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CHAPTER THREE

Solutions for Section 3.1

Exercises

1. The derivative, f 0(x), is defined as

f 0(x) = lim
h!0

f(x+ h)� f(x)

h
:

If f(x) = 7, then

f 0(x) = lim
h!0

7� 7

h
= lim

h!0

0

h
= 0:

2. The definition of the derivative says that

f 0(x) = lim
h!0

f(x+ h)� f(x)

h
:

Therefore,

f 0(x) = lim
h!0

[17(x+ h) + 11]� [17x+ 11]

h
= lim

h!0

17h

h
= 17:

3. y0 = 11x10.

4. y0 = 12x11:

5. y0 = 11x�12.

6. y0 = 3:2x2:2.

7. y0 = �12x�13:
8. y0 = 4

3
x1=3:

9. y0 = 3
4
x�1=4:

10. y0 = � 3
4
x�7=4:

11. f 0(x) = �4x�5.

12. f 0(x) = 1
4
x�3=4:

13. f 0(x) = exe�1:

14. y0 = 6x1=2 � 5
2
x�1=2:

15. f 0(t) = 6t� 4.

16. y0 = 17 + 12x�1=2.

17. Dividing gives g(t) = t2 + k=t so g0(t) = 2t� k

t2
:

18. The power rule gives f 0(x) = 20x3 � 2

x3
:

19. h0(w) = 6w�4 +
3

2
w�1=2

20. y0 = 18x2 + 8x� 2:

21. y0 = 15t4 � 5
2
t�1=2 � 7

t2
:

22. y0 = 6t� 6

t3=2
+ 2

t3
:

23. y0 = 2z � 1
2z2

:

24. y = x+ 1
x

, so y0 = 1� 1
x2
:

25. f(z) =
z

3
+

1

3
z�1 =

1

3

�
z + z�1

�
, so f 0(z) =

1

3

�
1� z�2

�
=

1

3

�
z2 � 1

z2

�
.
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26. f(t) =
1

t2
+

1

t
� 1

t4
= t�2 + t�1 � t�4

f 0(t) = �2t�3 � t�2 + 4t�5.

27. y = �p
�
� 1p

�
=
p
� � 1p

�

y0 = 1

2
p
�
+ 1

2�3=2
:

28. j0(x) =
3x2

a
+

2ax

b
� c

29. Since 4=3, �, and b are all constants, we have

dV

dr
=

4

3
�(2r)b =

8

3
�rb:

30. Since w is a constant times q, we have dw=dq = 3ab2.

31. Since a, b, and c are all constants, we have

dy

dx
= a(2x) + b(1) + 0 = 2ax+ b:

32. Since a and b are constants, we have
dP

dt
= 0 + b

1

2
t�1=2 =

b

2
p
t
:

33. g0(x) = �1

2
(5x4 + 2).

34. y0 = �12x3 � 12x2 � 6:

35. g(z) = z5 + 5z4 � z
g0(z) = 5z4 + 20z3 � 1.

Problems

36. So far, we can only take the derivative of powers of x and the sums of constant multiples of powers of x. Since we cannot
write

p
x+ 3 in this form, we cannot yet take its derivative.

37. The x is in the exponent and we haven’t learned how to handle that yet.

38. g0(x) = �x(��1) + �x�(�+1), by the power and sum rules.

39. y0 = 6x: (power rule and sum rule)

40. We cannot write 1
3x2+4

as the sum of powers of x multiplied by constants.

41. y0 = �2=3z3: (power rule and sum rule)

42. f 0(t) = 6t2 � 8t+ 3 and f 00(t) = 12t� 8:

43.

f 0(x) = 12x2 + 12x� 23 � 1

12x2 + 12x� 24 � 0

12(x2 + x� 2) � 0

12(x+ 2)(x� 1) � 0:

Hence x � 1 or x � �2:
44. Decreasing means f 0(x) < 0:

f 0(x) = 4x3 � 12x2 = 4x2(x� 3);

so f 0(x) < 0 when x < 3 and x 6= 0. Concave up means f00(x) > 0:

f 00(x) = 12x2 � 24x = 12x(x� 2)
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so f 00(x) > 0 when
12x(x� 2) > 0

x < 0 or x > 2:

So, both conditions hold for x < 0 or 2 < x < 3.

