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CHAPTER TWO

Solutions for Section 2.1

Exercises

1. For t between 2 and 5, we have

Average velocity = % = 40(5)% = ? km/hr.

The average velocity on this part of the trip was 265/3 km/hr.
2. (a) Lets= f(t).
(i) Wewish to find the average velocity betweent = 1 and ¢t = 1.1. We have

Average velogity — 21 = (1) _ 3.63 =3

-1 o1 o3mee
(ii) Wehave
. f(.ol)—f(1)  3.0603 -3
Average velocity = 10l —1 = 0.01 = 6.03 m/sec.
(iii) Wehave

. f(1.001) — f(1)  3.006003 — 3
A = =
verage velodity = =501 =1 0.001
(b) We seein part (a) that as we choose a smaller and smaller interval around ¢t = 1 the average velocity appears to be
getting closer and closer to 6, so we estimate the instantaneous velocity at ¢ = 1 to be 6 m/sec.

= 6.003 m/sec.

Slope | =3 | =10 |1/2] 1|2
Point | F | C |E| A |B

4. Thedopeispositiveat A and D; negative at C and F'. The slope ismost positive at A; most negative at F'.
5. Using h = 0.1, 0.01, 0.001, we see

3 _
(3*‘0-01# = 27.91
GO0 =27 _ 7
W = 27.009.
These calculations suggest that }113}) W = 27.

6. Using radians,

h (cosh —1)/h
0.01 —0.005
0.001 —0.0005
0.0001 —0.00005

These values suggest that gin%) cosh—1 _ 0.
—
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7. Using h = 0.1, 0.01, 0.001, we see
701 _q
— =2.14
0.1 8
70-01 _ ¢
— =1
0.01 965
70.001 _ ¢
—— =194
0.001 948
70.0001 _
———— =1.946.
0.0001
, Th-1
This suggests that lim ~19...
h—0
8. Using h = 0.1, 0.01, 0.001, we see
h (et*th —e)/h
0.01 2.7319
0.001 2.7196
0.0001 2.7184
61+h — €
These values suggest that }lm% 5 = 2.7....Infact, thislimitise.
—
in(20) . - in (2
9. For —0.5<60<0.5,0<y <3, thegraphof y = %09) isshown in Figure 2.1. Therefore, (}m% M =2.
—
__ sin(20)
- ]
2
1
: 0
—-0.5 0 0.5
Figure 2.1
cosf—1. - . cosf—1
10. For-1<6<1,-1<y<1,thegraphof y = — isshown in Figure 2.2. Therefore,(}m% — = 0.
—
0050—77
y = Tl'
1 o
-1 1
-1+
Figure 2.2
11. For —90° < 0 < 90°,0 < y < 0.02, the graph of y = % is shown in Figure 2.3. Therefore, by tracing along the
curve, we see that in degrees, ging sin 6 =0.01745 .. ..
—
sin @
0.02+ “a
0.01
‘ = @ (degree)
-90 0 0

Figure 2.3
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12. For —0.5 <0 <0.5,0 <y < 0.5, thegraphof y = ﬁ is shown in Figure 2.4. Therefore, by tracing along the
n
curve, we see that lim L =0.3333....
0—0 tan(30)
0.5 9
tan(30)
0
—0.5 0 0.5
Figure 2.4
Problems
13. distance
time
14. distance
time
15. distance
time
16. 0 < dlopeat C < slopeat B < dopeof AB < 1 < dopeat A. (Notethat theliney = z, hasslope 1.)

17.

18.

Between 1804 and 1927, the world's population increased 1 billion people in 123 years, for an average rate of change of
1/123 billion people per year. We convert this to people per minute:

1,000, 000, 000
123 60 - 24 - 365

Between 1804 and 1927, the population of the world increased at an average rate of 15.47 people per minute. Similarly,
we find the following:

Between 1927 and 1960, the increase was 57.65 people per minute.

Between 1960 and 1974, the increase was 135.90 people per minute.

Between 1974 and 1987, the increase was 146.35 people per minute.

Between 1987 and 1999, the increase was 158.55 people per minute.

Since f(t) is concave down betweent = 1 and ¢t = 3, the average velocity between the two times should be less than the
instantaneous velocity at ¢ = 1 but greater than the instantaneous velocity at timet = 3,s0 D < A < C. For analogous
reasons, F' < B < E. Findly, notethat f isdecreasingatt =5 so E < 0, butincreasingatt = 0, so D > 0. Therefore,
the ordering from smallest to greatest of the given quantitiesis

peoplelyear - yearsminute = 15.47 people/minute.

F<B<E<0<D<A<C.
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19. One possihility isshown in Figure 2.5.

f®)

Figure 2.5

20. Thelimit appearsto be 1; agraph and table of values is shown below.

y
1.4
1.2 T z®
08 01 | 07943
0.6 001 | 0.9550
0.4 0001 | 0.9931
0.2 S 0.0001 | 0.9990
x
0.02 0.04 0.06 0.08 0.1 0.00001 | 0.9999

Solutions for Section 2.2

Exercises

1. (a) Asz approaches —2 from either side, the values of f(xz) get closer and closer to 3, so the limit appears to be about 3.
(b) Asz approaches 0 from either side, the values of f(x) get closer and closer to 7. (Recall that to find alimit, we are
interested in what happens to the function near x but not at =.) The limit appears to be about 7.
(c) Aszx approaches 2 from either side, the values of f(x) get closer and closer to 3 on one side of = = 2 and get closer
and closer to 2 on the other side of z = 2. Thus the limit does not exist.
(d) Asz approaches 4 from either side, the values of f(z) get closer and closer to 8. (Again, recall that we don’t care
what happensright at x = 4.) The limit appears to be about 8.

2. Fromthegraphsof f and g, weestimate lim f(z) =3, lim g(z) =5,
z—1— z—1—
lim f(z) =4, lim g(x)=1.
z—1t z—1+

@ lim (f(2)+g(@)) =3+5=8

(b) lim, (f(z)+29(e)) = lim f(z)+2 lim, g(x)=4+2(1) =6
© lim (f(2)g(e) = (lim [(@)( lim g(e)) = (3)(5) =15
@ tim (/o) = (1im 5@))/ (tim o)) =4/1=4

3. From Table 2.1, it appears the limit is 1. This is confirmed by Figure 2.6. An appropriate window is —0.0033 < z <
0.0033, 0.99 < y < 1.01.
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1.01
Table 2.1
T f(z) T f(z)
0.1 1.3 —0.0001 | 0.9997
_ 0.99
0.01 1.03 0.001 | 0.997 2 0033 0.0033
0.001 | 1.003 —0.01 0.97
0.0001 | 1.0003 —0.1 0.7

Figure 2.6

4. From Table 2.2, it appears the limit is —1. Thisis confirmed by Figure 2.7. An appropriate window is —0.099 < z <
0.099, —-1.01 <y < —0.99.

—0.99
Table 2.2
T f(z) T f(z)
0.1 —0.99 —0.0001 | —0.99999999
_ _ _ —1.01
0.01 0.9999 0.001 0.999999 2 0.099 0.099
0.001 —0.999999 —0.01 —0.9999
0.0001 | —0.99999999 —0.1 —0.99

Figure 2.7

5. From Table 2.3, it appearsthelimitisO. Thisis confirmed by Figure 2.8. An appropriate window is —0.005 < z < 0.005,
—0.01 <y < 0.01.

0.01
Table 2.3
T f(z) T f(@)
0.1 |0.1987 —0.0001 | —0.0002
0.01 | 0.0200 —0.001 | —0.0020 —0.01
0.001 | 0.0020 —0.01 | —0.0200 —0.005 0.005
0.0001 | 0.0002 —0.1 | —0.1987

Figure 2.8

6. From Table 2.4, it appears the limit is 0. This is confirmed by Figure 2.9. An appropriate window is —0.0033 < z <
0.0033, —0.01 < y < 0.01.

0.01
Table 2.4
x f(@) T f(z)
0.1 |0.2955 —0.0001 | —0.0003
0.01 | 0.0300 —0.001 | —0.0030 —0.01
0.001 | 0.0030 —0.01 | —0.0300 —0.0033 0.0033
0.0001 | 0.0003 —0.1 | —0.2955

Figure 2.9
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7. From Table 2.5, it appears the limit is 2.

This is confirmed by Figure 2.10. An appropriate window is —0.0865 < = <
0.0865,1.99 < y < 2.01.

2.01
Table 2.5
z f(z) z f(z)
0.1 |[1.9867 —0.0001 | 2.0000
01 |1. —0. . 1.99
0.0 9999 0.001 | 2.0000 O 0865 0.0865
0.001 | 2.0000 —0.01 | 1.9999
0.0001 | 2.0000 —0.1 | 1.9867

Figure 2.10

8. From Table 2.6, it appears the limit is 3. Thisis confirmed by Figure 2.11. An appropriate window is —0.047 < z <
0.047,2.99 <y < 3.01.

3.01
Table 2.6
T f(z) T f(z)
0.1 |2.9552 —0.0001 | 3.0000
_ 2.99
0.01 | 2.9996 0.001 | 3.0000 017 0.047
0.001 | 3.0000 —0.01 | 2.9996
0.0001 | 3.0000 —0.1 | 2.9552

9. From Table 2.7, it appears the limit is 1. This is confirmed by Figure 2.12. An appropriate window is —0.0198 < z <

0.0198,0.99 < y <

Table 2.

x

0.1

0.01
0.001

0.0001

10. From Table 2.8, it appears the limit is 2. This is confirmed by Figure 2.13. An appropriate window is —0.0049 < z <

1.01.

7

0.0049, 1.99 < y < 2.01.

Table 2.8

T
0.1
0.01
0.001
0.0001

f(=z)
2.2140
2.0201
2.0020

2.0002

—0.0001

—0.0001

—0.001
—0.01
—0.1

—0.001
—0.01
—0.1

f(=)
1.9998
1.9980
1.9801

1.8127

Figure 2.11

1.01

0.99
—0.0198

0.0198

Figure 2.12

2.01

1.99
—0.0049

0.0049

Figure 2.13
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11. From Table 2.9, it appears the limit is 4. Figure 2.14 confirms this. An appropriate window is 1.99 < z < 2.01,

3.99 < y < 4.01.

Table 2.9

T
2.1
2.01
2.001
2.0001
1.9999
1.999
1.99
1.9

12. From Table 2.10, it appears the limit is 6. Figure 2.15 confirms this. An appropriate window is 2.99 < z < 3.01,

5.99 < y < 6.01.

Table 2.10

T
3.1
3.01
3.001
3.0001
2.9999
2.999
2.99
2.9

13. From Table 2.11, it appears the limit is 0. Figure 2.16 confirms this. An appropriate window is 1.55 < = < 1.59,

—0.01 < y < 0.01.

Table 2.11

T

f(=)

4.1
4.01
4.001
4.0001
3.9999
3.999
3.99
3.9

f(=z)

6.1
6.01
6.001
6.0001
5.9999
5.999
5.99
5.9

f(=z)

1.6708 | —0.0500
1.5808 | —0.0050
1.5718 | —0.0005
1.5709 | —0.0001

1.5707
1.5698
1.5608
1.4708

0.0001
0.0005
0.0050

0.0500

y = 4.01
y = 3.99
x =1.99

Figure 2.14

r =2.01

y = 6.01
y = 5.99
T =299

Figure 2.15

z = 3.01

y =0.01

y=—0.01

T = 1.55

Figure 2.16

T = 1.59

14. From Table 2.12, it appears the limit is 2. Figure 2.17 confirms this. An appropriate window is 0.995 < z < 1.004,

1.99 < y < 2.01.
Table 2.12
: | @
1.1 2.2140
1.01 2.0201
1.001 | 2.0020
1.0001 | 2.0002
0.9999 | 1.9998
0.999 | 1.9980
0.99 1.9801
0.9 1.8127

y = 2.01
y = 1.99
T =0.995

Figure 2.17

r = 1.004
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(2+h)?—4 . 4+4h+h’—4

15 i = i = e =
101 1—(14h) . -1
16. lim — (—— —1) = =1 =-1
6 h‘lnoh(uh ) hso (L+h)h  hsol+h
.1 1 . 1—(1+42n+n*) . —2—h _
17 i%ﬁ((uh)fl)_%‘ino N R = (Y St
8 ,—4+h_2:(\/4+h—2)(\/4+h+2): 4+h—4 _ h _
VA+h+2 VEYh+2 VA+h+2
Therefore lim Y2 h =2 L _ 1
h—0 h h—0 /4 + h + 2 4
19 1 1_2-vV4+h_(2-VA+h2+V4+h) _ 4—(4+h)
" VA+h 2 2V/4+h 24+ h(2+ V4 +h) 2V/A+h(2+VA+h)
Therefore Tim — L [ T —1 _ L
hsoh \VA+h 2) ws02V/A+h(2+VE+h) 16
z-4 r >4
_ 1 4
20. f(x)=|x 4|: v -4 _ x>
r—4 _z r<4 -1 z<4
r—4

