
Transitioning from Analysis to Design ~ Collaborations

Objectives: Identifying Collaborations (Classes supporting Use Cases)

☛ In this lesson we will:

❑ Understand what it means to realize a Use Case in
terms of collaborating classes

❑ Identify a set of objects (classes) that collaborate to
realize a Use Case

❑ Document this information

Simple matrix: Use Cases / Classes

Graphically: as a Collaboration Diagram

❑ Validate the Class Model

What is Use Case Realization?

❑ Use Case Realization is the process of examining use
cases to discover objects and classes for the system
being developed

❋ The processing ‘behind’ the Use Cases is detailed and
shown graphically in interaction diagrams

! Entity classes supporting a Use Case are identified.

! Boundary and Controller classes are created.

❋ Classes are grouped into packages

❋ Design classes are defined and refined.

" Boundary Classes

• model interaction between the system and its actors

" Controller Classes

• represent coordination, sequencing, and control
of other objects (“dispatchers”).

• encapsulate the control logic of a specific use case.

" Entity Classes
• model long-lived (often persistent) information
• usually participate in many use cases

Class Stereotypes are used

A Scenario for the “Create a Schedule” Use Case

1. John enters the student ID number 369-52-3449, and the system
validates the number. The system asks which semester. John
indicates the current semester and chooses ‘create a new schedule.’

2. From a list of available courses, John selects the primary courses
English 101, Geology 110, World History 200, and College Algebra
110. He then selects the alternate courses, Music Theory 110 and
Introduction to Java Programming 180.

3. The system determines that John has all the necessary
prerequisites by examining the the student record and adds him to
the course rosters.

4. The system indicates that the activity is complete. The system
prints the student schedule and sends billing information for four
courses to the billing system for processing.

A Scenario for the “Launch Auction” Use Case

☛ In our scenario, EU-Rent has decided to place 22 (of its 172) Chevy
Cavalier models on auction.

Postconditions (at the end of successful processing):

❑ The surplus-count has been recorded, and this amount has also
been removed from the active inventory-count.

❑ 3 ClubMembers who were “interested enough” in the Mid-Size
rental group have been each sent a letter, inviting them to bid, and
an initial (zero-amount) bid has been entered into the system to
record this.

❋ Chris Bronson - “3”
❋ Jo Miller - “3”
❋ Sandy Thomas - “3”

❑ One ClubMember, who was not interested enough in this
group, was bypassed.

❋ Happy Thymes - “5”

Candidate Entity Objects in the Scenario

New schedule -- list of courses for a semester for a
student

List of available courses -- list of all courses being taught
in a semester

English 101 -- an offering for a semester

Geology 110 -- an offering for a semester

World History 200 -- an offering for a semester

College Algebra 110 -- an offering for a semester

Music Theory 110 -- an offering for a semester

Introduction to Java Programming 180 -- an offering for a
semester

Candidate Entity Objects in the Scenario

Student record -- a list of courses taken in previous
semesters by a student

Course roster -- list of students for a specific course
offering

Billing information -- information needed by the billing
system actor

Schedule
<<Entity>>

Course
<<Entity>>

BillingInformation
<<Entity>>

CourseRoster
<<Entity>>

StudentRecord
<<Entity>>

Catalogue
<<Entity>>

Candidate Entity Classes -- “Create a Schedule” Scenario

❑ Schedule -- list of courses for a semester for a student
❑ Catalogue -- list of all courses being taught in a

semester
❑ Course -- an offering for a semester
❑ StudentRecord -- list of previously taken courses
❑ CourseRoster -- list of students for a specific course

offering
❑ BillingInformation -- information needed by the billing

system actor

Service provided

Use Case / Entity Class Collaboration Matrix

☛ What role does each object (class) play in the use case?

❑ Initially, just “C R U D” level…

UseCase-1

UseCase-2

UseCase-3

UseCase-4

UseCase-5

UseCase-6

UseCase-7

C

C

R

R

RR

R

U

U

U

U U

U

D

D

R R

R R

U

Service provided

Internal knowledge

Use Case / Entity Class Collaboration Matrix

☛ What role does each object (class) play in the use case?

❑ Then, describing specific responsibilities in each ‘cell.’

UseCase-1

UseCase-2

UseCase-3

UseCase-4

UseCase-5

UseCase-6

UseCase-7

Fasfds sa fsajk jlkf;
Jfklsdj ljfd sl lfdjsj

Fdsa jkdsfj jklfs
Fsjkl lj ldfsjlk fsjkl

Fjkl jkla jkl jklfjkl

Fs jkljkls jklf dsal;

Fsdfsdj jklfdsj kl sjkl
Jklfdsjlsj fdklsj

Fsjk j klfsdj sjklj fsdjkl
Fjkljsf l jklfsdj ljsfld

Fdsa jflds jklfd
Fjkslj jlksdfj lfslkjR

Upjjfdalk jfklsd jklfd Jjl jlkjlk fj kla
Jklfsjl lfjds l ljljsdfa

Fsdjkl fsjkl sfjkl sf
Jfklsjlfsdjkl jsfjlk

Fdsasf jklfdsj kjlfds l

Fdsf jlkfjkl sjkl fjklds
Jfkldsj lsf jkl dsfkjlj

Fdsf jklfjds jkf sjkl
Jklsfdjlk jklsf jkl

Fsjkl jkfds kjljls
Kljds jl jfdlks klj
jlfdsafs

Fsdaf jklfdsjkl jklfjsd
Hlfsdhljl sl jklfsdR

Rfdsa jkldfs jkld
Jfkldsj jkljsdf l
Jfklsj fdsjkl jls jlfd

Fdsf jkldfsjs jkldfs jl
hklfsdhlhsfdlk

Fsd jkldfsj sjklsf
Jklsdjkl fsjkl sfjklsf

Fsa jkl kljsa kl jlfdsjlk
Fklsdj lj ls jlk sfalkj

Finding Boundary Classes

❑ For each actor / scenario pair, create an initial boundary
class.