45. The graph increases when dy=dx > 0:

dy

dx
= 5x4 � 5 > 0

5(x4 � 1) > 0 so x4 > 1 so x > 1 or x < �1:

The graph is concave up when d2y=dx2 > 0:

d2y

dx2
= 20x3 > 0 so x > 0:

We need values of x where fx > 1 or x < �1g AND fx > 0g, which implies x > 1. Thus, both conditions hold for all
values of x larger than 1.

46. Since f(x) = x3 � 6x2 � 15x+20, we have f 0(x) = 3x2� 12x� 15. To find the points at which f 0(x) = 0, we solve

3x2 � 12x� 15 = 0

3(x2 � 4x� 5) = 0

3(x+ 1)(x� 5) = 0:

We see that f 0(x) = 0 at x = �1 and at x = 5. The graph of f(x) in Figure 3.1 appears to be horizontal at x = �1 and
at x = 5, confirming what we found analytically.

�1

5
x

f(x)

Figure 3.1

47.
f 0(x) = �8 + 2

p
2x

f 0(r) = �8 + 2
p
2r = 4

r =
12

2
p
2
= 3

p
2:

48. (a) Since the power of x will go down by one every time you take a derivative (until the exponent is zero after which the
derivative will be zero), we can see immediately that f(8)(x) = 0.

(b) f (7)(x) = 7 � 6 � 5 � 4 � 3 � 2 � 1 � x0 = 5040.

49. Differentiating gives
f 0(x) = 6x2 � 4x so f 0(1) = 6� 4 = 2:

Thus the equation of the tangent line is (y � 1) = 2(x� 1) or y = 2x� 1.

50. (a) We have f(2) = 8, so a point on the tangent line is (2; 8). Since f0(x) = 3x2, the slope of the tangent is given by

m = f 0(2) = 3(2)2 = 12:

Thus, the equation is
y � 8 = 12(x� 2) or y = 12x� 16:
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(b) See Figure 3.2. The tangent line lies below the function f(x) = x3, so estimates made using the tangent line are
underestimates.

�2 �1 1 2 3 4

�10

10

20

30

x

y = 12x� 16

y = x3

Figure 3.2

51. The slopes of the tangent lines to y = x2 � 2x + 4 are given by y0 = 2x � 2: A line through the origin has equation
y = mx. So, at the tangent point, x2 � 2x+ 4 = mx where m = y0 = 2x� 2.

x2 � 2x+ 4 = (2x� 2)x

x2 � 2x+ 4 = 2x2 � 2x

�x2 + 4 = 0

�(x+ 2)(x� 2) = 0

x = 2;�2:

Thus, the points of tangency are (2; 4) and (�2; 12). The lines through these points and the origin are y = 2x and
y = �6x, respectively. Graphically, this can be seen in Figure 3.3:

(�2; 12)

(2; 4)

y = �6x

y

y = x2 � 2x+ 4

y = 2x

x

Figure 3.3

52. If f(x) = xn, then f 0(x) = nxn�1. This means f 0(1) = n � 1n�1 = n � 1 = n, because any power of 1 equals 1.

53. Since f(x) = axn, f 0(x) = anxn�1. We know that f 0(2) = (an)2n�1 = 3, and f 0(4) = (an)4n�1 = 24. Therefore,

f 0(4)

f 0(2)
=

24

3

(an)4n�1

(an)2n�1
=
�
4

2

�n�1
= 8

2n�1 = 8, and thus n = 4.

Substituting n = 4 into the expression for f 0(2), we get 3 = a(4)(8), or a = 3=32.
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54. Yes. To see why, we substitute y = xn into the equation 13x
dy

dx
= y. We first calculate

dy

dx
=

d

dx
(xn) = nxn�1. The

differential equation becomes
13x(nxn�1) = xn

But 13x(nxn�1) = 13n(x � xn�1) = 13nxn, so we have

13n(xn) = xn

This equality must hold for all x, so we get 13n = 1, so n = 1=13. Thus, y = x1=13 is a solution.