Figure2.18 confirmsthat lim f(z) =1, lim f(z) = —1 o0 lim f(x) doesnot exist.
r—4+ z—4~ r—4

1k f(=)
0 | | } | xT
2 4 6 8
Figure 2.18
- 2, x> 2
21 f(z) = le=2] _
z r—2
- , ©<2
T
Figure2.19 confirmsthat lim f(z) = lim f(z)= lim f(z) =0.
z—2+ T2 r—2
1
f(=@)
0 T
1 2 3 4
Figure 2.19
-2 0<z<3
22. f(x) =<K 2 z=3

2z +1 3<z
Figure2.20 confirmsthat lim f(z) = lim (z> —2) = 7andthat lim f(z) =
r—3— r—3— r—34

7. Note, however, that f(z) isnot continuous at = = 3 since f(3) =2

lim (2z +1) = li =
Jim (22 +1) = 7,50 lim f(z)
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—

N O NSO O
T

[
A+ @
_/{ 2 3 4 5

Figure 2.20

23. The graph in Figure 2.21 suggests that
if —0.05 <6 <0.05 then 0.999 < (sin6)/6 < 1.001.

Thus, if 6 iswithin 0.05 of 0, we see that (sin #) /6 iswithin 0.001 of 1.

y = 1.001

TN

y = 0.999
x = —0.05 x = 0.05
Figure 2.21: Graph of (sin 6)/6 with
—0.05 < 6 <0.05
24. The statement
lim g(h) = K
h—a
means that we can make the value of g(h) ascloseto K aswe want by choosing h sufficiently close to, but not equal to,
a.
In symbols, for any € > 0, thereisad > 0 such that
lg(h) — K| <e fordl0<|h—al<3d.
Problems

25. Theonly changeisthat, instead of considering all x near ¢, we only consider = near to and greater than c. Thus the phrase
“|z — ¢| < 6" must bereplaced by “c < x < ¢+ §.” Thus, we define

fim, =1
to mean that for any ¢ > 0 (as small as we want), thereisad > 0 (sufficiently small) such that if ¢ < z < ¢ + §, then
|f(z) — L| <e.
26. The only change is that, instead of considering all z near ¢, we only consider z near to and less than c. Thus the phrase
“lx — ¢| < 6" must bereplaced by “c — § < x < ¢.” Thus, we define

lim f(x) =L

r—cT

to mean that for any ¢ > 0 (as small as we want), thereisad > 0 (sufficiently small) such that if c — § < = < ¢, then
|f(z) — L| <e.
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27.

28.

29.

30.

31.

32.

33.

35.
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Instead of being “sufficiently closeto ¢,” we want z to be “sufficiently large” Using NV to measure how large x must be,
we define
lim f(x) =L

r— 00
to mean that for any ¢ > 0 (as small as we want), thereisa N > 0 (sufficiently large) such that if z > N, then
|f(z) —L| <e.
If z > 1 and x approaches 1, then p(z) = 55. If z < 1 and x approaches 1, then p(x) = 34. Thereisnot asingle number
that p(x) approaches as = approaches 1, so we say that ELH} p(x) does not exist.

We use values of h approaching, but not equal to, zero. If welet h = 0.01, 0.001, 0.0001, 0.00001, we calcul ate the values
2.7048, 2.7169, 2.7181, and 2.7183. If welet h = —0.01 —0.001, —0.0001, —0.00001, we get values 2.7320, 2.7196,
2.7184, and 2.7183. These numbers suggest that the limit is the number e = 2.71828 . ... However, these calculations
cannot tell usthat the limit is exactly e; for that a proof is needed.

Divide numerator and denominator by z:

z+3 143/z

2—x 2/z—1’

flz) =

. . 143/z  limg,eo(143/x) 1
Jim f(z) = i Sy T @/ — 1) o1

Divide numerator and denominator by 22, giving

?+2r—1 1+2/z—1/2°
34322 ~ 3/x2+3

flz) =

. o 1+2/x—1/2"  limeseo(1+2/z—1/2%) 1
1 =1 = =z
Jim f(z) = lim 3/z% + 3 lima 0 (3/27 + 3) 3

Divide humerator and denominator by z, giving

z®+4 z+4/z

lim f(z) = +oo.

T—> 00

Divide numerator and denominator by «*, giving

22> — 1622 2—16/x
flay = 2 lor 2160
4x2 + 3z 4/ +3

. . 2—-16/z lim,50(2—16/z) 2
l == l = = —.
Jm f@) = i S T T +3) 3

. Divide numerator and denominator by z°, giving

' +3z _ 1/z+3/2"

fla) = ri4+225 T 1/z+2
> (1/z +3/a%)
. lim, yoo(l/z + 3/ 0
l = = — = (.
S @) = G mry 20

Divide numerator and denominator by e”, giving

3" +2 3427
T 243 243e=’

f(z)

lim f(z) = lim, ,0o(3+2e77) 3




36.

37.

38.

39.

41.

42.
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27" +3 . limy5o00(2e774+3) 3
f@) = 3=y ® im fl@) = =19 = 3
Because the denominator equals 0 when & = 4, so must the numerator. This means k* = 16 and the choices for k are 4

or —4.

Because the denominator equals 0 when z = 1, so must the numerator. So 1 — k + 4 = 0. The only possible value of k
is5.

Because the denominator equals 0 when z = —2, so must the numerator. So 4 — 8 + k = 0 and the only possible value
of kis4.
Division of numerator and denominator by > yields

2’ +3z+5  1+3/z+5/2°
dr + 142k~ 4z +1/22 + k-2

Asz — oo, the limit of the numerator is 1. The limit of the denominator depends upon k. If k£ > 2, the denominator
approaches co as x — oo, S0 the limit of the quotient is 0. If £ = 2, the denominator approaches 1 asz — oo, o the
limit of the quotient is 1. If k < 2 the denominator approaches 0T asz — oo, S0 the limit of the quotient is co. Therefore
the values of k£ we are looking for are k > 2.

For the numerator, lim (62‘” - 5) = —5.1fk >0, lim (e'”” +3) = 3, s0 the quotient has a limit of —5/3.
r—r —00 r—r —00
If £ =0, lim (e'”” + 3) = 4, so the quotient has limit of —5/4. If & < 0, the limit of the quotient is given by
r—r —00
lim (e —5)/(e" +3) = 0.
r—r —00

By tracing on a calculator or solving equations, we find the following values of 4:
Fore =0.2,6 <0.1.

Fore =0.1,4 < 0.05.

Fore =0.02, 6 < 0.01.

For e = 0.01, § < 0.005.

For e = 0.002, § < 0.001.

For e = 0.001, 6 < 0.0005.

By tracing on a calculator or solving equations, we find the following values of 4:
Fore=0.1,6 < 0.46.

Fore =0.01,4 < 0.21.

For e = 0.001, 6 < 0.1. Thus, we can take 6 < 0.09.

The results of Problem 42 suggest that we can choose § = €/2. For any € > 0, we want to find the ¢ such that
|f(z) —3|=|-2x+3—-3|=2z| <e.

Thenif |z| < § = €/2, itfollowsthat | f(z) — 3| = |2z| < €. SO lim,0(—2z + 3) = 3.
(8 Sincesin(nm) =0forn =1,2,3,... the sequence of z-values

111
w2’ 3’
works. These z-values — 0 and are zeroes of f(z).
(b) Sincesin(nr/2) =1forn =1,5,9... the sequence of z-values
22 2
w5’ 9’
works.

() Sincesin(nm)/2 = —1forn =3,7,11,... the sequence of z-vaues
22 2
3n’ Tn’ 11w

works.

(d) Any two of these sequences of z-values show that if the limit wereto exit, then it would have to have two (different)
values: 0 and 1, or 0 and —1, or 1 and —1. Hence, the limit can not exist.
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46. (a) If b = 0, then the property sayslim,_,. 0 = 0, whichis easy to seeistrue.
(b) If|f(z) - L| < o7+ then multiplying by |b| gives

[bl|f(z) — L] <e.
Since
bl|f(z) — L| = |b(f(z) — L)| = |bf (z) — bL|,
we have
|bf(z) —bL| < e.
(c) Supposethat lim f(x) = L. Wewant to show that lim bf(z) = bL. If we are to have
[bf(x) —bL| <,
then we will need .
|f(z) - L] < Ik

We choose § small enough that
|t —c| <& implies |f(z)—L|< ﬁ
By part (b), this ensures that
|bf(z) —bL| < e,
as we wanted.

47. Suppose lim f(z) = L; and lim g(z) = L». Then we need to show that
r—c r—c
lim (f(x) + g(x)) = L1 + La.

Let e > 0 be given. We need to show that we can choose 6 > 0 so that whenever |z — ¢| < 4§, we will have
|(f(x) 4+ g(x)) — (L1 + L2)| < e. First choose d; > 0 so that |2 — ¢| < &1 implies |f(xz) — L1| < §; we can do this
since lim f(z) = Li. Similarly, choose > > 0 so that |z — ¢| < d2 implies |g(x) — L2| < 5. Now, set § equal to the

r—c

smaller of §; and d». Thus |z — ¢| < & will make both |z — ¢| < 61 and |z — ¢| < d2. Then, for |z — ¢| < §, we have

IA

|f(z) + g(z) — (L1 + L2)| = |(f(z) — L1) + (g(x) — Lo)|
|(f(z) = L1)| + [(9(z) — L2)|

IN

Thisproveslim, ..(f(z) + g(x)) = limy—. f(z) + lim. . g(x), which isthe result we wanted to prove.

48. (a) We need to show that for any given e > 0, thereisad > 0 sothat |z — ¢| < d implies |f(z)g(z)| < e.Ife > 0
is given, choose d; so that when |z — ¢| < 61, we have |f(z)| < /€. This can be done since lim,—o f(z) = 0.
Similarly, choose §» so that when |z — ¢| < d2, we have |g(z)| < +/e. Then, if we take ¢ to be the smaller of 4,
and 4>, we'll have that |z — ¢| < 4 implies both |f(z)| < /€ and |g(z)| < v/e. Sowhen |z — ¢| < 4, we have
[f(@)g(2)| = |f ()] lg()] < Ve Ve = e Thus lim f(z)g(x) = 0.

(b) (f(z) = L1) (9(x) — L) + L1g(x) + Lo f(x) — L1 L>
= f(x)g(x) — Lig(z) — Laf () + L1 Lz + Lig(x) + L2 f(x) — L1L> = f(z)g(x).

() il_}mc (f(z) —Ly) = il_}mc f(x)—ii_)mc L, = L,—L, = 0, using thesecond limit property. Similarly, il_}lnc (9(z) — Ly) =
0

(d) Sincelim (f(z) — L1) = lim (g(z) — L2) = 0, we havethat lim (f(z) — L1) (9(x) — L2) = 0 by part (a).
r—c r—c r—c
(e) From part (b), we have
lim f(2)g(z) = lim (f(z) = L) (9(2) = L2) + Lrg(@) + Laf (2) = LiL2)
= lim (f(z) — L1) (9(z) — L) + lim Lig(z) + lim Ly f(z) + lim (—L, L)
r—c r—c r—c r—c
(using limit property 2)
=0+ L1 lim g(z) + L» lim f(z) — L1L»
r—c r—c
(using limit property 1 and part (d))
=LiL>+ LoLy — L1Ly = L1 Lo.
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Solutions for Section 2.3

Exercises

1. Thederivative, f'(2), istherate of change of 2* at 2 = 2. Notice that each time - changes by 0.001 in the table, the value
of 23 changes by 0.012. Therefore, we estimate

f'(2) _ Rate of change _ 0.012 _
of faaz=2 " 0.001

The function values in the table look exactly linear because they have been rounded. For example, the exact value of
x3 when z = 2.001 is 8.012006001, not 8.012. Thus, the table can tell us only that the derivative is approximately 12.
Example 5 on page 82 shows how to compute the derivative of f(z) exactly.

2. Y
1
y =sinz

t x
W\/ZW ?m\/M
-1

Since sin x isdecreasing for values near x = 3, itsderivative at x = 3w isnegative.
3. (a) Using acalculator we obtain the values found in the table below:

T 1 1.5 2 2.5 3
e® || 2.72 | 4.48 | 7.39 | 12.18 | 20.09

(b) The averagerate of change of f(z) = €” betweenz = 1andz = 3 is

p— 3 p— —
Average rate of change = f(3?)’ {(1) = 63 16 ~ 20'092 2.72 _ 8.69.

