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(8) Work out all of the canonical commautation relations for components of the
- operators r and p: [x, y], [, pyL, [x, pc}, [Py, p:), and s0 on. Answer:

{r:, Pj.] = —[pi, 1)) = ihdy, [r, 7] =[p;, pjl =0. [4.10]
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O =0, ad —(p)=(-VP). [4.11]
(Each of these, of course, stands for three equations—one for each component.)

- Hins: Note that Equation 3.148 is valid in three dimensions.
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* 4.10 Work out the radial wave functions R3o, R31, and Rj;, using the
formula(Equanon476) Dontboﬂaertonormahzethem,
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Problem 4:18
(2) Prove that if f is simultaneously an eigenfunction of L? and of L, (Equa-
tion 4.104),

the square of the eigenvalue of L, cannot exceed the eigenvalue of
L. Hint: Examine the expectation value of 2. '

(L%, L} =0. [4.103]
Sp L? is compatible with each component of L, and we can hope to find simultancous
eigenstates of L2 and (say) L,:

L2f=Af and L,f=uf (4.104]




() Asittumns out(sec Equations 4.118 and4.119)

, the square of the ej
never even equals the cigenvalue of L2 (except instge o _thec ::‘g:(}n:ﬂue of L,
. Comment on the implications of this result. /~ SEiEm=0.

Evidently the eigenvalues of L, are m#A, where m (the appropriateness of this
letter will also be clear in a moment) goes from —/ to +/ in N integer steps. In
particular, it follows that/ = —/ + N, and hence I = N/2, so ] must be an integer or
a half-integer. The eigenfunctions are characterized by the numbers / and m:

L =RId+ 1) L =hmf", [4.118)

where < :
1=0,1/2,1,3/2,...; m=-1,-1+1,...,1-1,1. [4.119]

For a given value of /, there are 2/ + 1 different values of m (i.e., 2/ + 1 “rungs” on |

the “ladder”). S




uncertainty principle (Equation 4.100), and explain how the special case gets
away with it. special

| 1 W . ,
0'2{0'2 Lz (~'2?(ih"’)) = —Z(Lz)zv [,(—70) L‘J P L{:’L%

or,01, = SUL. [4.100)




+Probl 2Q)

(a) Stafting with the canonical commutation relations for position and momentum,
Equation 4.10, work out the following commutators:

[Ln x] = ihy’ [Lz’ JV] = —ihxi [Lz, Z] =0 4
, . 1221
Lz, psl= ik py, {L:z, Py] = —ihpx, Lz, p:l= 0. t ]
~ (b) Usethese results to rederive Equation 4.98 directly from Equation 4.96.
L=
TP (4.95]

which is to say,

(L. Ly) = ihL,.

Ly = -
x = yp: Zpy, Ly = sz — XDz, and Lz = XPy — YDx- [4»96]

[4.98]




+Problem 4.28) An electron is in the spin state

x=4 (i’) .
(a) Determine the normalization constant 4.
(b) Find the expectation values of S;, Sy, and S;.
(C) Find the “uncertainties” os,, 0s,, and ;.
(d) Confirm that your results are consistent with all three uncertainty principles
(Equation 4.100 and its cyclic permutations—only with § in place of L, of
course). e o P




