{ | T el B
- Zﬂ&‘r’ wee /0,/6.&/1/%/ S&@Méﬁﬂ/?/%

s = gz TV %ME%Q@%W\M'M :

Now the Schrédinger equation says that
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and hence also (taking the complex conjugate of Equation 1.23)
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The integral (Equation 1.21) can now be evaluated explicitly: ) -

d [+e ih (8wt \[+e

} 4 Ui, D dx = o (o= - 2w )| 126) - - el

i), YOrd=a ( ox  ox ) - [1.26] p

But ¥ (x, ) must go to zero as x goes to () infinity—otherwise the wave function i ‘;""“\'
would not be normalizable. It follows that r'i,,;;ﬁr,
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and hence that the integral on the left is constant (independent of time); if W is 4
normalized at ¢ = 0, it stays normalized for all future time. QED o G e ety




state W, the expectation value of x is
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might be interested in knowing how fast it moves. Referring to Equations
11.28, we see that’
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'.sion can be simpliﬁed using integration by parts'®:
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the fact that 3x/dx = 1, and threw away the boundary term, on the ground dt

z0es to zero at (+) infinity.] Performing another integration by parts on the

term, we conclude that -

//w

2¥
OX -

Vol/x

N al
oK

Q/4X7 - -—cﬁ

/“”

/ Mw/ dwk‘/“)oév =
- /(WW T y) ok, _ﬂ
foul” P
[1.30] - 4
/ ¢ 5cdn =, ]
A ?é*é;//,g oy /
b
%)aa..ﬁ.@ 1
: ,2/‘(//% 57/‘/’ +

d
(Tx'(fg)"f—-+ 4

dxg

.




SO | [1.32]

)=

dt

ls us, then, how to calculate (v) directly from W.
it is customary to work with momentum (p = mv), rather than ve-
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' (p) = mW = —ih / (\11'5;) dx [1.33]




