OOAD Workshop 6 Defining Sequence Diagrams and the initial design Class Model

Student Originated Software
OO Analysis & Design (OOAD) Workshop Exercise 6
Fall 2001
Due Monday, Oct. 29

Defining Sequence Diagrams and the initial design Class Model

Completing the Interaction diagrams (i.e., developing Sequence Diagrams from your Collaboration
Diagrams) allows you to do two important things: (1) define the detailed behavior of your
objects, and (2) find appropriate homes for this behavior in terms of operations in the classes,
along with the attribute detail for those operations. The result of this activity is a first cut at the
design of the system's Class Model -- i.e., the artifact from which system code will be produced
for a variety of implementation languages (in our case, Java).

Major Goals
To complete the design of the system's dynamic behavior, in the form of a set of
Sequence Diagrams.
To design an initial Class Model, allocating and refining messages from the Sequence
Diagram into operations of appropriate classes.
To add necessary design detail to the attributes of the classes in the Class Model.

Refer to the background material you have for the "Surplus Stock Disposal” system (EU-Bid) --

in particular, the Collaboration Diagram for "Launch Auction™ -- when you complete the steps
outlined below.

Steps
(1) Define Sequence Diagrams.
(2) Distribute operations among classes and define methods.
(3) Complete the attribute detail of the entity classes of the Class model.

Details

(1) Define Sequence Diagrams.

In our development process, Sequence Diagrams represent the major work product of the
dynamics side of design. A Sequence Diagram shows the detailed interactions that occur over
time among the objects associated with each of the use cases. Objects interact by sending
messages to each other. These messages serve as what Ivar Jacobson calls 'stimuli’ -- that is, a
message stimulates an object to perform some desired action. For each 'unit of behavior' within a
use case, you will identify the necessary messages and responses (i.e., the operations and,
eventually, the method underlying each operation).

In this workshop we will develop the Sequence Diagram for "Launch Auction.”

la Define a sequence diagram (from the collaboration diagram)
Give the sequence diagram the same name as the collaboration diagram. (In other words,
this will be "Launch Auction.™)

1b Add in the actors and objects.

The actor(s) and collaborating objects (typically depicted as "anonymous classes™) are
drawn across the top of the diagram, from left to right, in generally this order: the

OOAD Exer6.doc 1of3 rev. [1a] 2001.10.29
prepared for TESC/SOS-Fall 2001 ©ARCorp, 2001

OOAD Workshop 6 Defining Sequence Diagrams and the initial design Class Model

initiating actor, the boundary class the actor 'talks' to, the controller class(es) the
boundary class interacts with; the collaborating entity classes; and (if needed): the
outbound-side controller(s), boundary class(es), and actor(s).

1c Name the actors and objects.
Give each actor and object a name, following the guidelines explained in the lecture.

1d (optional) Add the text from the scenario.

Copy the text from the scenario down the left side of the diagram. Since this depicts only
the interactions between the actor and the boundary object(s), leave sufficient white space
for the interactions that happen behind the interface.

le Draw the messages between the ‘client’ (requesting) object and the 'server’ (responding)
object. Consider what the client needs to provide to the server object for it to do what it is
being requested to do.
Each of the entity objects is an instance of a class that appears in the Domain Model. As
such, these objects should already have most of their attributes identified. Many of these
objects will, in turn, be serving data to other objects as the interactions flow, so you can
expect to discover some missing attributes as you work through a Sequence Diagram. If
you do, be sure to add them into your Domain Model (and Glossary), as you discover
them.

1f Name the messages.

Since each message will become an operation in a class, name the message in a verb+noun
form that reflects the perspective of the server (not the client). (It can be helpful to think
in terms of the object and say "I know how to " or "l can be asked to "
when you develop these names.)

(2) Distribute operations among classes and define methods.

In our development process, the Class Model represents the major work product of the statics
side of design. We will focus, in this lesson, only on the entity objects of the Sequence Diagrams.

You should have had all of your domain entities and about 90 percent of your attributes defined
from the Domain Model at the end of your analysis of the collaborations. In this step, the
Domain Model entities are transformed into design classes of the Class Model, with the
operations supplied from the Sequence Diagrams.
2a Draw an initial design Class Model from the Domain Model.

Apply the following transforms to the constructs of the Domain Model to produce a

Class Model. For each entity:

1. In the first compartment of the Class Model class:

Entity name: any 'white space’ characters are removed and the class name is written
in TitleCase, beginning with an upper-case letter.

2. In the second compartment of the Class Model class:

Attribute names: any 'white space’ characters are removed and the attribute name is
written in TitleCase, beginning with a lower-case letter.

OOAD Exer6.doc 2 0f 3 rev. [1a] 2001.10.29
prepared for TESC/SOS-Fall 2001 ©ARCorp, 2001

OOAD Workshop 6 Defining Sequence Diagrams and the initial design Class Model

2b

2C

2d

Relationship names: the name of the related-to class (or its rolename, if assigned) is
written in TitleCase, beginning with a prefix of "my" followed by the class (or role)
name. For a "many" relationship, add "s" to indicate a Collection.

Write each method from the Sequence Diagram as an operation in the third compartment
of the Class Model.

Each message to an entity object on the Sequence Diagram becomes an operation of the
class of that object. If you are using an automated tool (such as Rose), this step is
already done (as a result of Step-1).

Complete the operation signature.

If the operation uses arguments, list each and assign its type. If the operation returns a
value, specify this.

Describe the operation.
Write a brief description of the operation.

(3) Complete the attribute detail of the entity classes of the Class model.
In this step, the remaining design-level detail is filled-in for the attributes.
For each attribute in the Class Model:

3a Define its visibility (typically "private").

3b Define its type.

3c State its initial value (if any).

3d Specify its containment property -- typically, "by value" rather than "by reference."”

3e Isitstatic? (defaultis "no™)

3f Is it derived? (default is "no")

OOAD Exer6.doc 30f3 rev. [1a] 2001.10.29

prepared for TESC/SOS-Fall 2001 ©ARCorp, 2001