55. Since f(t) = 700 � 3t2, we have f(5) = 700 � 3(25) = 625 cm. Since f 0(t) = �6t, we have f 0(5) = �30 cm/year.
In the year 2000, the sand dune was 625 cm high and it was eroding at a rate of 30 centimeters per year.

56. (a) Velocity v(t) = dy
dt

= d
dt
(1250 � 16t2) = �32t.

Since t � 0, the ball’s velocity is negative. This is reasonable, since its height y is decreasing.
(b) Acceleration a(t) = dv

dt
= d

dt
(�32t) = �32.

So its acceleration is the negative constant �32.
(c) The ball hits the ground when its height y = 0. This gives

1250 � 16t2 = 0

t = �8:84 seconds

We discard t = �8:84 because time t is nonnegative. So the ball hits the ground 8:84 seconds after its release, at
which time its velocity is

v(8:84) = �32(8:84) = �282:88 feet/sec = �192:84 mph:

57. (a) The average velocity between t = 0 and t = 2 is given by

Average velocity =
f(2)� f(0)

2� 0
=
�4:9(22) + 25(2) + 3� 3

2� 0
=

33:4� 3

2
= 15:2 m/sec:

(b) Since f 0(t) = �9:8t+ 25, we have

Instantaneous velocity = f0(2) = �9:8(2) + 25 = 5:4 m/sec:

(c) Acceleration is given f 00(t) = �9:8. The acceleration at t = 2 (and all other times) is the acceleration due to gravity,
which is �9:8 m/sec2.

(d) We can use a graph of height against time to estimate the maximum height of the tomato. See Figure 3.4. Alternately,
we can find the answer analytically. The maximum height occurs when the velocity is zero and v(t) = �9:8t+25 = 0
when t = 2:6 sec. At this time the tomato is at a height of f(2:6) = 34:9. The maximum height is 34:9 meters.

2:6 5:2

34:9

t (sec)

height (m)

Figure 3.4

(e) We see in Figure 3.4 that the tomato hits ground at about t = 5:2 seconds. Alternately, we can find the answer
analytically. The tomato hits the ground when

f(t) = �4:9t2 + 25t+ 3 = 0:
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We solve for t using the quadratic formula:

t =
�25�

p
(25)2 � 4(�4:9)(3)
2(�4:9)

t =
�25�p683:8

�9:8
t = �0:12 and t = 5:2:

We use the positive values, so the tomato hits the ground at t = 5:2 seconds.

58.
dF

dr
= �2GMm

r3
.

59. (a) T = 2�

r
l

g
=

2�p
g

�
l
1
2

�
, so

dT

dl
=

2�p
g

�
1

2
l�

1
2

�
=

�p
gl

.

(b) Since
dT

dl
is positive, the period T increases as the length l increases.

60. (a) A = �r2
dA
dr

= 2�r:
(b) This is the formula for the circumference of a circle.
(c) A0(r) � A(r+h)�A(r)

h
for small h. When h > 0, the numerator of the difference quotient denotes the area of the

region contained between the inner circle (radius r) and the outer circle (radius r + h). See figure below. As h
approaches 0, this area can be approximated by the product of the circumference of the inner circle and the “width”
of the region, i.e., h. Dividing this by the denominator, h, we get A0 = the circumference of the circle with radius r.

r

� h

We can also think about the derivative ofA as the rate of change of area for a small change in radius. If the radius
increases by a tiny amount, the area will increase by a thin ring whose area is simply the circumference at that radius
times the small amount. To get the rate of change, we divide by the small amount and obtain the circumference.

61. V = 4
3
�r3. Differentiating gives dV

dr
= 4�r2 = surface area of a sphere:

The difference quotient V (r+h)�V (r)
h

is the volume between two spheres divided by the change in radius. Further-
more, when h is very small, the difference between volumes, V (r + h) � V (r), is like a coating of paint of depth h
applied to the surface of the sphere. The volume of the paint is about h � (Surface Area) for small h: dividing by h gives
back the surface area.