(c) First wefind the average rates of change of f(z) = ¢ betweenz = 1.5 andz = 2, and betweenz = 2 and x = 2.5:

_f@2)—fQ@5)  e*—e'® 739-—448
Average rate of change = 515 =515 ~ 05 = 5.82
f(25) = f(2)  e*P—e? 1218 —7.39

25—-2  25-2 " 0.5

Average rate of change = = 9.58.

Now we approximate the instantaneous rate of change at x = 2 by averaging these two rates:

5.82+9.58

5 7.7.

Instantaneous rate of change ~
4. (a)
Table 2.13
z [1 15 2 25 3
logx |0 018 030 040 048

(b) Theaverage rate of change of f(z) = log z betweenz =1 andz = 3 is

f(3)—f(1)_log?)—loglNO.48—0_024
3-1 ~  3-1 T 2 7
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(c) First we find the average rates of change of f(x) = log x between z = 1.5 and z = 2, and between z = 2 and
T = 2.5.

log2 —log1.5 0.30 —0.18

2—-15 0.5
log2.5 —log2 0.40 —0.30
2.5 -2 0.5 0-20

Now we approximate the instantaneous rate of change at x = 2 by finding the average of the above rates, i.e.

(the instantaneous rate of change> . 0.24+0.20

~ —— =0.22.
of f(z) =logzxax =2 2 0

/ . log(14+h)—logl . log(1+h)

5 £ (1) = lim == = lim == —
Evaluating 804" for b = 0.01,0.001, and 0.0001, we get 0.43214, 0.43408, 0.43427, so f'(1) = 0.43427. The
corresponding secant lines are getting steeper, because the graph of log « is concave down. We thus expect the limit to be
more than 0.43427 . If we consider negative values of h, the estimates are too large. We can also see this from the graph

below:
sltMpforh <0 .- ff)z

log(1+h)
s forh >0

6. We estimate f'(2) using the average rate of change formula on a small interval around 2. We use the interval z = 2 to
x = 2.001. (Any smdll interval around 2 gives a reasonable answer.) We have
2.001) — f(2) 3*%* _3%2  9.00989 — 9
"(2) = K = = = 0.89.
F @) 2.001 —2 2.001 —2 0.001 989

7. Since f'(z) = 0 where the graph is horizontal, f'(z) = 0 at = = d. The derivative is positive at points b and ¢, but the
graphissteeper at z = ¢. Thus f'(z) = 0.5 ax = band f'(x) = 2 a x = c. Findly, the derivative is negative at points
a and e but the graph issteeper at x = e. Thus, f'(z) = —0.5atz =aand f'(z) = —2 at z = e. See Table 2.14.
Thus, wehave f'(d) = 0, f'(b) = 0.5, f'(c) = 2, f'(a) = —0.5, f'(e) = —2.

Table 2.14

(=)
0
0.5
2
—0.5
-2

|® SIS e-&|&?|

8. One possible choice of pointsis shown below.
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9. (a) The averagerate of change from z = a to x = b isthe slope of the line between the points on the curve withx = a
and x = b. Since the curve is concave down, the line from x = 1 to = 3 has a greater slope than the line from
x = 3 toz = 5, and so the average rate of change between z = 1 and = = 3 is greater than that between z = 3 and
r=25.
(b) Since f isincreasing, f(5) isthe greater.
(c) Asinpart (a), f isconcave down and £ is decreasing throughout so f'(1) is the greater.
10. Using the definition of the derivative, we have
f'(10) = lim

f(10 4+ h) — £(10)
h—0 h
2 2

lim 5(10 + h)? — 5(10)
h—0 h
. 500 + 100k + 5h% — 500
lim
h—0 h

. 100h + 5h%
= hm e —
h—0 h
lim h(100 + 5h)
h—0 h
lim 100 + 5h
h—0

100.

11. Using the definition of the derivative, we have

F(C2) i TE2E0) = £

h—0 h
_ 3 __ (_9\3
. (—=2+h)®> —(-2)
h—0 h
iy (8120 — 6h° + h®) — (—8)
h—0 h
. 12h —6h% +1®
= hm —_—
h—0 h
_ 2
. h(12 — 6k + h*)
h—0 h
= lim (12 — 6h + h?),
h—0

which goesto 12 ash — 0. So f'(—2) = 12.
12. Using the definition of the derivative

g(=1+h) —g(=1)

14 _ .
g(=1) = lim h

i B(1+m)? +5(=14h)) = (3(=1)* +5(-1))
= l1im

h—0 h

—_ 2 —_ —_ —_

iy B =2k 4 h) =5+ 5h) — (=2)

h—0 h

. 3—6h+3h?>—3+5h
= lim

h—0 h

_ 2

= lim (zh+3h7) _ lim (—1 + 3h) = —1.

h—0 h h—0

13.
_ 3 _ 3
£(1) = lim faA+h) - f@) _ lim (L+h)+5)—(1°+5)
h—0 h h—0 h
. 14+3h+3R2+R*+5—-1—-5 . 3h+3h°>+h
= lim =lim ———

h—0 h h—0 h

lim (3 + 3h + h®) = 3.
h—0
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14.
91(2)_ 1 g(2+h)_g(2) — lim ﬁ_%
h—0 h h—0 h
:limz_(2+h):lim —h
h—0 h(2+h)2 —0 h( +h)2
— fim —— = _1
hoo 2+ h)2 4
15.
9(2+h) —g(2) TR
’ - . + 2
g2 = lim =i
22— (24h)? . 4—4—4h—h®
= lim — = lim
h—0 22(2+4 h)2h h=0  4h(2 4+ h)?
= lim ﬂ = lim L_h
h—0 4h(2 + h)2 h—0 4(2 + h)2
=4 1
T 422 T 4

16. Aswe saw in the answer to Problem 10, the slope of the tangent lineto f(z) = 5a° at = = 10 is 100. When = = 10,
f(z) =500 s0 (10, 500) isapoint on the tangent line. Thusy = 100(z — 10) + 500 = 100z — 500.

17. Aswe saw in the answer to Problem 11, the slope of the tangent lineto f(z) = 2® at x = —2 is12. Whenz = —2,
f(z) = —8 so we know the point (—2, —8) is on the tangent line. Thus the equation of the tangent lineisy = 12(x +
2) — 8 =12z + 16.

18. We know that the slope of the tangent lineto f(z) = = when z = 20 is 1. When z = 20, f(z) = 20 so (20, 20) ison
the tangent line. Thus the equation of the tangent lineisy = 1(z — 20) + 20 = z.

19. First find the derivative of f(z) = 1/2” atx = 1.

JA4m) = FQ) T

/1 :l.

F hl—rﬂ) h h—0 h
— lm 12— (1+h)> im1—(1+2h+h,2)
T RS0 h(1+ h)? T h=o h(1+ h)?

i 2R g, SRR
- h—0 h(l —+ h)2 - h—0 (1 =+ h)z o

Thus the tangent line has a slope of —2 and goes through the point (1, 1), and so its equation is

y—1=-2(x—-1) or y=—2x+3.

Problems

20. The statements f(100) = 35 and f'(100) = 3 tell usthat at = = 100, the value of the function is 35 and the function is
increasing at arate of 3 unitsfor aunit increase in z. Since we increase x by 2 unitsin going from 100 to 102, the value
of the function goes up by approximately 2 - 3 = 6 units, so

£(102) ~35+2-3=35+6=41.

21. Thecoordinates of A are (4,25). See Figure 2.22. The coordinates of B and C' are obtained using the slope of the tangent
line. Since f'(4) = 1.5, theslopeis1.5
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Tangent line

Figure 2.22

From Ato B, Az = 0.2, s0 Ay = 1.5(0.2) = 0.3. Thus, a& C wehavey = 25 + 0.3 = 25.3. The coordinates of

B are (4.2,25.3).
From A to C, Az = —0.1, s0 Ay = 1.5(—0.1) = —0.15. Thus, at C we havey = 25 — 0.15 = 24.85. The

coordinates of C are (3.9, 24.85).

22. (a) Sincethepoint B = (2,5) ison the graph of g, we have g(2) = 5.
(b) The slope of the tangent line touching the graph at =z = 2 isgiven by

Rise 5-502 —0.02

Sope= o =5"705 = 005 — %
Thus, ¢'(2) = —0.4.
= (d) slope= f'(3) f(z)
l %
<—:h ® £(4) — £(2)
(c) slope = W
@ f(4)

I | ‘ .

1 2 3 4 5
24, -

slope = 7f(3§:{(1)

(@ f(4) > f(3) since f isincreasing.
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(b) Fromthefigure, it appearsthat f(2) — f(1) > f(3) — f(2).
2—1

the slope of the secant line connecting the graph at z = 1 and z = 3 which is
(d) Thefunctionissteeper at z = 1thanatz = 450 f'(1) > f'(4).

represents the slope of the secant line connecting the graph at x = 1 and = = 2. Thisis greater than

13) = £(1).

25. Figure 2.23 shows the quantities in which we are interested.

|

|

|

|

|

|
7

|
|
f(2) Slope = 7f(3%:£(2) }
=f(3)-f(2) }
7
/ \ \ T
2 3
Figure 2.23

The quantities f'(2), f'(3) and £(3) — f(2) have the following interpretations:
e f'(2) = dopeof thetangent lineat z = 2
e f'(3) = dopeof thetangent lineat z = 3
e f(3)—f(2) = % = dope of the secant line from f(2) to f(3).

From Figure 2.23, itisclear that 0 < f(3) — f(2) < f'(2). By extending the secant line past the point (3, £(3)), we can
seethat it lies above the tangent line at = = 3.
Thus

0<f(3) < f(3) = f(2) < (2.

26. (a) f(4)/4 isthe slope of theline connecting (0,0) to (4, f(4)). (See Figure 2.24.)
(b) Itisclear from the picture for part (a) that f(3)/3 > f(4)/4.

f(=)

slope = #
)

slope = %

27. B

|
|
|
|
a c

Figure 2.25
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(a) Forthelinefrom A to B,

f(®) = f(a)
b—a

(b) Thetangent lineat point C appears to be paralel to the line from A to B. Assuming this to be the case, the lines have
the same slope.

(c) Thereisonly one other point, labeled D in Figure 2.26, at which the tangent lineis parallel to thelinejoining A and
B.

Slope =

Figure 2.26

28. Using adifference quotient with h = 0.001, say, wefind
_ 1.0011n(1.001) — 11In(1)

! p—

F(1) = T = 1.0005
s ron _ 2.00110(2.001) — 2In(2)

F2) ~ 5 001 3 = 1.6934

Thefact that f' islarger at z = 2 than at z = 1 suggests that f isconcave up on theinterval [1, 2].
29. (&)

h in degrees 0
inh—sin0 inh
’ T Sin i — Ssin _sm
F(0) = Jim, h ~Th

To four decimal places,

sin0.2 sin0.1 sin0.01  sin0.001

02 © o1 T oor © ogor SO0

S0 £/(0) = 0.01745.

(b) Consider theratio % Aswe approach 0, the numerator, sin &, will be much smaller in magnitude if k isin degrees
than it would be if h were in radians. For example, if h = 1° radian, sinh = 0.8415, but if h = 1 degree,
sin h = 0.01745. Thus, since the numerator is smaller for i measured in degrees while the denominator is the same,
we expect the ratio S to be smaller.

30. Wewant f'(2). The exact answer is

v F@+R) —F(2) . (2+h)>Th—4
F(2) = fim, h = Jim, h ’
but we can approximate this. If h = 0.001, then
2.001 _
—(2'003))001 4~ 6.779
and if h = 0.0001 then 5 0001
(2.0001) —4 6.773,

0.0001
S0 f'(2) =~ 6.77.

31. Notice that we can't get all the information we want just from the graph of f for 0 < z < 2, shown on the left in
Figure 2.27. Looking at this graph, it looks asif the lope at z = 0 is 0. But if we zoom in on the graph near = = 0, we
get the graph of f for 0 < 2 < 0.05, shown on theright in Figure 2.27. We seethat f does dip down quite a bit between
z = 0andz ~ 0.11. In fact, it now looks like f'(0) is around —1. Note that since f(z) is undefined for z < 0, this
derivative only makes sense as we approach zero from the right.
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y
-
6 - 0.0025 0.01 0.02 0.03 0.04 0.05
5 —0.005
\
4 —0.0075 \
— 3,3/2 _ \
3+ f(z) =32 r ~0.01 \
2L —0.0125 f(z) =323/ —x
1+ —0.015
1 1 1 — —0.0175 +
05 1 1.5 2
Figure 2.27

We zoom in on the graph of f near z = 1 to get a more accurate picture from which to estimate f'(1). A graph of
ffor0.7 <z < 1.3 isshown in Figure 2.28. [Keep in mind that the axes shown in this graph don’t cross at the origin!]
Here we seethat f'(1) ~ 3.5.

T

1
1.11.21.3

Figure 2.28

32.

