*Problem 4.1

(a) Work out all of the canonical commutation relations for components of the operators r and p: [x, y], $[x, p_y]$, $[x, p_x]$, $[p_y, p_z]$, and so on. Answer:

$$[r_i, p_j] = -[p_i, r_j] = i\hbar \delta_{ij}, \quad [r_i, r_j] = [p_i, p_j] = 0.$$

$$DEF(N|T|O|V), \quad \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$\frac{d}{dt}\langle \mathbf{r} \rangle = \frac{1}{m}\langle \mathbf{p} \rangle, \quad \text{and} \quad \frac{d}{dt}\langle \mathbf{p} \rangle = \langle -\nabla V \rangle.$$

$$[4.11]$$

(Each of these, of course, stands for *three* equations—one for each component.)

Hint: Note that Equation 3.148 is valid in three dimensions.

$$[x,y] = xy - yx = 0 = [y,x]$$

$$[x, p_{x}] \psi = x p_{x} \psi - p_{x} x \psi = x(-i \frac{\pi}{2} \varphi) - (-i \frac{\pi}{2} x) x \psi$$

$$= -i \frac{\pi}{2} \left[x \frac{3 \psi}{3 x} - \frac{3}{2} (x \psi) \right]$$

$$= -i \frac{\pi}{2} \left[x \frac{3 \psi}{3 x} - x \frac{3 \psi}{3 x} - \psi \frac{3 \psi}{3 x} \right] = +i \frac{\pi}{2} \psi$$

$$So [x, p_{x}] = i \frac{\pi}{2}$$

*Problem 4.10 Work out the radial wave functions R_{30} , R_{31} , and R_{32} , using the recursion formula (Equation 4.76). Don't bother to normalize them.

$$v(\rho)$$
 is a polynomial of degree $i_{max} = n - l - 1$

$$v = \sum_{j=1}^{n} j^{n}$$

$$a_{j+1} = \frac{2(j+l+1-n)}{(j+1)(j+2l+2)} a_{j}.$$

$$R_{10}(r)=\frac{a_0}{a}e^{-r/a}.$$

$$R = A \int_{-1}^{1+1} \sqrt{p} e^{-p}$$
 where $p = xr = \frac{r}{an}$ (a = 8 du redius)
 $v(p) = L(2p)e^{-p}$ and Laguerre polynomials are in Table 4.5
 $p. 140$

R₃₀
$$W=3$$
, $l=0$, $j_{wax}=3-0-1=2$ (90=Some constant to be ebsorbed) into Normalization A)

$$j=1$$
: $q_1 = 2(1+o+1-3)$ $q_1 = 2(-i) = -\frac{1}{3}q_1 = \frac{2}{3}q_0$

$$\hat{J} = 2$$
, $a_3 = \frac{Z(2+0+1-3)}{(3)(2+0+2)}$ $q_1 = 0$

$$\int_{30}^{2} = \frac{1}{3a} \quad So \quad v = a_0 \left(1 - \frac{2r}{3a} + \frac{2}{3} \frac{r^2}{9a^2} \right)$$

Check this against talnulated Laguerre polynomials:

$$2l+1$$

$$2(n) = 2(n) = 2(n) = 18 - 18x + 3n^2 = 1-x + \frac{1}{9}n^2$$

$$1 - 2 - 1$$

$$2 - 1 - 2 - 1$$

4(0) - 1-20+ \(\frac{1}{2}\) = 1-2(\frac{1}{2})+\frac{4}{9}(\frac{1}{30})^2 \ \dotse...

$$\frac{1}{2} R_{30} = \frac{A}{r} \rho^{04} v_{30} e^{-A} = \frac{A}{r} \left(\frac{t}{3a}\right) \left[1 - \frac{2r}{3a} + \frac{2}{27} \left(\frac{r}{a}\right)^{2}\right] e^{-\frac{r}{3a}}$$

This watches tabulated R30 in Table 4.6 to within a p. 141 acrosses at in cent.