❋ During UI design, this “placeholder” UI class will be
expanded, and eventually refined based on the chosen
user interface mechanisms

❋ Example:

❋ The student is presented with different options in the
“Register for Courses” use case.

A boundary class called “RegistrationForm” is created to allow the
student to select a desired option.

❋ The student must input course information to the system
in the “Create a Schedule” scenario.

A boundary class called ScheduleForm is created to hold the
information input by the student.

ScheduleForm
<<Boundary>>

RegistrationForm
<<Boundary>>

Candidate Boundary Classes

☛ “Create a Schedule” Scenario

Window Sketch

❑ Prototypes and/or window sketches may be created to
communicate the look and feel of the boundary class to
the user

Finding Boundary Classes

❑ Boundary classes are also created for communication
with system actors

❋ A system may be another software system or a piece of
hardware (printers, alarms, etc.)

❑ Boundary classes are added to describe the specified
system interface, and eventually the communication
protocol.

BillingSystem
<<Boundary>>

Printer
<<Boundary>>

Candidate Boundary Classes

☛ “Create a Schedule” Scenario

❑ The student schedule is printed in the “Create a
Schedule” scenario

❋ A boundary class called Printer is created

❑ Billing information is sent to the Billing System in the
“Create a Schedule” scenario

❋ A boundary class called BillingSystem is created

Finding Controller Classes

❑ Controller classes typically contain sequencing
information.

❋ Caution: controller classes should NOT perform the
responsibilities that typically belong to entity and / or
boundary classes.

❑ At this level of analysis, a controller class is typically
added for each use case.

❋ Responsible for handling the flow of events in the use
case.

❑ This is just an initial cut.

❋ As the design is refined, control classes may be
eliminated, split up, or combined.

Controller for the “Register for Courses” Use Case

❑ A controller class called RegistrationManager is added.

❋ Receives information from the “ScheduleForm” boundary
class.

❋ For each selected course:
Asks the course for its prerequisites.

Checks to make sure all prerequisite courses have been taken by asking the
StudentRecord if a prerequisite course has been successfully completed.

Knows what to do if a prerequisite has not been taken.

Asks the course if it is open.

Asks the course to add the student (if the course is open).

Knows what to do if 4 courses are not available.

Creates the StudentSchedule and BillingInformation objects.

Asks the BillingSystem to send the BillingInformation.

RegistrationManager
<<Control>>

Candidate Controller Class

☛ For the “Register for Courses” Use Case

BillingInformation Catalogue CourseOffering

CourseRoster Schedule StudentRecord

Entity Classes are grouped into one or more Packages

BillingSystem

Printer

RegistrationForm ScheduleForm

Boundary Classes in an Interfaces Package

Controller Classes in a Controllers Package

RegistrationManager

Representing Object Collaborations as Diagrams

Collaboration Diagrams

❑ A collaboration diagram is a way to represent the
messages exchanged by a set of objects to realize a
use case.

❑ The diagram shows object interactions organized
around the objects and their links to each other.

❑ A collaboration diagram reflects:

❋ objects

❋ links between objects

❋ messages exchanged between objects

❋ conditions on message responses, if any

❋ data flowing between objects, if any

John : Student

registrationForm

scheduleFormavailableClasses

1: enter id

2: validate id

3: enter current semester

4: create new schedule
5: display

6: get courses

Sample Collaboration Diagram

English 101 English 101
: Course

:Course

Object only Object and Class Class only

Representing Objects on a Collaboration Diagram

❑ Objects are drawn as class symbols with underlined
names

Note: we will draw the class symbols using the
stereotype shapes ~ entity, boundary, controller.

scheduleForm : Form aCourse : Course

Representing Links on a Collaboration Diagram

❑ A interaction link in a collaboration diagram is
represented as a line connecting object symbols

❑ A link indicates that there is a pathway for
communication between the connected objects

Link Annotations

❑ An interaction link in a collaboration diagram can be
annotated with:

❋ An arrow pointing from the client object to the supplier
object

❋ The name of the message with an optional list of
parameters and/or a data return value

❋ An optional sequence number showing the relative order
with which the messages are sent

Link Notation

scheduleForm aCourse

Supplier object

Message

Arrow points from client
to supplier

Client object

Data return

1: get prerequisites

2: get courses

course list

: Student

: RegistrationForm

: ScheduleForm

: Catalogue

: RegistrationManager

: CourseOffering

: StudentRecord

: Schedule

: Printer

: BillingInformation

: BillingSystem

2: validate id

5: display

6: get course offerings

7: show course offerings

10: create schedule
(student, semester,

offerings)

11: get pre-requisite courses

12: pre-requisite taken (course)

13: available ?
14: add student (student)

15: create

16: print (schedule)

17: create

18: send (billing information)

1: enter id
3: enter semester
4: create schedule

8: select course offerings
9: submit

Collaboration Diagram for the “Register for Courses” Scenario

We will follow conventions for linking the collaborating objects

1. Actors can talk only to Boundary objects.
2. Boundary objects can talk only to Controllers or Actors.
3. Entity objects can talk only to Controllers or Entities.
4. Controllers can talk to anyone except Actors.

Summary: Collaboration Diagrams

❑ A collaboration diagram is a graphical representation of
object interactions

❋ Objects are represented by labeled class symbols.

❋ A line (interaction link) is drawn between communicating
objects.

" The link is annotated with an arrow containing the message
name which points from the client object to the supplier object.

" The link may also be annotated with a data return arrow.