£(1) = lim fA+h)— f(1) — lim In(cos(1 + h)) — In(cos 1)
h—0 h h—0 h
For h = 0.001, the difference quotient = —1.55912; for h = 0.0001, the difference quotient = —1.55758.
The instantaneous rate of change of f therefore appears to be about —1.558 at z = 1.
Atz = Z,if wetry h = 0.0001, then

In[cos(§ + 0.0001)] — In(cos §)
0.0001

The instantaneous rate of change of f appearsto beabout —1 atx = 7.
33. Wewant to approximate P’ (0) and P'(2). Since for small h

difference quotient = ~ —1.0001.

P'(0)

Q

if wetake h = 0.01, we get

_ 1.15(1.014)°°" —1.15

Pl
) 0.01

= 0.01599 billion /year

= 16.0 million people/year

_ 1.15(1.014)>°" — 1.15(1.014)°

P'(2
(2) 0.01

= 0.0164 billion/year

= 16.4 million people/year
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\\/ g(x) = f(x) +3

(a) From the figure above, it appears that the slopes of the tangent lines to the two graphs are the same at each . For
x = 0, the dopes of the tangents to the graphs of f(z) and g(x) at 0 are

For x =
reny — e F(0+h) — f(0) rin i 9(0+h) — g(0)
£1(0) = Jim, h 9.(0) = lim h
i F(W) =0 _ iy 900) = g(0)
h—0 h h—0 h
ip? W +3-3
— 1. 2_ — 1. 2
hl—rf}) h hlg}) h
o1 Coim?
~ it = Jim 2
= 0, . 1
= lim —h
h—0
=0.

2, the slopes of the tangents to the graphs of f(z) and g(z) are

f2+h)—-f2) 92+h) —g(2)

! _ . ! _ .
£2) = lim h 92) = lim, h
. 32+h)° 3027 . 32+h)7+3-(3(2)°+3)
= fm, h = Hm, h
. 3(44+4h+h*) -2  im 3(2+h)> —£(2)°
h—0 h h—0 h
242k 43R -2 iy 2@ F AR+ -2
=i h =5 h
_ g 2t 3P gy 22 H (W) -2
_hao h _h~>0 h
1 2
= lim (2+ 1h) — iy 2Pt ()
h—0 2 h—0 h
_27 ) 1
= lim (2+—h)
h—0 2
=2

For z = zo, the slopes of the tangents to the graphs of f(x) and g(z) are
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o 9@o+h) —g(z0)

’ T ’ _
f(wo) = lim, h g (wo) = lim, h
. i(zo+h)? - 1o} - 3(zo+h)’ +3 = (5(z0)” +3)
=lim*¥——-* < = lim
h—0 h h—0 h
. 3(xg+2woh + h*) — x5 . 3(wo+h)? — F(xo)?
= lim = = lim = =
h—0 h h—0 h
. avoh—f-%h,2 . %(m%—f-Zmoh—i—hz)— %xé
= lim —=— = lim
h—0 h h—0 h
= lim (xo + lh) . woh+ %hz
h—0 2 = }llli% h
= o, 1
= lim (xo + —h)
h—0 2
= Zo-
(b)
1oy _ e 9@+ h) —g(x)
o) =ty 2
- lim flx+h)+C —(f(x)+C)
h—0 h
i JE R~ 1)
h—0 h
= f'().

35. As h gets smaller, round-off error becomes important. When k. = 1072, the quantity 2" — 1 is so close to O that the
calculator rounds off the difference to 0, making the difference quotient 0. The same thing will happen when h = 1072°,

Solutions for Section 2.4

Exercises

1. Thegraphisthat of theliney = —2x + 2. The dope, and hence the derivative, is —2.
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4. The slope of this curve is approximately —1 at x = —4 and at = 4, approximately 0 at x = —2.5 and z = 1.5, and
approximately 1 at x = 0.
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/
/
/
—4 /4
[N
/
/4

4
T Inz T Inz T Inz T Inz
0.998 | —0.0020 1.998 | 0.6921 4,998 | 1.6090 9.998 | 2.3024
0.999 | —0.0010 1.999 | 0.6926 4,999 | 1.6092 9.999 | 2.3025
1.000 | 0.0000 2.000 | 0.6931 5.000 | 1.6094 10.000 | 2.3026
1.001 | 0.0010 2.001 | 0.6936 5.001 | 1.6096 10.001 | 2.3027
1.002 | 0.0020 2.002 | 0.6941 5.002 | 1.6098 10.002 | 2.3028

Atz = 1, thevalues of In z areincreasing by 0.001 for each increase in = of 0.001, so the derivative appearsto be 1.
Atz = 2, theincrease is 0.0005 for each increase of 0.001, so the derivative appearsto be 0.5. At x = 5, In z increases
by 0.0002 for each increase of 0.001 in z, so the derivative appears to be 0.2. And at x = 10, the increase is 0.0001 over
intervals of 0.001, so the derivative appears to be 0.1. These values suggest an inverse relationship between z and f (z),
namely f'(z) = =.

(@) Weusetheinterval to theright of z = 2 to estimate the derivative. (Alternately, we could use the interval to the left
of 2, or we could use both and average the results.) We have

FA—f@2) _24-18 6

!
re= 4-—2 4-2 2

=3.

We estimate f'(2) ~ 3.
(b) We know that f'(z) is positive when f(z) is increasing and negative when f(z) is decreasing, so it appears that
f'(z) ispositivefor 0 < = < 4 and isnegativefor 4 < = < 12.
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12. Forz =0, 5, 10, and 15, we use the interval to the right to estimate the derivative. For x = 20, we use the interval to the
left. For x = 0, we have ) 0
o o F(B) = F(0) _ 70—-100 _ =30 _
FO~==F——=%=0 -5 - &
Similarly, we find the other estimatesin Table 2.15.

Table 2.15

ffx)| -6 -3]-18]-12]-12

13. Since1/x = z~", using the power rule gives

d —1 ) 1
Using the definition of the derivative, we have
 k(z+h)—k(x) . -t . z—(z+h)
() = 1 =1 + — lim =— "%
k(@) = lim h e N CEIE
—h —1 1

= l. = l. = —_—
hs h(x + h)x s (z+ h)x x?

14. Since1/x? = x 2, using the power rule gives

d —2 -3 2
— = -2 = ——.
dx (@) ‘ 3
Using the definition of the derivative, we have
e T @ 2® — (¢ +h)?
’ BT (z+h) L B -
Fw) = lim h I e e
. x? — (2® +2zh + h?) . —2zh —h?
= lim - =lim ——
h—0 h(z + h)2x? h—=0 h(z + h)2z2
— lim —2z—-h _ 2z 2
T koo (x4 h)222 T 2222 23
15. Using the definition of the derivative,
vy gle+h)—g@) . 2(@+h)?—3— (227 —3)
A T h
. 2z +22h+h*) —3—222+3 . 4drh+ 2R
= hm = hm
h—s0 h h—0 h
= lim (4z + 2h) = 4z.
h—0
16. Using the definition of the derivative, we have
ron o m(z+h)—m(z) l( 1 1 )
m (2) = Jim, h ol N ey ey e
—liml r+1l—xz—-—h-1 - lim —h
T hooh \(x+1)(z+h+1))  wooh(z+D(z+h+1)
= lim —1
T hso (x4 1) (z+h+1)
-1

@+
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17.
4 1
2 f'(x)
f | -z
-1 1 2
_2 —+
—4 +
18. 4 f(z)

f(z)
;
19. 1 f(z) 1

20.

Problems

21. We know that f'(z) = w For this problem, we'll take the average of the values obtained for h = 1

and h = —1; that'sthe average of f(z + 1) — f(z) and f(z) — f(z — 1) which equals fe+1) gf(m -1 Thus,

f’(O) ~ f(1) — f(0) =13 —18 = —5.

(1) = [f(2) - £(0)]/2 = [10 — 18]/2 = —4.
f@)=[f3)-f)]/2=[9-13]/2 =-2.
f'(3) = [f(4) — f(2)]/2 =9 —10]/2 = ~0.5.
@) =[f(5) - f(3)]/2=[11-9]/2=1.
f(5) = [f(6) — f(4)]/2 =[15-9]/2 =3.
f'(6) = [f(7) = f(5)]/2 = [21 —11]/2 = 5.
(1) = [f(8) — f(6)]/2 = [30 — 15]/2 = 7.5.
f’(8) ~ f(8) —f(7)=30—-21=9.

The rate of change of f(z) is positive for 4 < x < 8, negative for 0 < x < 3. The rate of change is greatest at about
r = 8.
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22. Thevalueof g(x) isincreasing at adecreasing rate for 2.7 < = < 4.2 and increasing at an increasing rate for z > 4.2.

Ay 74-6.0
Ay 9.0-74
Az 57 _52 3 betweenz =5.2andz = 5.7
Thus g’ (z) should be closeto 3 near z = 5.2.
23.
!
- 1'(@)
| | | | | | xT
-3 -2 — 1 2 3

24. Thisis aline with slope —2, so the derivative is the constant function f'(xz) = —2. The graph is a horizontal line at
y = —2. SeeFigure 2.29.

Figure 2.29

25. Thisfunction is decreasing for z < 2 and increasing for z > 2 and so the derivative is negative for x < 2 and positive
for z > 2. One possible graph is shown in Figure 2.30.

f'()
} x
S
Figure 2.30
26.
} T
1 2
f'(z)

27. Thisfunction isincreasing for approximately x < 1 and x > 4.5 and is decreasing for approximately 1 < z < 4.5. The
derivative is positive for z < 1 and z > 4.5 and negativefor 1 < z < 4.5. One possible graph is shown in Figure 2.31.

Figure 2.31
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28. f(z)
x
29,
f'(x)
10
A - a
-3 3
—-10

30. Thisfunction isincreasing for z < 1 and is decreasing for x > 1 so the derivative is positive for z < 1 and negative for
z > 1. In addition, as = gets large, the graph of f(z) gets more and more horizontal. Thus, as z gets large, f'(z) gets
closer and closer to 0. One possible graph is shown in Figure 2.32.

f(@)
S ——] z
-1 1 2 3
Figure 2.32
31.
/(@)
= ‘ 1 1 1 1 1 T
-1 W 4 5 6
32.
f'(2)
—-/ z-

33. From the given information we know that f isincreasing for values of = lessthan —2, is decreasing between z = —2 and
x = 2, and isconstant for x > 2. Figure 2.33 shows a possible graph—yours may be different.

Figure 2.33
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34. Figure 2.34 shows a possible graph — yours may be different.
Yy

—7/2 w/2 Q

Figure 2.34

3B @zxs Ozs (©zs (d)zs

36. The derivative is zero whenever the graph of the original function is horizontal. Since the current is proportional to
the derivative of the voltage, segments where the current is zero aternate with positive segments where the voltage is

increasing and negative segments where the voltage is decreasing. See Figure 2.35. Note that the derivative does not exist
where the graph has a corner.

current

time

Figure 2.35

37. (a) Graphll
(b) Graphl
(c) Graphllil

38. (@) t=3
(b) t=9
(ct=14

(d) 1 — V'®
( } ! 115 58

-2

39. (a) The population varies periodically with a period of 1 year. See below.
4500 ~

4000 /\
3500 -1 P(t)

t (in months)

(b) The population is at a maximum on July 15, At this time sin (27t — Z) = 1, so the actual maximum population is
4000 + 500(1) = 4500. Similarly, the population isat a minimum on January 1°°. At thistime, sin(27t — 3) = —1,
so the minimum population is4000 + 500(—1) = 3500.

(c) Therate of change is most positive about April 15* and most negative around October 15¢.

(d) Since the population is at its maximum around July 15%, itsrate of change is about O then.
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40. (a) Thefunction f isincreasing where f' is positive, sofor 1 < = < x3.
(b) Thefunction f is decreasing where f' isnegative, sofor 0 < z < z;1 orz3 < = < .

41. If f(x) iseven, itsgraph is symmetric about the y-axis. So the tangent lineto f at x = o isthesame asthat at x = —xo
reflected about the y-axis.

Yy Yy
y=f(z)
A\ 4 y = f'(x)
N = T T
So the slopes of these two tangent lines are opposite in sign, so f'(zo) = —f'(—x0), and f’ isodd.

42. If g(x) isodd, its graph remains the same if you rotate it 180° about the origin. So the tangent lineto g at = = ¢ isthe
tangent lineto g at x = —xo, rotated 180°.

y = g(x) y=g'(z)

But the dope of aline stays constant if you rotate it 180°. So g’ (z0) = ¢'(—x0); ¢’ iseven.

Solutions for Section 2.5

Exercises

1. (a) Asthe cup of coffee cools, the temperature decreases, so f'(t) is negative.
(b) Since f'(t) = dH/dt, the units are degrees Celsius per minute. The quantity f'(20) represents the rate at which the
coffee is cooling, in degrees per minute, 20 minutes after the cup is put on the counter.
2. (Note that we are considering the average temperature of the yam, since its temperature is different at different points
insideit.)
(a) Itispositive, because the temperature of the yam increases the longer it sitsin the oven.