Thinking about the derivative as the rate of change of the function for a small change in the variable gives another
way of seeing the result. If you increase the radius of a sphere a small amount, the volume increases by a very thin layer
whose volume is the surface area at that radius multiplied by that small amount.

62. (a)

d(x�1)

dx
= lim

h!0

(x+ h)�1 � x�1

h
= lim

h!0

1

h

h
1

x+ h
� 1

x

i
= lim

h!0

1

h

�
x� (x+ h)

x(x+ h)

�
= lim

h!0

1

h

�
�h

x(x+ h)

�
= lim

h!0

�1
x(x+ h)

=
�1
x2

= �1x�2:
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d(x�3)

dx
= lim

h!0

(x+ h)�3 � x�3

h

= lim
h!0

1

h

�
1

(x+ h)3
� 1

x3

�

= lim
h!0

1

h

�
x3 � (x+ h)3

x3(x+ h)3

�

= lim
h!0

1

h

�
x3 � (x3 + 3hx2 + 3h2x+ h3)

x3(x+ h)3

�

= lim
h!0

1

h

�
�3hx2 � 3xh2 � h3

x3(x+ h)3

�

= lim
h!0

�3x2 � 3xh� h2

x3(x+ h)3

=
�3x2
x6

= �3x�4:

(b) For clarity, let n = �k; where k is a positive integer. So xn = x�k:

d(x�k)

dx
= lim

h!0

(x+ h)�k � x�k

h

= lim
h!0

1

h

�
1

(x+ h)k
� 1

xk

�

= lim
h!0

1

h

�
xk � (x+ h)k

xk(x+ h)k

�

= lim
h!0

1

h

�
xk � xk � khxk�1 �

terms involving h2 and higher powers of hz }| {
: : : � hk

xk(x+ h)k

�

=
�kxk�1
xk(x)k

=
�k
xk+1

= �kx�(k+1) = �kx�k�1:

Solutions for Section 3.2

Exercises

1. f 0(x) = 2ex + 2x:

2. y0 = 10t+ 4et:

3. y0 = (ln 5)5x.

4. f 0(x) = (ln 2)2x + 2(ln 3)3x:

5. y0 = 10x+ (ln 2)2x.

6. f 0(x) = 12ex + (ln 11)11x.

7.
dy

dx
= 4(ln 10)10x � 3x2:

8.
dy

dx
= 3� 2(ln 4)4x.

9.
dy

dx
=

1

3
(ln 3)3x � 33

2
(x�

3
2 ).
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10. f 0(x) = exe�1:

11. f(x) = e1+x = e1 � ex. Then, since e1 is just a constant,
f 0(x) = e � ex = e1+x:

12. f(t) = et � e2. Then, since e2 is just a constant, f 0(t) = d
dt
(ete2) = e2 d

dt
et = e2et = et+2:

13. y = e�e�1 y0 =
d

d�
(e�e�1) = e�1

d

d�
e� = e�e�1 = e��1:

14. z0 = (ln 4)ex:

15. z0 = (ln 4)24x:

16. f 0(t) = (ln(ln 3))(ln 3)t:

17. f 0(x) = 3x2 + 3x ln 3

18.
dy

dx
= 5 � 5t ln 5 + 6 � 6t ln 6

19.
dy

dx
= �x ln�

20. h0(z) = (ln(ln 2))(ln 2)z .

21. f 0(x) = (ln�)�x.

22. This is the sum of an exponential function and a power function, so f0(x) = ln(�)�x + �x��1:

23. y0(x) = ax ln a+ axa�1.

24. f 0(x) = �2x(�
2�1) + (�2)x ln(�2)

25. f 0(z) = (2 ln 3)z + (ln 4)ez:

26. g0(x) =
d

dx
(2x� x�1=3 + 3x � e) = 2 +

1

3x
4
3

+ 3x ln 3:

27. y0 = 2x+ (ln 2)2x:

28. y0 = 1
2
x�

1
2 � ln 1

2
( 1
2
)x = 1

2
p
x
+ ln 2( 1

2
)x:

29. We can take the derivative of the sum x2 + 2x, but not the product.

30. Once again, this is a product of two functions, 2x and 1
x

, each of which we can take the derivative of; but we don’t know
how to take the derivative of the product.

