
Modeling Motion Week 9 Computer Lab

Billiards

In this lab we will use object-oriented programming and physics to model collisions between spherical objects
in motion such as billiard balls. We will use the concepts of impulse and conservation of momentum to estimate
the new velocities of a pair of objects just after they collide.

As always, an incremental approach usually works best. Start with a small working program and add one
capability at a time until the program meets its requirements. In this case we would like our final program to
be able be able to make any number of instances of a class called Ball, give them initial positions, velocities,
and masses, and have them bounce properly off of each other when they collide.

As always, its not necessary to turn in individual responses to each of the steps below, just the final version
or as much as you are able to complete.

1) First create a Ball class and make two instances of it on screen. Use a VPython sphere object
to make each ball’s graphical representation. Create an instance of sphere in the init (self)
method of your Ball class and assign it to a data attribute called graphic. You can store the
definition of your new class in its own module, then create a program which imports your module
and creates two instances of Ball in different positions.

2) Now add a step() method to your class which takes one argument, dt, (in addition to the implicit
“self”) and estimates the position of the ball after dt seconds. This implies each ball will need
position and velocity attributes which can be updated each time step using Euler’s method. These
attributes should be VPython vector objects. Giving the Ball class its own position attribute
rather than using the sphere’s position will make it possible to update the position more than once
without drawing a new frame of animation each timestep. In your test program give your balls some
initial velocity and put in a loop which calls each of their step() methods repeatedly for some time
period so they move at constant speed. Don’t forget the graphical representation of them will not
change unless you also update self.graphic.pos

Try to set the balls up so they crash into one another in preparation for testing the collision handling
code we will add next.

3) Now add a method handleCollision(self,other) to Ball which takes another Ball object as
an argument. This method will update the velocities of both self and other if a collision has
occurred. The first step is simply to get it to recognize if a collision has occurred but not worry
about computing the proper post-collision velocities.

In our simplified model we will assume a collision has occurred when the distance between the balls’
centers is less than the sum of their radii. This implies we need to know what the radius of each
ball is. Add a radius attribute and be sure to update self.graphic with the new radius. Making it a
parameter of init () with a reasonable default value is a good idea.

To test this collision detection code, make it print out something like “Collision Detected” and either
set the velocities of the two balls to zero or negate them to cause them to reverse direction. Then
go to the test program and add a call to handleCollision after updating the positions of the balls
(by calling step(dt)). The two Balls should now stop as soon as they are slightly overlapping and
the print statement should continuously print because now the balls will be in contact forever since
their velocities are set to zero.

4) Once collisions are being detected, add the necessary code to compute and set the proper new
velocities of the two balls after a collision. To do this, you will need to compute the impulse force
resulting from the collision which will depend on the masses of the two balls, their velocities just
before the collision and a factor Newton called the “coefficient of restitution”. This implies you will
need to add a mass attribute to the Ball class.

The coefficient of restitution represents the fact in the real world collisions are not 100% elastic and
therefore some energy is lost in collisions. This means the relative velocity of the two balls in the
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direction of the collision normal after the collision is a little less than their relative velocity just
before the collision. The number you need to multiply by to get the final relative velocity from the
initial is the coefficient of restitution.

Using the law of conservation of momentum, the definition of impulse and the definition of the
coefficient of restitution you should be able to set up the three equations needed to solve for the
three unknown quantities (final velocities of two balls relative to the collision normal and impulse).
This should be done using velocities in the direction of the collision normal which is a normal vector
(length 1) along the line of action of the collision. For the case of two spheres of uniform mass
distribution this is the line connecting the centers of the spheres.

The goal is to get an expression for the magnitude of the impulse in terms of the relative velocities
of the balls in the direction of the collision normal, their masses and the coefficient of restitution.
Once you know the magnitude of the impulse (a scalar) you can compute the impulse vector by
multiplying its magnitude by the collision normal vector.

This impulse vector represents the change in momentum of one ball due to the collision and its
negative represents the change in momentum of the other ball since they move apart after the
collision. To get the final velocities, you need to divide the impulse by the mass of the ball its acting
on, which gives the change in velocity, and add this to the ball’s current velocity.

Once you manage this feat, you should have balls which collide properly in three dimensions given
their masses and a coefficient of restitution. If the restitution is 1.0, the impulse expression reduces
to the expression for perfectly elastic collisions and with a value of 0.0 it reduces to perfectly inelastic
collision. Billiard balls are fairly elastic and would have a high value near 1.0.

Challenge problems

5) Add some rolling friction to the balls. This is easy to add to the step() method by computing
acceleration based on a force proportional to the velocity but in the opposite direction.

6) update your program to work for any number of balls

7) make a billiards table (no pockets) and add code to make the balls collide properly with the rails
around the edge. The code below sets up a “break” scenario with a table on the x-y plane. It
assumes your Ball class has a parameter p for setting the initial position of the ball, v for initial
velocity, and color for the obvious.

balls=[] #this list will hold all Ball objects

# Rack ‘em - make an inverted triangle of balls with random colors
for y in range(5): #rows of balls

for x in range(y): #balls in each row
color=(random(),random(),random())
px = 2*(x-(y-1)/2.0)
py = 25+1.7*y
balls.append( Ball(p=vector(px,py,0), color=color) )

#add a cueball to the end of the list with slightly random position
balls.append(Ball(p=vector(uniform(-1,1),0,0),v=vector(0,226,0),color=(1,1,.7)))

#adjust viewing angle
scene.center=(0,25,0)
scene.forward=(0,1,-1)
scene.autoscale=0

#Make a green felt table
table = box(pos=(0,0,-1.1),size=(50,100,.2),color=(.1,.7,0))
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