$$R_{31}$$
 $N=3, l=1$ $j_{max}=h-l-l=$, $q_{j+1}=\frac{2(j+l+l-n)}{(j+2l+2)}q_{j}$

$$j = 0$$
; $q_1 = \frac{2(0+1+1-3)}{(0+1)(0+2+2)}$ $q_2 = \frac{q_2}{(0+1)(0+2+2)}$

$$\nu(\rho) = \sum_{i=1}^{j} a_{ij} \rho^{j} = -$$

New a 4 HW: Ine Thus 6 Mar 03
4.18, 20, 28
149 150 150

Problem 4.18

(a) Prove that if f is simultaneously an eigenfunction of L^2 and of L_z (Equation 4.104), the square of the eigenvalue of L_z cannot exceed the eigenvalue of L^2 . Hint: Examine the expectation value of L^2 .

$$[L^2, L] = 0.$$

[4.103]

So L^2 is compatible with each component of L, and we can hope to find simultaneous eigenstates of L^2 and (say) L_z :

$$L^2 f = \lambda f$$
 and $L_z f = \mu f$.

[4.104]

(b) As it turns out (see Equations 4.118 and 4.119), the square of the eigenvalue of L_z never even equals the eigenvalue of L^2 (except in the special case l = m = 0). Comment on the implications of this result.

Evidently the eigenvalues of L_z are $m\hbar$, where m (the appropriateness of this letter will also be clear in a moment) goes from -l to +l in N integer steps. In particular, it follows that l=-l+N, and hence l=N/2, so l must be an integer or a half-integer. The eigenfunctions are characterized by the numbers l and m:

$$L^{2} f_{l}^{m} = \hbar^{2} l(l+1) f_{l}^{m}; \quad L_{z} f_{l}^{m} = \hbar m f_{l}^{m}, \tag{4.118}$$

where

$$l = 0, 1/2, 1, 3/2, ...;$$
 $m = -l, -l+1, ..., l-1, l.$ [4.119]

For a given value of l, there are 2l + 1 different values of m (i.e., 2l + 1 "rungs" on the "ladder").

uncertainty principle (Equation 4.100), and explain how the special case gets away with it.

$$\sigma_{L_x}^2 \sigma_{L_y}^2 \ge \left(\frac{1}{2i} \langle i\hbar L_z \rangle\right)^2 = \frac{\hbar^2}{4} \langle L_z \rangle^2, \qquad \left[\left(\sum_{> 0} \left| \frac{1}{\sqrt{2}} \right| \right)^2 - \left(\frac{1}{\sqrt{2}} \right)^2 \right]$$

$$\sigma_{L_x} \sigma_{L_y} \ge \frac{\hbar}{2} |\langle L_z \rangle|. \qquad (4.100)$$

*Problem 4.20

(a) Starting with the canonical commutation relations for position and momentum, Equation 4.10, work out the following commutators:

$$[L_z, x] = i\hbar y, [L_z, y] = -i\hbar x, [L_z, z] = 0 [L_z, p_x] = i\hbar p_y, [L_z, p_y] = -i\hbar p_x, [L_z, p_z] = 0.$$
 [4.122]

(b) Use these results to rederive Equation 4.98 directly from Equation 4.96.

$$\mathbf{L} = \mathbf{r} \times \mathbf{p}$$

[4.95]

which is to say,

$$L_x = yp_z - zp_y$$
, $L_y = zp_x - xp_z$, and $L_z = xp_y - yp_x$. [4.96]

*Problem 4.28) An electron is in the spin state

$$\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}.$$

- (a) Determine the normalization constant A.
- (b) Find the expectation values of S_x , S_y , and S_z .
- (c) Find the "uncertainties" σ_{S_x} , σ_{S_y} , and σ_{S_z} .
- (d) Confirm that your results are consistent with all three uncertainty principles (Equation 4.100 and its cyclic permutations—only with S in place of L, of course).