31. Since y = e5ex, y0 = e5ex = ex+5:

32. y = e5x = (e5)x, so y0 = ln(e5) � (e5)x = 5e5x:

33. The exponent is x2, and we haven’t learned what to do about that yet.

34. f 0(z) = (ln
p
4)(
p
4)z = (ln 2)2z :

35. We can’t use our rules if the exponent is
p
�.

Problems

36.
dP

dt
= 35;000 � (ln 0:98)(0:98t):

At t = 23, this is 35;000(ln 0:98)(0:9823) � �444:3people
year

. (Note: the negative sign indicates that the population is
decreasing.)

37. Since P = 1 � (1:05)t, dP
dt

= ln(1:05)1:05t . When t = 10,

dP

dt
= (ln 1:05)(1:05)10 � $0:07947=year � 7:95c/=year:

38. We have f(t) = 5:3(1:018)t so f 0(t) = 5:3(ln 1:018)(1:018)t = 0:095(1:018)t . Therefore

f(0) = 5:3 billion people

and
f 0(0) = 0:095 billion people per year.
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In 1990, the population of the world was 5:3 billion people and was increasing at a rate of 0:095 billion people per year.
We also have

f(30) = 5:3(1:018)30 = 9:1 billion people,

and
f 0(30) = 0:095(1:018)30 = 0:16 billion people per year.

In the year 2020, this model predicts that the population of the world will be 9:1 billion people and will be increasing at
a rate of 0:16 billion people per year.

39.
dV

dt
= 75(1:35)t ln 1:35 � 22:5(1:35)t .

40. (a) V (4) = 25(0:85)4 = 25(0:522) = 13;050. Thus the value of the car after 4 years is $13;050.
(b) We have a function of the form f(t) = Cat. We know that such functions have a derivative of the form (C ln a) � at.

Thus, V 0(t) = 25(0:85)t �ln 0:85 = �4:063(0:85)t . The units would be the change in value (in thousands of dollars)
with respect to time (in years), or thousands of dollars/year.

(c) V 0(4) = �4:063(0:85)4 = �4:063(0:522) = �2:121. This means that at the end of the fourth year, the value of
the car is decreasing by $2121 per year.

(d) V (t) is a positive decreasing function, so that the value of the automobile is positive and decreasing. V 0(t) is a
negative function whose magnitude is decreasing, meaning the value of the automobile is always dropping, but the
yearly loss of value is less as time goes on. The graphs of V (t) and V 0(t) confirm that the value of the car decreases
with time. What they do not take into account are the costs associated with owning the vehicle. At some time, t, it
is likely that the costs of owning the vehicle will outweigh its value. At that time, it may no longer be worthwhile to
keep the car.

41. (a) The rate of change of the population is P 0(t). If P 0(t) is proportional to P (t), we have

P 0(t) = kP (t):

(b) If P (t) = Aekt, then P 0(t) = kAekt = kP (t).

42. (a) f(x) = 1 � ex crosses the x-axis where 0 = 1 � ex, which happens when ex = 1, so x = 0. Since f 0(x) = �ex,
f 0(0) = �e0 = �1.

(b) y = �x
(c) The negative of the reciprocal of �1 is 1, so the equation of the normal line is y = x.

43. Since y = 2x, y0 = (ln 2)2x. At (0; 1), the tangent line has slope ln 2 so its equation is y = (ln 2)x+ 1. At c, y = 0, so
0 = (ln 2)c+ 1, thus c = � 1

ln 2
.