(b) The units of f'(20) are °F/min. f'(20) = 2 means that at time ¢t = 20 minutes, the temperature T increases by
approximately 2°F for each additional minute in the oven.

3. (a) Thestatement £(200) = 350 meansthat it costs $350 to produce 200 gallons of ice cream.
(b) The statement f’(200) = 1.4 means that when the number of gallons produced is 200, costs are increasing by about
$1.40 per gallon. In other words, it costs about $1.40 to produce the next (the 201*) gallon of ice cream.

4. (a) The statement f(5) = 18 means that when 5 milliliters of catalyst are present, the reaction will take 18 minutes.
Thus, the units for 5 are ml while the units for 18 are minutes.
(b) Asinpart (a), 5ismeasured inml. Since f' tells how fast T changes per unit a, we have ' measured in minutes/ml.
If the amount of catalyst increases by 1 ml (from 5 to 6 ml), the reaction time decreases by about 3 minutes.
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5. Since B is measured in dollars and ¢ is measured in years, dB/dt is measured in dollars per year. We can interpret dB
as the extramoney added to your balance in dt years. Therefore dB/dt represents how fast your balance is growing, in
units of dollars/year.

6. (a) Thismeansthat investing the $1000 at 5% would yield $1649 after 10 years.
(b) Writing ¢’ (r) as dB/dt, we see that the units of dB/dt are dollars per percent (interest). We can interpret dB as
the extra money earned if interest rate is increased by dr percent. Therefore ¢'(5) = ‘fi—’flr:5 ~ 165 means that
the balance, at 5% interest, would increase by about $165 if the interest rate were increased by 1%. In other words,

g(6) = g(5) + 165 = 1649 + 165 = 1814.
7. Unitsof C'(r) are dollars/percent. Approximately, C'(r) means the additional amount needed to pay off the loan when

the interest rate isincreased by 1%. The sign of C’(r) is positive, because increasing the interest rate will increase the
amount it costs to pay off aloan.

8. Unitsof P'(t) are dollarslyear. The practical meaning of P'(t) isthe rate at which the monthly payments change as the
duration of the mortgage increases. Approximately, P’ (¢) represents the change in the monthly payment if the duration is
increased by one year. P’ (t) is negative because increasing the duration of a mortgage decreases the monthly payments.

9. Theunitsof f'(x) are feet/mile. The derivative, f'(z), represents the rate of change of elevation with distance from the
source, so if theriver isflowing downhill everywhere, the elevation is always decreasing and f () is always negative. (In
fact, there may be some stretches where the elevation is more or less constant, so f'(z) = 0.)

10. (@) If the priceis$150, then 2000 items will be sold.
(b) If the price goes up from $150 by $1 per item, about 25 fewer itemswill be sold. Equivalently, if the priceisdecreased
from $150 by $1 per item, about 25 more items will be sold.

Problems

11. (a) SinceW = f(c) where W isweight in pounds and c is the number of Calories consumed per day:

consuming 1800 Calories per day

f(1800) =155 means that resultsin aweight of 155 pounds.

consuming 2000 Calories per day causes

! j—
£1(2000) =0 meansthat o weight gain nor loss.

aweight of 162 pounds is caused by

-1 _
f(162) = 2200 means that a consumption of 2200 Calories per day.

(b) The units of dW/dc are pounds/(Calories/day).
12. Thegraphisincreasing for 0 < ¢ < 10 and is decreasing for 10 < ¢ < 20. One possible graph is shown in Figure 2.36.

The units on the horizontal axis are years and the units on the vertical axis are people.

people

. — years
10 20

Figure 2.36

The derivative is positive for 0 < ¢ < 10 and negative for 10 < ¢ < 20. Two possible graphs are shown in
Figure 2.37. The units on the horizontal axes are years and the units on the vertical axes are people per year.
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(@  peoplelyear (b)  peoplelyear

Figure 2.37

13. Since f(t) = 1.15(1.014)", we have
£(6) = 1.15(1.014)° = 1.25.

To estimate f'(6), we use asmall interval around 6:
£(6) ~ £(6.001) — f(6)  1.15(1.014)%°%" —1.15(1.014)°
~ 6.001-6 0.001

Weseethat f(6) = 1.25 billion peopleand f'(6) = 0.0174 billion people per year. Thismodel tells usthat the population
of Chinawas about 1,250,000,000 people in 1999 and was growing at arate of about 17,400,000 people per year at that
time.

= 0.0174.

14. (a) The statement f(140) = 120 means that a patient weighing 140 pounds should receive a dose of 120 mg of the
painkiller. The statement f'(140) = 3 tellsusthat if the weight of a patient increases by about one pound (from 140
pounds), the dose should be increased by about 3 mg.

(b) Since the dose for aweight of 140 Ibsis 120 mg and at this weight the dose goes up by 3 mg for each pound, a 145
Ib patient should get an additional 3(5) = 15 mg. Thus, for a145 Ib patient, the correct dose is approximately

£(145) ~ 120 + 3(5) = 135 mg.

15. (a) Whent = 10, that is, at 10 am, 3.1 cm of rain hasfallen.
(b) We aretold that when 10 cm of rain has fallen, 16 hours have passed (¢ = 16); that is, 10 cm of rain has fallen by 4
pm.
(c) Therateat whichrainisfalingis0.4 cm/hr at ¢ = 8, that is, at 8 am.
(d) The unitsof (f~*)’(5) are hours'cm. Thus, we are being told that when 5 cm of rain has fallen, rain is faling at a
rate such that it will take 2 additional hours for another centimeter to fall.

16. (a) The pressurein dynes/cm’ at adepth of 100 meters.
(b) The depth of water in meters giving a pressure of 1.2 - 10° dynes/cm?.
(c) The pressure at adepth of h meters plus a pressure of 20 dynes/cn?.
(d) The pressure at adepth of 20 meters below the diver.
(e) Therate of increase of pressure with respect to depth, at 100 meters, in units of dynes/cr? per meter. Approximately,
p’(100) represents the increase in pressure in going from 100 metersto 101 meters.
(f) The depth, in meters, at which the rate of change of pressure with respect to depth is 20 dynes/cn? per meter.

17. Unitsof g'(55) are mpg/mph. The statement ¢’ (55) = —0.54 meansthat at 55 miles per hour the fuel efficiency (in miles
per gallon, or mpg) of the car decreases at arate of approximately one half mpg as the velocity increases by one mph.

18. (3 velocity

terminal
vel omnty ”””””””””

(b) The graph should be concave down because wind resistance decreases your acceleration as you speed up, and so the
slope of the graph of velocity is decreasing.
(c) The slope represents the acceleration due to gravity.
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19. (a) The company hopes that increased advertising always brings in more customers instead of turning them away. There-
fore, it hopes f'(a) is dways positive.

(b) If f(100) = 2, it meansthat if the advertising budget is $100,000, each extra dollar spent on advertising will bring
in $2 worth of sales. If /(100) = 0.5, each dollar above $100 thousand spent on advertising will bring in $0.50
worth of sales.

(c) If £/(100) = 2, then aswe saw in part (b), spending slightly more than $100,000 will increase revenue by an amount
greater than the additional expense, and thus more should be spent on advertising. If f (100) = 0.5, then theincrease
in revenue is less than the additional expense, hence too much is being spent on advertising. The optimum amount
to spend is an amount that makes f/(a) = 1. At this point, the increases in advertising expenditures just pay for
themselves. If f'(a) < 1, too much is being spent; if f'(a) > 1, more should be spent.

20. Since ZT_P(5) s an egtimate of P’ (66), wemay think of P'(66) asan estimate of P(67) — P(66), and the latter isthe

number of people between 66 and 67 inches tall. Alternatively, since % is a better estimate of P'(66), we
may regard P’(66) as an estimate of the number of people of height between 65.5 and 66.5 inches. The units for P ()
are people per inch. Since there were 250 million people at the 1990 census, we might guess that there are about 200
million full-grown persons in the US whose heights are distributed between 60’ (5’) and 75" (6'3"). There are probably
quite afew people of height 66" —perhaps 1% what you'd expect from an even, or uniform, distribution-because it's nearly
average. An even distribution would yield P'(66) = 20027on ~ 13 million per inch-so we can expect P'(66) to be
perhaps 13(1.5) =~ 20.

P'(x) isnever negative because P(x) isnever decreasing. To seethis, let’slook at an exampleinvolving a particular
value of z, say z = 70. The value P(70) represents the number of people whose height isless than or equal to 70 inches,
and P(71) represents the number of people whose height is less than or equal to 71 inches. Since everyone shorter than
70 inches is a'so shorter than 71 inches, P(70) < P(71). Ingeneral, P(z) isO for small z, and increases as z increases,
and is eventually constant (for large enough x).

21. (a) Theunitsof compliance are units of volume per units of pressure, or liters per centimeter of water.
(b) The increase in volume for a 5 cm reduction in pressure is largest between 10 and 15 cm. Thus, the compliance
appears maximum between 10 and 15 cm of pressure reduction. The derivative is given by the slope, so

0.70 — 0.49

Compliance = 15— 10

= 0.042 liters per centimeter.

(c) When thelung is nearly full, it cannot expand much more to accommodate more air.

Solutions for Section 2.6

Exercises

1. (a) Sincethegraphisbelow thez-axisat z = 2, f(2) isnegative.
(b) Since f(z) isdecreasing at = = 2, f'(2) isnegative.
(c) Since f(x)isconcaveup at x = 2, f”(2) is positive.

2. By noting whether f () is positive or negative, increasing or decreasing, and concave up or down at each of the given
points, we get the completed Table 2.16:

Table 2.16
point | £ 1 f ] f"”
A |[-]o]+
B |[+]0] -
C |+|-]~-
D |—|+|+

3. At B both dy/dx and d®y/dxz? are positive because at B the graph is increasing, so dy/dz > 0, and concave up, o
d*y/dz® > 0.
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4. Thevelocity isthe derivative of the distance, that is, v(t) = s'(t). Therefore, we have
s(t+h) — s(t)

v(t) = Jim, h
2 _ 2

— lim (5(t+h)*+3)— (5t +3)
h—0 h
. 10th + 5h?

= hm _—
h—0 h

= lim h(10¢ + 5h) = lim (10¢ + 5h) = 10t km/minute.
h—0 h h—0

The acceleration isthe derivative of velocity, so a(t) = v’ (¢):

10(t + h) — 10¢

at) = lim, h
. 10h . 2
= }1113%) h= 10 km/(minute)”.

5. Thefunction is everywhere increasing and concave up. One possible graph is shown in Figure 2.38.

Figure 2.38

6. The graph must be everywhere decreasing and concave up on some intervals and concave down on other intervals. One
possibility is shown in Figure 2.39.

Figure 2.39

7. Since velocity is positive and acceleration is negative, we have f > 0 and f” < 0, and so the graph is increasing and
concave down. See Figure 2.40.

height

time

Figure 2.40
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8 fl(z)>0
f'(x)>0
9 f'(z)=0
(=) =
10. f'(z) <0
(=) =
11. f'(z) <0
f'(x) >0
12. f'(z) >0
f'(z) <0
13. f'(z) <0
f(x) <0
Problems
14. (a) The derivative, f'(t), appears to be positive since the number of cars is increasing. The second derivative, f (),

15.

16.

17.

appears to be positive because the rate of change is increasing. For example, between 1940 and 1950, the rate of
changeis (40.3 — 27.5)/10 = 1.28 million cars per year, while between 1950 and 1960, the rate of changeis2.14
million cars per year.

(b) We use the average rate of change formula on the interval 1970 to 1980 to estimate f'(1975):

~ 121.6 — 89.3 _ 32.3 — 393
1980 — 1970 10

We see that f'(1975) ~ 3.23 million cars per year. The number of passenger carsin the USwas increasing at arate
of about 3.23 million cars per year in 1975.

To measure the average accel eration over an interval, we calculate the average rate of change of velocity over the interval.
The units of acceleration are ft/sec per second, or (ft/sec)/sec, written ft/sec?.

#(1975)

Average acceleration _ Change!n velocity _ v(1) — v(0) _30-0_ 30 fi/sec’
for0<t<1 Time 1 1

Average acceleration 52 — 30
forl <¢<2 T o2-1

= 22 ft/sec’

To the right of z = 5, the function starts by increasing, since f'(5) = 2 > 0 (though f may subsequently decrease) and
is concave down, so its graph looks like the graph shown in Figure 2.41. Also, the tangent line to the curve at = = 5 has
slope 2 and lies above the curve for z > 5. If we follow the tangent line until z = 7, we reach a height of 24. Therefore,
f(7) must be smaller than 24, meaning 22 is the only possible value for f(7) from among the choices given.

y
T

24 b= .4
L

a ey

| |

| |
\ \ T

5 7

Figure 2.41

(@ dP/dt > 0andd*P/dt* > 0.

