Callahan: wk 7
11.3: 7, 8, 13, 15, 16, 17
11.4: 1, 2, 6, 7, 10
![[Graphics:Images/calculus_gr_1.gif]](Images/calculus_gr_1.gif)
11.3: 7, 8, 13, 15, 16, 17
![[Graphics:Images/calculus_gr_7.gif]](Images/calculus_gr_7.gif)
![[Graphics:Images/calculus_gr_8.gif]](Images/calculus_gr_8.gif)
11.4: 1, 2, 6, 7, 10
1) Use the method of separation of variables to find a formula for the solution of the differential equation . Your formula should contain an arbitrary constant to reflect the fact that many functions solve the differential equation.
First separate variables:
![[Graphics:Images/calculus_gr_10.gif]](Images/calculus_gr_10.gif)
Now we integrate to solve the differential equation for :
![[Graphics:Images/calculus_gr_12.gif]](Images/calculus_gr_12.gif)
Here we need to use a substitution to continue:
![[Graphics:Images/calculus_gr_13.gif]](Images/calculus_gr_13.gif)
![[Graphics:Images/calculus_gr_14.gif]](Images/calculus_gr_14.gif)
![[Graphics:Images/calculus_gr_15.gif]](Images/calculus_gr_15.gif)
So our general solution to the differential equation is:
![[Graphics:Images/calculus_gr_16.gif]](Images/calculus_gr_16.gif)
a)
![[Graphics:Images/calculus_gr_18.gif]](Images/calculus_gr_18.gif)
![[Graphics:Images/calculus_gr_21.gif]](Images/calculus_gr_21.gif)
6) A falling body with air resistance. We have used the differential equation:
![[Graphics:Images/calculus_gr_22.gif]](Images/calculus_gr_22.gif)
to model the motion of a body falling under the influence of gravity and air resistance
. Here
is the velocity of the body at time
.
a) Solve the differential equation by seperating variables, and obtain:
![[Graphics:Images/calculus_gr_27.gif]](Images/calculus_gr_27.gif)
First separate variables:
![[Graphics:Images/calculus_gr_28.gif]](Images/calculus_gr_28.gif)
Now we integrate to solve the differential equation for :
![[Graphics:Images/calculus_gr_30.gif]](Images/calculus_gr_30.gif)
Here we need to use a substitution to continue:
![[Graphics:Images/calculus_gr_31.gif]](Images/calculus_gr_31.gif)
![[Graphics:Images/calculus_gr_32.gif]](Images/calculus_gr_32.gif)
![[Graphics:Images/calculus_gr_33.gif]](Images/calculus_gr_33.gif)
So our general solution to the differential equation is:
![[Graphics:Images/calculus_gr_34.gif]](Images/calculus_gr_34.gif)
b) Now impose the initial condition to determine the value of
:
![[Graphics:Images/calculus_gr_37.gif]](Images/calculus_gr_37.gif)
![[Graphics:Images/calculus_gr_38.gif]](Images/calculus_gr_38.gif)
c) Show that your solution to the initial value problem is equivilent to the answer found in exercise 21 (p197):
![[Graphics:Images/calculus_gr_39.gif]](Images/calculus_gr_39.gif)
![[Graphics:Images/calculus_gr_40.gif]](Images/calculus_gr_40.gif)
So the solutions are equivilent.
d) Knowing that and
, the distance
that the body has fallen by time
is given by the integral:
![[Graphics:Images/calculus_gr_45.gif]](Images/calculus_gr_45.gif)
Use your formula for from part (b) to find
:
![[Graphics:Images/calculus_gr_48.gif]](Images/calculus_gr_48.gif)
Here we need to use a substitution to continue:
![[Graphics:Images/calculus_gr_49.gif]](Images/calculus_gr_49.gif)
![[Graphics:Images/calculus_gr_50.gif]](Images/calculus_gr_50.gif)
![[Graphics:Images/calculus_gr_51.gif]](Images/calculus_gr_51.gif)
![[Graphics:Images/calculus_gr_52.gif]](Images/calculus_gr_52.gif)
7) Supergrowth:
![[Graphics:Images/calculus_gr_53.gif]](Images/calculus_gr_53.gif)
![[Graphics:Images/calculus_gr_56.gif]](Images/calculus_gr_56.gif)
10) Find a formula for each of these indefinite integrals using partial fractions:
a)
![[Graphics:Images/calculus_gr_58.gif]](Images/calculus_gr_58.gif)
So we know that all of the coefficients must equal zero so that the whole polynomial equals zero:
![[Graphics:Images/calculus_gr_59.gif]](Images/calculus_gr_59.gif)
![[Graphics:Images/calculus_gr_60.gif]](Images/calculus_gr_60.gif)
Here we need to use some substitutions to continue:
![[Graphics:Images/calculus_gr_61.gif]](Images/calculus_gr_61.gif)
![[Graphics:Images/calculus_gr_62.gif]](Images/calculus_gr_62.gif)
![[Graphics:Images/calculus_gr_63.gif]](Images/calculus_gr_63.gif)
![[Graphics:Images/calculus_gr_64.gif]](Images/calculus_gr_64.gif)