44.

g(x) = ax2 + bx+ c

g0(x) = 2ax+ b

g00(x) = 2a

f(x) = ex

f 0(x) = ex

f 00(x) = ex

So, using g00(0) = f 00(0), etc., we have 2a = 1, b = 1, and c = 1, and thus g(x) = 1
2
x2 + x+ 1, as shown in the

figure below.

ex

1
2
x2 + x+ 1

x

The two functions do look very much alike near x = 0. They both increase for large values of x, but ex increases
much more quickly. For very negative values of x, the quadratic goes to1whereas the exponential goes to 0. By choosing
a function whose first few derivatives agreed with the exponential when x = 0, we got a function which looks like the
exponential for x-values near 0.
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45. The derivative of ex is d
dx

(ex) = ex. Thus the tangent line at x = 0, has slope e0 = 1, and the tangent line is y = x+ 1.
A function which is always concave up will always stay above any of its tangent lines. Thus ex � x + 1 for all x, as
shown in the figure below.

x

y

(0; 1)

y = x+ 1
y = ex

46. The equation 2x = 2x has solutions x = 1 and x = 2. (Check this by substituting these values into the equation). The
graph below suggests that these are the only solutions, but how can we be sure?

Let’s look at the slope of the curve f(x) = 2x, which is f 0(x) = (ln 2)2x � (0:693)2x , and the slope of the line
g(x) = 2x which is 2. At x = 1, the slope of f(x) is less than 2; at x = 2, the slope of f(x) is more than 2. Since the
slope of f(x) is always increasing, there can be no other point of intersection. (If there were another point of intersection,
the graph f would have to “turn around”.)

Here’s another way of seeing this. Suppose g(x) represents the position of a car going a steady 2 mph, while f(x)
represents a car which starts ahead of g (because the graph of f is above g) and is initially going slower than g. The car f
is first overtaken by g. All the while, however, f is speeding up until eventually it overtakes g again. Notice that the two
cars will only meet twice (corresponding to the two intersections of the curve): once when g overtakes f and once when
f overtakes g.

(2; 4)

(1; 2)

y = 2x

y = 2x

47. For x = 0, we have y = a0 = 1 and y = 1 + 0 = 1, so both curves go through the point (0; 1) for all values of a.
Differentiating gives

d(ax)

dx

����
x=0

= ax lnajx=0 = a0 ln a = lna

d(1 + x)

dx

����
x=0

= 1:

The graphs are tangent at x = 0 if
lna = 1 so a = e:

Solutions for Section 3.3

Exercises

1. By the product rule, f 0(x) = 2x(x3 + 5) + x2(3x2) = 2x4 + 3x4 + 10x = 5x4 + 10x: Alternatively, f 0(x) =
(x5 + 5x2)0 = 5x4 + 10x: The two answers should, and do, match.

2. Using the product rule,

f 0(x) = (ln 2)2x3x + (ln 3)2x3x = (ln 2 + ln 3)(2x � 3x) = ln(2 � 3)(2 � 3)x = (ln 6)6x

or, since 2x � 3x = (2 � 3)x = 6x,
f 0(x) = (6x)0 = (ln 6)(6x):

The two answers should, and do, match.

3. f 0(x) = x � ex + ex � 1 = ex(x+ 1):

4. y0 = 2x + x(ln 2)2x = 2x(1 + x ln 2):
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5. y0 = 1
2
p
x
2x +

p
x(ln 2)2x:

6. f 0(x) = (x2 � x
1
2 ) � 3x(ln 3) + 3x

�
2x� 1

2
x�

1
2

�
= 3x

�
(ln 3)(x2 � x

1
2 ) +

�
2x� 1

2
p
x

��
:

7. It is easier to do this by multiplying it out first, rather than using the product rule first: z = s4 � s; z0 = 4s3 � 1:

8.
dy

dt
= 2tet + (t2 + 3)et = et(t2 + 2t+ 3).

9. y0 = (3t2 � 14t)et + (t3 � 7t2 + 1)et = (t3 � 4t2 � 14t+ 1)et:

10. f 0(x) =
ex � 1� x � ex

(ex)2
=
ex(1� x)

(ex)2
=

1� x

ex
:

11. g0(x) =
50xex � 25x2ex

e2x
=

50x� 25x2

ex
.

12. g0(w) =
3:2w2:2(5w)� (ln 5)(w3:2)5w

52w
=

3:2w2:2 � w3:2(ln 5)

5w
.

13. q0(r) =
3(5r + 2)� 3r(5)

(5r + 2)2
=

15r + 6� 15r

(5r + 2)2
=

6

(5r + 2)2

14. g0(t) =
(t+ 4) � (t� 4)

(t+ 4)2
=

8

(t+ 4)2
.