(b) dP/dt < 0and d?P/dt® > 0 (but dP/dt is close to zero).
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18.

10.

20.

21.

22.

23.

Solutions for Section 2.7
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(@ utility

quantity

(b) Asafunction of quantity, utility isincreasing but at a decreasing rate; the graph isincreasing but concave down. So
the derivative of utility is positive, but the second derivative of utility is negative.

Since al advertising campaigns are assumed to produce an increase in sales, a graph of saes against time would be
expected to have a positive slope.

A positive second derivative means the rate at which sales areincreasing isincreasing. If apositive second derivative
is observed during a new campaign, it is reasonable to conclude that thisincrease in the rate sales are increasing is caused
by the new campaign—which is therefore judged a success. A negative second derivative means a decrease in the rate at
which sales are increasing, and therefore suggests the new campaign is afailure.

@)

I R B
T
4 5 6 7 8

x

(b) Exactly one. There can’'t be more than one zero because f isincreasing everywhere. There does have to be one zero
because f stays below itstangent line (dotted line in above graph), and therefore f must cross the z-axis.

(c) The equation of the (dotted) tangent lineisy = %:1: — % and so it crosses the z-axis at x = 1. Therefore the zero of
f must be betweenz = 1 and z = 5.

(d) lim f(z) = —oo, because f isincreasing and concave down. Thus, asz — —oc, f(x) decreases, at afaster and
r— —00

faster rate.

(e) Yes.

(f) No. The slopeis decreasing since f is concave down, so f'(1) > f'(5),i.e. f'(1) > L.

(&) The EPA will say that the rate of discharge is still rising. The industry will say that the rate of discharge isincreasing
less quickly, and may soon level off or even start to fall.

(b) The EPA will say that therate at which pollutants are being discharged is levelling off, but not to zero — so pollutants
will continue to be dumped in the lake. The industry will say that the rate of discharge has decreased significantly.

Since f' is everywhere positive, f is everywhere increasing. Hence the greatest value of f is at zs and the least value of
f isat z1. Directly from the graph, we seethat f' is greatest at x3 and least at z». Since f” gives the dope of the graph
of ', f"" isgreatest where f’ isrising most rapidly, namely at zs, and f” isleast where f' isfalling most rapidly, namely
at 1.

(@) B (where f', f" > 0) and E (where ', f" < 0)

(b) A (where f = f' = 0) and D (where f' = "' = 0)

Exercises

1

(a) Function f isnot continuousat x = 1.
(b) Function f appears not differentiableat » = 1, 2, 3.
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2. (a) Function g appears continuous at all z-values shown.
(b) Function g appears not differentiable at x = 2,4. Atz = 2, the curve isvertical, so the derivative does not exist. At
x = 4, the graph has a corner, so the derivative does not exist.
3. (a) The absolute value function is continuous everywhere. See Figure 2.42.
(b) The absolute value function is not differentiable at x = 0. The graph has a corner at x = 0, which suggests f isnot
differentiable there. (See Figure 2.42.) Thisis confirmed by the fact that the limit of the difference quotient
o F@+R) = f(@)

h—0 h
does not exist for z = 0, since the following limit does not exist:

lim m
h—0

f(@) = |=|

Figure 2.42

4. No, there are sharp turning points.
5. Yes.

Problems

6. We want to look at ‘ ‘ ‘
. (h*+0.0001)"/% — (0.0001)"/2
lim .
h—0 h
As h — 0 from positive or negative numbers, the difference quotient approaches 0. (Try evaluating it for h = 0.001,
0.0001, etc.) So it appears there is a derivative at z = 0 and that this derivative is zero. How can this beif f hasacorner
axr=0?
The answer lies in the fact that what appears to be a corner is in fact smooth—when you zoom in, the graph of f
looks like a straight line with slope 0! See Figure 2.43.

f(=) f()

94

| | | | T | | | | T
-2 -1 0 1 2 -0.2 -0.1 0 0.1 0.2

Figure 2.43: Close-ups of f(z) = (22 + 0.0001)*/2 showing differentiability at z = 0

7. Yes, f isdifferentiable at x = 0, since its graph does not have a“corner” at x = 0. See below.

1.64 /

—0.4 0.4
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Another way to see thisis by computing:

_ 2 2 2
fim L) = fO) _ (A [RDT BT+ 2hIR] A (R
h—0 h h—0 h h—0 h
Since |k|* = h?, we have:
_ 2
i T = F(0) _ . 2h% +2h[h| _
h—0 h h—0

So f isdifferentiable at 0 and £/ (0) = 0.

lim 2(h + [h]) = 0.

. Aswe can seein Figure 2.44, f oscillates infinitely often between the z-axis and the line y = 2z near the origin. This

means aline from (0, 0) to apoint (h, f(h)) on the graph of f alternates between slope 0 (when f(h) = 0) and slope 2
(when f(h) = 2h) infinitely often as h tends to zero. Therefore, there is no limit of the slope of this line as h tends to
zero, and thus there is no derivative at the origin. Another way to see thisis by noting that

lim M = lim w = lim (sin (%) + 1)

h—0 h h—0 h h—0

does not exist, sincesin(%) does not have alimit as h tends to zero. Thus, f isnot differentiable at x = 0.

y
\/ v=f(@)
x
2
57
Figure 2.44
We can see from Figure 2.45 that the graph of f oscillates infinitely often between the curvesy = z? and y = —x? near

- . : _ 3 f(=0 _
the origin. Thus the slope of the line from (0, 0) to (h, f(h)) oscillates between h (when f(h) = h? and % = h)

and —h (when f(h) = —h* and % = —h) ash tendsto zero. So, the limit of the lope as h tends to zero is 0, which
isthe derivative of f at the origin. Another way to seethisisto observe that

. f(h)—f0) . h%sin(%)
TR ﬂ%‘i%( o )

. .1
= ]llir%)hsm(ﬁ)

:0,

Since}lbin%h =0and —1 <sin(3) < 1 for any h. Thus f is differentiableat z = 0, and f'(0) = 0.
—

Figure 2.45
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10. (a) Thegraph isconcave up everywhere, except at z = 2 where the derivative is undefined. Thisisthe caseif the graph
has acorner at + = 2. One possible graph is shown in Figure 2.46.

f(=z)

2

Figure 2.46

(b) The graphisconcave up for z < 2 and concave down for x > 2, and the derivative isundefined at z = 2. Thisisthe
caseif the graphisvertical at x = 2. One possible graph is shown in Figure 2.47.

Figure 2.47

11. (a) Thegraph of @ against ¢t does not have abreak at ¢ = 0, S0 () appears to be continuous at ¢ = 0. See below.

(b) Thesloped@/dt iszerofort < 0, and negative for al ¢ > 0. At ¢ = 0, there appears to be a corner, which does not
disappear as you zoom in, suggesting that I is defined for all times¢ except ¢ = 0.

12. (a) Noticethat B isalinear function of r for » < ro and areciproca for r > ry. The constant By isthe value of B at
r = 1o and the maximum value of B.

B

|
ro

(b) B iscontinuous at r = ro because there is no break in the graph there. Using the formulafor B, we have

lim B="2By=By and lim B = 2By = By.
r=ry To r—)rg' To
(c) Thefunction B is not differentiable at » = ro because the graph has a corner there. The slope is positive for r < g
and the slope is negative for r > ro.
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13. (a) Since
lim FE = k’r‘o
7‘~>7‘07
and )
lim E =0 = kg
r—)rg' To
and
E(To) = k’r‘o,

we seethat E is continuous at ro.

(b) Thefunction E isnot differentiable at » = ro because the graph has a corner there. The slopeis positive for r < 7o
and the slope is negative for r > ro.

(©) E

kro

14. 2L o(r)

(a) The graph of g(r) does not have abreak or jump at » = 2, and so g(r) is continuous there. Thisis confirmed by the

fact that
g(2) =1+cos(n2/2) =14+ (-1)=0

so the value of g(r) asyou approach r = 2 from the left is the same as the value when you approach r = 2 from the
right.

(b) The graph of g(r) does not have a corner at r = 2, even after zooming in, so g(r) appears to be differentiable at
r = 0. Thisis confirmed by the fact that cos(7r/2) is at the bottom of atrough at » = 2, and so itsslope is 0 there.
Thus the slope to the left of » = 2 isthe same asthe slope to theright of r = 2.

15. (a) The graph of ¢ does not have abreak at y = 0, and so ¢ appears to be continuous there. See figure below.

1¢

(b) The graph of ¢ has a corner at y = 0 which does not disappear as you zoom in. Therefore ¢ appears not be
differentiable at y = 0.

16. Wewill show f(z) = z iscontinuous a = = c. Since f(c) = ¢, we need to show that
lim f(z) =c

rz—c

that is, since f(z) = =, we need to show

lim z =c.
r—c

Pick any ¢ > 0, thentake d = ¢. Thus,
|f(z)—c|=|z—c|<e foradl |z—c|<d=e.



SOLUTIONS to Review Problems for Chapter Two 93

17. Since f(z) = x iscontinuous, Theorem 2.2 on page 95 shows that products of the form f(x) - f(z) = 2% and f(x) 2> =
x>, etc., are continuous. By asimilar argument, z™ is continuous for any n > 0.

18. If cisintheinterval, weknow lim f(z) = f(c) andlim,_,. g(z) = g(c). Then,
r—c

lim (f(z) + g(z)) = lim f(z) + lim g(z) by limit property 2

r—c

= f(c) +g(c), sof+giscontinuousaz = c.

Also,
lim (f(z)g(x)) = lim f(z) lim g(z) by limit property 3
T—c T—c T—c
= f(c)g(c) so fgiscontinuousatz = c.
Finaly,
lim fz) _ M by limit property 4
z—c g(r)  limgoe g(x)
= M, O f iscontinuous atx = c.
g(c) g

Solutions for Chapter 2 Review

Exercises
1.
f(=)
x
2.
x
-1.5
f'(=)
3.
1 ST e NI
-1 2 3 4
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4, z
f'(=@)
5 fllg) — 1 o
o
6.
f'(@)

7. Using the definition of the derivative

f’(x) — lim f(l'-i—h) —f(l')

h—0 h
2 _ 2

— lim 5z +h)°+z+h—(5z" +x)

h—0 h

. 5z +22h+h) +r+h—527 -z
= lim

h—0 h

. 10zh+5h%> +h
= lim ———

h—0 h

= lim (10z + 5h + 1) = 10z + 1
h—0
8. Using the definition of the derivative, we have

n'(x) = lim

i3 (G5 +1) - G+1)]

i 1 (1)
r—0h \z+h =«
. xz—(x+h)
e+ h)
lim —
h—0 hz(z + h)

-1 -1

lim —— = —.
P z(x+h) 22
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9. From Table 2.17, it appears the limit is 0. Thisis confirmed by Figure 2.48. An appropriate window is —0.015 < = <
0.015, —0.01 < y < 0.01.

0.01
Table 2.17
T f(z) T f(z)
0.1 |0.0666 —0.0001 | —0.0001
.01 ) —0.001 | —o0. —0.01
0.01 | 0.0067 0.00 0.0007 o 0,015
0.001 | 0.0007 —0.01 | —0.0067
0.0001 0 —0.1 | —0.0666 Figure 2.48

10. From Table 2.18, it appears the limit is 0. Thisis confirmed by Figure 2.49. An appropriate window is —0.0029 < z <
0.0029, —0.01 < y < 0.01.

0.01
Table 2.18
T f(z) T f(z)
0.1 |0.3365 —0.0001 | —0.0004
_ _ —0.01
0.01 | 0.0337 0.001 0.0034 2 0.0029 0.0029
0.001 | 0.0034 —0.01 —0.0337
0.0001 | 0.0004 —0.1 | —0.3365 Figure 2.49

11. From Table 2.19, it appears the limit is 0. Figure 2.50 confirms this. An appropriate window is 1.570 < = < 1.5715,
—0.01 <y < 0.01.

Table 2.19 y=001

z f(z)
1.6708 | —1.2242
1.5808 | —0.1250
1.5718 | —0.0125
1.5709 | —0.0013
1.5707 | 0.0012
1.5698 0.0125 y = —0.01
1.5608 | 0.1249 z =1.570 x =1.5715

1.4708 | 1.2241

Figure 2.50

12. From Table 2.20, it appears the limit is 1/2. Figure 2.51 confirms this. An appropriate window is1.92 < z < 2.07,
0.49 < y < 0.51.

