definitions as you gain a better understanding of the system.

Steps
(1) Develop an initial ""C-R-U-D" Matrix that depicts the relationships between the
system'’s entity classes and use cases.
(2) Refine the ""C-R-U-D' Matrix into a Collaboration Matrix that briefly describes
the nature of each entity’s role in the collaboration that realizes the use case.
(3) Draw this understanding as a Collaboration Diagram for each use case.
(4) Update the Domain Model, as needed.

Details

(1) Develop an initial ""C-R-U-D" Matrix that depicts the relationships between the
system's entity classes and use cases.

The history of systems analysis has long used this simple technique of mapping the static and
dynamics models through the use of an artifact called a C-R-U-D (Create, Read, Update, Delete)
matrix between the constructs of the two model types. Applying the CRUD approach, we
examine each use case to discover its participating objects.

la  Draw a matrix (table) that list the domain classes across the top and the use cases down
the left side.

OOAD Exer5.doc 1of3 rev. [1a] 2001.10.22
prepared for TESC/SOS-Fall 2001 ©ARCorp, 2001



OOAD Workshop 5 Understand Collaborations

1b  If an object of the class participates in a use case, note the type of participation in the
appropriate cell (class/use case intersection) using the following codes:

C -- for Create: does the use case create a new instance (object) of this class?

R -- for Read/Retrieve: does the use case access this object for the purpose of using
any of its property knowledge, i.e., its attribute or relationship values.

U -- for Update: does the use case update any of the properties (attributes or
relationships) of the object?

D -- for Delete: does the use case delete an object of this class from the active
system?

Note: multiple codes may appear in a cell.

(2) Refine the ""C-R-U-D" Matrix into a Collaboration Matrix that briefly describes the
nature of each entity's role in the collaboration that realizes the use case.

Although a C-R-U-D matrix provides a quick mapping of the relationship between the use cases
and the objects that participate in each use case, it does not reveal the nature of that participation
in a form that reflects an understanding of the responsibilities of each object. In this step we
expand the C-R-U-D matrix format to capture more details of the specific responsibilities,
producing a Collaboration Matrix.

2a  Replace each letter (C, R, U, D) with a short description of the object's responsibility(s) in
the use case.

Write this in simple verb-noun form, using terms from the glossary/domain model, e.g.,
"calculate credit-score,” ""create a new loan account,” "update loan-amount,” "delete an
order."

Multiple items may be called for in a cell. List in bullet format.

(3) Draw this understanding as a Collaboration Diagram for each use case.

**** Draw a Collaboration Diagram for **Launch Auction' **** Additional Collaboration
Diagrams are optional.

The UML has two diagram types to depict this kind of "interaction™ graphically: sequence
diagrams and collaboration diagrams. Sequence diagrams are where we are heading (as the final
artifact of design, on the dynamics side). But we will first draw a simple form of the
collaboration diagram which is much simpler to draw and easier to read -- meaning that this
diagram type can be drawn and redrawn quickly as refinements are made.

This technique applies the popular Model-View-Controller pattern and introduces the other
analysis class stereotypes we mentioned earlier: the boundary class and the controller class.

For each use case/actor pair:
3a  Carry forward the participating entity object(s).

Use the entity objects you identified in the Collaboration Matrix.
3b  Define boundary object(s).

OOAD Exer5.doc 2 0f 3 rev. [1a] 2001.10.22
prepared for TESC/SOS-Fall 2001 ©ARCorp, 2001




OOAD Workshop 5 Understand Collaborations

Boundary objects are the objects in the system with which the actors will interact. These
will become the windows, dialogs, etc. (in a GUI interface) or the system-to-system
interface in a batch/backend interaction (with a non-human actor).

Name the boundary classes appropriately. (We will use a standard *_UI" suffix for
boundary classes that interact with human actors and "_SI" suffix for boundary classes
that interact with system actors.)

3c  Define controller object(s).
Controller objects are the "glue" between the boundary objects (the user interface) and the
entity objects (the system's persistent data). They embody much of the application's
business logic (processing "business rules"”).

Name the controller classes appropriately. (We will use a standard *_Cntrl" suffix.)

3d  Add a symbol for each actor.
3d  Connect and label the symbols to reflect the flow of processing called for by the use case..
Apply the following rules when making connections.

1. Actors can talk only to Boundary objects.

2. Boundary objects can talk only to Controllers or Actors.
3. Entity objects can talk only to Controllers or Entities.

4. Controllers can talk to anyone except Actors.

(4) Update the Domain Model, as needed.

While you perform collaboration analysis, it is likely that you will learn things that will cause the
Domain Model to be updated.

4a  Add elements to the Domain Model.
In thinking about the classes' responsibilities it is very likely that you will have
discovered attributes, relationships, and even entity classes that were not on your initial
Domain Model. Add these into the model, also making the necessary additions/changes
to the Glossary.

4b  Consider removing elements from the Domain Model.
If you find that you have something on the Domain Model that was not exercised during
this activity, this may suggest that you have things in your model that are outside the
requested scope. Review these with your system sponsors to confirm the need for these
elements and, if not needed (say, for future/other functionality), then remove them from
your model.

OOAD Exer5.doc 30f3 rev. [1a] 2001.10.22
prepared for TESC/SOS-Fall 2001 ©ARCorp, 2001