Table 2.20 y=0.51
T f(z)
2.1 |o0.5127
2.01 | 0.5013
2.001 | 0.5001
2.0001 | 0.5000
1.9999 | 0.5000
1.999 | 0.4999 y=10.49
1.99 0.4988 r =1.92 r = 2.07

1.9 |0.4877 Figure 2.51
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(a+h)* —a? . a’+2ah+h’—a’

BT T h = et h) =20
1 1 1 . a—(a+h) . -1 -1
14. lim - L —1 _-1
Ko b (a+h a) r—=0 (a+ h)ah B30 (a+h)a a?
1 1 1\ . a®—(a®>+2ah+h?) . (=2a—h) -2
1 ii’%ﬁ((wh)fﬁ)_i‘ﬂ% axhiath i eI T @b
16. VaTh—a= (Va+h—+va)Va+h++a) a+h—a h .
Va+h+a \/a+ +f Va+h++a
Therefore lim Vath=va _ l' —
h—0 h 0+/a+h —{—\/_ 2\/5

17. We combine terms in the numerator and multiply top and bottom by v/a + va + h.
1 1 Va—+va+h (Va—+va+h)\/a+Va+h)

Vath Va  Vathya  a+hv/a(va++va+h)
_ a—(a+h)

Vva+ hyv/a(/a++a+h)

Therefore hm < ! ! > = lim -1 i
Va+h a) woVathya(Va+va+h) o 2(/a)?

16 foy o BPREo0l_) T =, w23
il ] N
v—3 1‘(1‘27_1‘;_6):—2$3, r<3
Figure 252 confirmsthat lim f(z) = 54 while lim f(z) = —54; thus lim3 f(z) does not exist.
z—3t rz—37 T—
100 |- / /(@)
50
0 ! 1 1 -z
*]t\g\:i 4
—50 -
—100 [
Figure 2.52
e’ -1<z<0
19. f(z)=< 1 z=0

cos T 0<z<l1

Figure 2.53 confirms that lim f(z) = lim e* =¢® =1, and that lim f(z) = lim cosz = cos0 =1, SO
z—0— x—0— z—0+4+ xr—0+
lim f(z) =1
z—0

Figure 2.53
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Problems

20. (a) A possible exampleis f(z) =1/|z — 2| as ling 1/|zr — 2| =
T
(b) A possible exampleis f(z) = —1/(z — 2)% as lim —1/(z — 2)? = —oo.

21. Since f(2) = 3 and f'(2) = 1, near z = 2 the graph looks like the segment shown in Figure 2.54.

Slope =1
3 77777/

|
|
|
|
|
|
1
2

T
Figure 2.54
@ If f(z)is even then the graph of f(z) near x = 2 and x = —2 looks like Figure 2.55. Thus f(—2) = 3 and
f'(=2) =
(b) If f(x)is odd then the graph of f(z) near x = 2 and x = —2 looks like Figure 2.56. Thus f(—2) = —3 and
f(=2)=

N 1

|
} | T
| 2]
|
‘ |
| x N
-9 2 AS
Figure 2.55: For f even Figure 2.56: For f odd

22. The slopes of the lines drawn through successive pairs of points are negative but increasing, suggesting that f'(z) > 0
for 1 <z < 3.3 and that the graph of f(z) is concave up.

23. Using the approximation Ay ~ f'(z)Az with Az = 2, wehave Ay =~ f'(20) -2 =62, 50

f£(22) = £(20) + £(20) - 2 = 345 + 6 - 2 = 357.

24. (a) 6
5 Student C's answer ?Iudent B's answer
” S =slope of this line
=slope of this line
Student A's answer
=slope of this line
4 |
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(b) Theslopeof f appears to be somewhere between student A's answer and student B’s, so student C's answer, halfway
in between, is probably the most accurate.
(0) Student A's estimate is f'(z) ~ [@HM=SE) yhile student B's estimate is f'(z) ~ [&=[==") gudent C's
estimate is the average of these two, or
1| flz+h) - f(z)

f'(x)zg h +

f@)—fle=n|_fle+h) - flz—h)
h 2h '

This estimate is the slope of the chord connecting (z — h, f(z — h)) to (x + h, f(z + h)). Thus, we estimate that
the tangent to a curve is nearly parallel to a chord connecting points A units to the right and left, as shown below.

25. (a) Sincethepoint A = (7, 3) ison the graph of f, we have f(7) = 3.
(b) The slope of the tangent line touching the curve at z = 7 isgiven by
Rise 38-3 08

Slope Run 72 -7 0.2

Thus, f'(7) = 4.
26. Atpoint A, wearetoldthat z = 1 and f(1) = 3. Since A = (2,y2), wehavez, = 1 and y» = 3. Sinceh = 0.1, we
knowz; =1—-0.1=09andz3=1+0.1 =1.1.
Now consider Figure 2.57. Since f'(1) = 2, the slope of the tangent line AD is2. Since AB = 0.1,
Rise _ BD _,
Run = 0.1
so BD =2(0.1) =0.2. Thereforey: =3 — 0.2 =2.8andys =3+ 0.2 = 3.2.

)

Figure 2.57
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29.

30.
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33.
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. A possible graph of y = f(z) isshown in Figure 2.58.

Figure 2.58

. (@) Theyamiscooling off so T is decreasing and f' (t) is negative.

(b) Since f(t) is measured in degrees Fahrenheit and ¢ is measured in minutes, df /dt must be measured in units of
°F/min.

f(10) = 240,000 means that if the commodity costs $10, then 240,000 units of it will be sold. f(10) = —29,000 means

that if the commodity costs $10 now, each $1 increasein price will cause adecline in sales of 29,000 units.

The rate of change of the US population is P'(t), so
P'(t) = 0.8% - Current population = 0.008P(t).

s F0.8) = (0.6)  40-39 s F(0.6) = £(0.4) 04
@ FO00) x e =~y =05 f 50.5) ~ o =0 —9.
(b) Using thevaluesof #' from part (a), we get £ (0.6) ~ ! (0'6()). :(];550.5) = 05(); 2_Z15_ 4

(c) The maximum value of f isprobably near z = 0.8. The minimum value of fis pfobably near z = 0.3.
By tracing on a calculator or solving equations, we find the following values of 4:
Fore =0.1,0 <0.1
For e = 0.05, < 0.05.
For e = 0.0007, § < 0.00007.
By tracing on a calculator or solving equations, we find the following values of 4:
Fore=0.1,§ < 0.45.
Fore = 0.001, § < 0.0447.
For ¢ = 0.00001, § < 0.00447.
(a) Slope of tangent line = limy,_,o Y24 Using b = 0.001, Y2004 — (249984, Hence the slope of the
tangent line is about 0.25.
(b)
y—y =m(z— 1)
y—2=0.25(x — 4)
y—2=025—-1
y =025z 41
© f(z)=kz®
If (4,2) isonthegraph of £, then f(4) = 2,50k -4> = 2. Thusk = %, and f(z) =
(d) To find where the graph of f crossesthenliney = 0.25z + 1, we solve:

1
gL .

éa:Z = 025z +1
z° = 2z +8
2 —20-8 =0
(z—4)(z+2) =0
r=4 o r=-2
1
f(=2) = g@ =05

Therefore, (—2,0.5) isthe other point of intersection. (Of course, (4, 2) isapoint of intersection; we know that from
the start.)
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35. (a) Theslope of the tangent line at (0,+/19) is zero: it is horizontal.
The slope of the tangent line at (1v/19, 0) is undefined: it is vertical.
(b) The slope appears to be about % (Note that when z is 2, y isabout —4, but when z is4, y is approximately —3.)

(c) Using symmetry we can determine: Slope at (—2,+/15): about 3. Slope at (—2, —/15): about —1. Slope at
(2,/15): about —1.
36. @IV, I, ©I1, @1, &1V, ()
37. (a) The population varies periodically with a period of 12 months (i.e. one year).

5000+

4000

\\
\\

3 6 9 12 15 18 21 24
April  July Oct Jan April  July Oct Jan April

(b) The herd islargest about June 15 when there are about 4500 deer.

(c) Theherd is smallest about February 15 when there are about 3500 deer.

(d) The herd grows the fastest about April 15¢. The herd shrinks the fastest about July 15 and again about December 15.
(e) 1t growsthe fastest about April 1°° when the rate of growth is about 400 deer/month, i.e about 13 new fawns per day.

38. (a) Thegraph looks straight because the graph shows only asmall part of the curve magnified greatly.

(b) The month is March: We see that about the 215 of the month there are twelve hours of daylight and hence twelve
hours of night. This phenomenon (the length of the day equaling the length of the night) occurs at the equinox, midway
between winter and summer. Since the length of the daysisincreasing, and Madrid isin the northern hemisphere, we
are looking at March, not September.

(c) The dope of the curve is found from the graph to be about 0.04 (the rise is about 0.8 hours in 20 days or 0.04
hours/day). This means that the amount of daylight isincreasing by about 0.04 hours (about 2% minutes) per calendar
day, or that each day is 21 minutes longer than its predecessor.

39. (@) A possible graph isshown in Figure 2.59. At first, the yam heats up very quickly, since the difference in temperature
between it and its surroundings is so large. As time goes by, the yam gets hotter and hotter, its rate of temperature
increase slows down, and its temperature approaches the temperature of the oven as an asymptote. The graph isthus
concave down. (We are considering the average temperature of the yam, since the temperature in its center and on its
surface will vary in different ways.)
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temperature

200°C

20°C

time

Figure 2.59

(b) If the rate of temperature increase were to remain 2°/min, in ten minutes the yam's temperature would increase 20°,
from 120° to 140°. Since we know the graph is not linear, but concave down, the actual temperature is between 120°
and 140°.

(c) In 30 minutes, we know the yam increases in temperature by 45° at an average rate of 45/30 = 1.5°/min. Since the
graph is concave down, the temperature at ¢ = 40 is therefore between 120 + 1.5(10) = 135° and 140°.

(d) If the temperature increases at 2°/minute, it reaches 150° after 15 minutes, at ¢t = 45. If the temperature increases at
1.5°/minute, it reaches 150° after 20 minutes, at ¢ = 50. So ¢ is between 45 and 50 mins.

40. (a) We construct the difference quotient using erf(0) and each of the other given values:
erf(1) — erf(0)

erf'(0) = o = 0.84270079
£(0.1) — erf(0)
£(0) o S T ) 1946292
erf (0) 01-0 629
rey o erf(0.01) —erf(0)
erf'(0) =~ 0l o = 1.128342.

Based on these estimates, the best estimateis erf’ (0) ~ 1.12; the subsequent digits have not yet stabilized.
(b) Using erf(0.001), we have
erf(0.001) — erf(0)

erf' (0) =~ = 1.12838
0) 0.001 -0
and so the best estimate is now 1.1283.
41. (a)
Table 2.21
z sinh(m+0(.)(.)(());i—sinh(x) sinh(ac-&-O(.)(.)(())(())éi—sinh(x) 3)]”(0) ~ COSh(CE)
1.00000 1.00000 1.00000 1.00000

0.3 1.04549 1.04535 1.04535 | 1.04534
0.7 1.25555 1.25521 1.25521 1.25517
1 1.54367 1.54314 1.54314 1.54308

(b) It seemsthat they are approximately the same, i.e. the derivative of sinh(z) = cosh(z) for x =0, 0.3,0.7, and 1.

CAS Challenge Problems

42. The CAS says the derivative is zero. This can be explained by the fact that f(z) = sin? 4 cos?’z = 1, s0 f'(x) isthe
derivative of the constant function 1. The derivative of a constant function is zero.

43. (a) The CASgives f'(z) = 2cos> z — 2sin? x. Form of answers may vary.
(b) Using the double angle formulas for sine and cosine, we have
f(x) = 2sinx cos x = sin(2x)

f'(x) = 2cos” & — 2sin” & = 2(cos” & — sin” z) = 2 cos(2x).

Thus we get

c;l_x sin(2z) = 2 cos(2z).
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44. (a) Thefirst derivativeisg'(z) = —2aze~**", s0 the second derivative is

2 2 2
d° _.x2  —2a 4o’z

—e = .
dz? eaw® eaw?

9" (x) =

Form of answers may vary.
(b) Both graphs get narrow as a gets larger; the graph of ¢ is below the z-axis along the interval where g is concave
down, and is above the z-axiswhere g is concave up. See Figure 2.60.

Figure 2.60

(c) The second derivative of afunction is positive when the graph of the function is concave up and negative when it is
concave down.

45. (a) The CASgivesthe same derivative, 1/z, in al three cases.

(b) From the properties of logarithms, g(z) = In(2z) = In2 + Inz = f(z) + In 2. So the graph of g is the same
shape asthe graph of f, only shifted up by In 2. So the graphs have the same slope everywhere, and therefore the two
functions have the same derivative. By the samereasoning, h(z) = f(x) +1n 3, so h and f have the same derivative
aswell.

46. (a) The computer algebra system gives

4 (22 11)° = da(a® + 1)

dx
j—$(m2 +1)* = 62(a? + 1)
j—$(m2 + 1)t = 8a(a? +1)°
(b) The pattern suggests that
d

%(1'2 +1)" =2nz(z” +1)" "

Taking the derivative of (x> + 1)™ with a CAS confirms this.
47. (a) Using aCAS, wefind

—sinx = cos T

dx

d .
——cosT = —sinz

dx

d . .

—(sinzcosz) = cos’ & —sin” & = 2cos” & — 1.

dx

(b) The product of the derivatives of sin z and cos z iscos z(— sin £) = — cos z sin z. On the other hand, the derivative
of the product is cos® z — sin® z, which is not the same. So no, the derivative of a product is not aways equal to the
product of the derivatives.
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CHECK YOUR UNDERSTANDING

1

N o g &

10.

11

12.

13.

14.

15.

16.

17.

18.

10.

20.

21.

False. For example, the car could slow down or even stop at one minute after 2 pm, and then speed back up to 60 mph at
one minute before 3 pm. In this case the car would travel only afew miles during the hour, much less than 50 miles.

False. Its average velocity for the time between 2 pm and 4 pm is 40 mph, but the car could change its speed a lot during
that time period. For example, the car might be motionless for an hour then go 80 mph for the second hour. In that case
the velocity at 2 pm would be 0 mph.

True. During a short enough time interval the car can not change its velocity very much, and so it velocity will be nearly
constant. It will be nearly equal to the average velocity over the interval.

True. The instantaneous velocity isalimit of the average velocities. The limit of a constant equals that constant.
True. By definition, Average velocity = Distance traveled/Time.
False. Instantaneous velocity equals alimit of difference quotients.

False. All we know isthat if h is close enough to zero then f (k) will be as close as we please to L. We do not know how
close would be close enough to zero for f(h) to be closer to L thanis £(0.01). It might be that we have to get alot closer
than 0.0001. It iseven possible that f(0.01) = L but £(0.0001) # L so f(h) could never get closer to L than f(0.01).

True. Thisis seen graphically. The derivative f'(a) isthe slope of the line tangent to the graph of f at the point P where
x = a. The difference quotient (f(b) — f(a))/(b — a) is the slope of the secant line with endpoints on the graph of f
at the points where + = a and x = b. The tangent and secant lines cross at the point P. The secant line goes above the
tangent linefor x > a because f is concave up, and so the secant line has higher slope.

True. The derivative of afunction is the limit of difference quotients. A few difference quotients can be computed from
the table, but the limit can not be computed from the table.

Fase. If f'(x) isincreasing then f(z) isconcave up. However, f(x) may be either increasing or decreasing. For example,
the exponential decay function f(z) = e isdecreasing but f'(x) isincreasing because the graph of f is concave up.
False. A counterexample is given by f(z) = 5 and g(z) = 10, two different functions with the same derivatives:
f'(@)=4g'(z) =0.

True. The graph of alinear function f(z) = mx + b is a straight line with the same slope m at every point. Thus
f'(xz) = mforal z.

True. Shifting agraph vertically does not change the shape of the graph and so it does not change the slopes of the tangent
lines to the graph.

False. The function f(x) may be discontinuous at = = 0, for instance f(z) =

{Oifx <0 The graph of f may havea

lifz >0
vertical tangent lineat = = 0, for instance f(x) = ='/3.

True. The two sides of the equation are different frequently used notations for the very same quantity, the derivative of f
at the point a.

True. The derivative f'(10) isthe slope of the tangent line to the graph of y = f(z) at the point where z = 10. When
you zoominony = f(x) close enough it is not possible to see the difference between the tangent line and the graph of f
on the calculator screen. The line you see on the calculator is alittle piece of the tangent line, so its slope isthe derivative
£'(10).
True. The second derivative £’ (z) is the derivative of f'(z). Thus the derivative of f'(z) is positive, and so f'(z) is
increasing.
True. Instantaneous acceleration is a derivative, and all derivatives are limits of difference quotients. More precisely,
instantaneous acceleration a(t) is the derivative of the velocity v(t), so

v(t + h) — v(t)

R

True. The derivatives f'(t) and g’ (¢) measure the same thing, the rate of chemical production at the same time ¢, but they
measure it in different units. The units of f'(¢) are grams per minute, and the units of ¢'(¢) are kilograms per minute. To
convert from kg/min to g/min, multiply by 1000.

False. The derivatives f'(t) and ¢’ (t) measure different things because they measure the rate of chemical production at
different times. Thereis no conversion possible from one to the other.

True. Let f(z) = |z — 3|. Then f(z) iscontinuous for all = but not differentiable at = = 3 because its graph has a corner
there. Other answers are possible.
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True. If afunction is differentiable at a point, then it is continuous at that point. For example, f(z) = x* is both differ-
entiable and continuous on any interval. However, one example does not establish the truth of this statement; it merely
illustrates the statement.

False. Being continuous does not imply differentiability. For example, f(z) = |z| is continuous but not differentiable at
x=0.

True. If afunction were differentiable, then it would be continuous. For example,

1 0. . ) . . .
flz) = { 1 v <0 is neither differentiable nor continuous a = = 0. However, one example does not establish the
- T

truth of this statement; it merely illustrates the statement.

False. For example, f(z) = |z| isnot differentiable at z = 0, but it is continuous at = = 0.

False. For example, let f(z) = 1/z and g(z) = —1/z, then f(z) + g(z) = 0. 1f ¢ = 0, lim,_, o+ (f(z) + g(x)) exists
(itis0), butlim,_,,+ f(x) andlim,_, o+ g(x) do not exist.

True, by Property 3 of limitsin Theorem 2.1, since lim, 3 x = 3.

Fase. If lim,_,3 g(z) does not exist, then lim,_,3 f(x)g(x) may not even exist. For example, let f(z) = 2z + 1 and

define g by:
_J1/(x=3) ifzx#3
9() { 4 ifz =3
Thenlim,_,3 f(z) = 7and g(3) = 4, but lim, 3 f(z)g(z) # 28, sincelim,,3(2z + 1)/(z — 3) does not exist.
True, by Property 2 of limitsin Theorem 2.1.

True, by Properties 2 and 3 of limitsin Theorem 2.1.

lim g(z) = lim (f(2) + 9(2) + (~1)f(2)) = lim (f(z) + g(e)) + (=1) lim f(z) = 12 + (~1)7 =5.

z—3 z—3 z—3

False. For example, define f asfollows:

_J2x+1 ifx#2.99
f(m)_{looo if 2 = 2.99.

Then £(2.9) = 2(2.9) + 1 = 6.8, whereas f(2.99) = 1000.
False. For example, define f asfollows:

(241 ifz#£301
f($)_{—1000 if 2 = 3.01.

Then £(3.1) = 2(3.1) + 1 = 7.2, wheress f(3.01) = —1000.

True. Suppose instead that lim,—, 3 g(z) does not exist but lim, —.3(f(z)g(x)) did exist. Sincelim, .3 f(z) existsand is
not zero, then lim, ,5((f(z)g(x))/ f(z)) exists, by Property 4 of limitsin Theorem 2.1. Furthermore, f(z) # 0 for al =
in someinterval about 3, so (f(z)g(x))/f(z) = g(z) for al z inthat interval. Thuslim,_, 3 g(z) exists. This contradicts
our assumption that lim, .3 g(z) does not exist.

False. For some functions we need to pick smaller values of §. For example, if f(z) = #/* +2andec=0and L = 2,
then f(z) iswithin 1072 of 2if |!/%| < 102, Thisonly happensif z iswithin (107%)2 = 107° of 0. If z = 10~ then
«'/3 = (107%)'/3 = 10~", whichistoo large.

False. The definition of a limit guarantees that, for any positive ¢, thereisa d. This statement, which guarantees an ¢ for
aspecific§ = 1073, is not equivalent to lim, .. f(z) = L. For example, consider a function with a vertical asymptote
within 1072 of 0, suchasc = 0, L = 0, f(z) = z/(z — 107*).

True. Thisisequivalent to the definition of alimit.

False. Although = may be far from ¢, thevalue of f(z) could be closeto L. For example, suppose f(z) = L, the constant
function.

False. The definition of the limit saysthat if 2 iswithin d of ¢, then f(x) iswithin e of L, not the other way round.

(a) Thisisnot acounterexample, since it does not satisfy the conditions of the statement, and therefore does not have the
potential to contradict the statement.

(b) This contradicts the statement, because it satisfies its conditions but not its conclusion. Hence it is a counterexample.
Notice that this counterexample could not actually exist, since the statement is true.

(c) Thisisan exampleillustrating the statement; it is not a counterexample.

(d) Thisisnot a counterexample, for the same reason asin part (a).
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1. (&) S(0) = 12 sincethe days are always 12 hourslong at the equator.

(b) Since S(0) = 12 from part (a) and the formula gives S(0) = a, we have a = 12. Since S(x) must be
continuousat z = x, and the formulagives S(zo) = a + barcsin(1) = 12+ b (Z) and also S(zg) = 24,
wemust have 12 + b (3) =24s0b (%) = 12andb = 2 ~ 7.64.

(c) S(32°13') ~ 14.12 and S(46°4) ~ 15.58.

(d) hours of sunlight

24+ S(x)
18/7
12

6,,

| | = ox(°
30 60 90 ©)

Figure 2.61

(e) Thegraphin Figure2.61 appearsto have acorner at z ¢ = 66°30’. We compare the slope to theright of z
and to the left of x¢. To theright of Sy, the functionis constant, so S’(z) = 0 for z > 66°30'.
We estimate the slope immediately to the left of z. We want to calculate the following:

h—0—

We approximateit by taking zo = 66.5and h = —0.1, — 0.01, — 0.001:

S(66.49) — S(66.5) _ 22.3633 — 24

0.1 N 638
S(66.499) — S(66.5)  23.4826—24
—0.01 Sy TR
5(66.4999) — S(66.5) _ 238370-24 _ .
—0.001 ~ o —0.001 77
These approximations suggest that, for z, = 66.5,
lim S@0 ) = S@0) oo ot exist,
h—0— h

This evidence suggests that S(z) is not differentiable at 9. A proof requires the techniques found in
Chapter 3.

2. (a) (i) Estimating derivatives using difference quotients (but other answers are possible):

1910) — P(1900) _ 92.0 — 76.0

P'(1900) ~ il = 1.6 million people per year

10 10
P(1 — P(194 150.7 — 131. -
P'(1945) ~ ( 950)10 (1940) _ 150 710 31T _ 1.9 million people per year
P'(1990) ~ P(1990)1—0P(1980) = 248'71_0226'5 = 2.22 million people per year

(if) The population growth was maximal somewhere between 1950 and 1960.
(ili) P'(1950) v ZU960PU950) _ 179.0-150.7 — 3 83 million peopleper year, so P(1956) ~ P(1950)+
P'(1950) (1956 — 1950) = 150.7 + 2.83(6) ~ 167.7 million people.

(iv) If the growth rate between 1990 and 2000 was the same as the growth rate from 1980 to 1990, then
the total population should be about 271 million peoplein 2000.
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(b) ()
(i)

(iii)

(iv)

© @

(i)
(iii)

f£71(100) is the point in time when the population of the US was 100 million people (somewhere
between 1910 and 1920).

The derivative of f~!(P) at P = 100 represents the ratio of change in time to change in population,
and its units are years per million people. In other words, this derivative represents about how long it
took for the population to increase by 1 million, when the population was 100 million.

Since the population increased by 105.7 — 92.0 = 13.7 million people in 10 years, the average rate
of increase is 1.37 million people per year. If the rate is fairly constant in that period, the amount of
time it would take for an increase of 8 million people (100 million — 92.0 million) would be

8 million people
1.37 million people/year

~ 5.8 years ~ 6 years

Adding this to our starting point of 1910, we estimate that the population of the US reached 100
million around 1916, i.e. f ~1(100) ~ 1916.

Sinceit took 10 years between 1910 and 1920 for the population to increase by 105.7 — 92.0 = 13.7
million people, the derivative of f —1(P) at P = 100 is approximately

10years
13.7 million people

= 0.73 years/million people

Clearly the population of the US at any instant is an integer that varies up and down every few seconds
asachildis born, a person dies, or a new immigrant arrives. So f(¢) has “jumps;” it is not a smooth
function. But these jumps are small relative to the values of f, so f appears smooth unless we zoom
invery closely on its graph (to within afew seconds).

Major land acquisitions such as the Louisiana Purchase caused larger jumps in the population,
but since the census is taken only every ten years and the territories acquired were rather sparsely
populated, we cannot see these jumps in the census data.

We can regard rate of change of the population for a particular time ¢ as representing an estimate of
how much the popul ation will increase during the year after time¢.
Many economic indicators are treated as smooth, such as the Gross National Product, the Dow Jones

Industrial Average, volumes of trading, and the price of commoditieslike gold. But these figures only
changein increments, not continuously.