15.
dz

dt
=

3(5t+ 2)� (3t+ 1)5

(5t+ 2)2
=

15t+ 6� 15t� 5

(5t+ 2)2
=

1

(5t+ 2)2
.

16. z0 =
(2t+ 5)(t+ 3)� (t2 + 5t+ 2)

(t+ 3)2
=
t2 + 6t+ 13

(t+ 3)2
:

17. Using the quotient rule gives
dz

dt
=

(2t+ 3)(t+ 1)� (t2 + 3t+ 1)

(t+ 1)2
or

dz

dt
=
t2 + 2t+ 2

(t+ 1)2
:

18. Divide and then differentiate

f(x) = x+
3

x

f 0(x) = 1� 3

x2
:

19. w = y2 � 6y + 7: w0 = 2y � 6; y 6= 0:

20. y0 =
1

2
p
t
(t2 + 1)�pt(2t)

(t2 + 1)2
:

21.
d

dz

�
z2 + 1p

z

�
=

d

dz
(z

3
2 + z�

1
2 ) =

3

2
z
1
2 � 1

2
z�

3
2 =

p
z

2
(3� z�2).

22. g0(t) = �4(3 +
p
t)�2

�
1

2
t�1=2

�
=

�2p
t(3 +

p
t)2

23. h0(r) =
d

dr

�
r2

2r + 1

�
=

(2r)(2r + 1)� 2r2

(2r + 1)2
=

2r(r + 1)

(2r + 1)2
:

24. Notice that you can cancel a z out of the numerator and denominator to get

f(z) =
3z

5z + 7
; z 6= 0

Then

f 0(z) =
(5z + 7)3 � 3z(5)

(5z + 7)2

=
15z + 21� 15z

(5z + 7)2

=
21

(5z + 7)2
; z 6= 0:

[If you used the quotient rule correctly without canceling the z out first, your answer should simplify to this one, but
it is usually a good idea to simplify as much as possible before differentiating.]
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25. w0(x) =
17ex(2x)� (ln 2)(17ex)2x

22x
=

17ex(2x)(1� ln 2)

22x
=

17ex(1� ln 2)

2x
.

26. h0(p) =
2p(3 + 2p2)� 4p(1 + p2)

(3 + 2p2)2
=

6p+ 4p3 � 4p� 4p3

(3 + 2p2)2
=

2p

(3 + 2p2)2
.

27.

f 0(x) =
(2 + 3x+ 4x2)(1)� (1 + x)(3 + 8x)

(2 + 3x+ 4x2)2

=
2 + 3x+ 4x2 � 3� 11x� 8x2

(2 + 3x+ 4x2)2

=
�4x2 � 8x� 1

(2 + 3x+ 4x2)2
:

28. We use the quotient rule. We have

f 0(x) =
(cx+ k)(a)� (ax+ b)(c)

(cx+ k)2
=
acx+ ak � acx� bc

(cx+ k)2
=

ak � bc

(cx+ k)2
:

29. w0 = (3t2 + 5)(t2 � 7t+ 2) + (t3 + 5t)(2t� 7):

Problems

30.
f 0(x) = 3(2x� 5) + 2(3x+ 8) = 12x+ 1

f 00(x) = 12:

31. Using the product rule, we have

f 0(x) = e�x � xe�x

f 00(x) = �e�x � e�x + xe�x = e�x(x� 2):

Since e�x > 0, for all x, we have f 00(x) < 0 if x� 2 < 0, that is, x < 2.

32. Using the quotient rule, we have

g0(x) =
0� 1(2x)

(x2 + 1)2
=

�2x
(x2 + 1)2

g00(x) =
�2(x2 + 1)2 + 2x(4x3 + 4x)

(x2 + 1)4

=
�2(x2 + 1)2 + 8x2(x2 + 1)

(x2 + 1)4

=
�2(x2 + 1) + 8x2

(x2 + 1)3

=
2(3x2 � 1)

(x2 + 1)3
:

Since (x2 + 1)3 > 0 for all x, we have g00(x) < 0 if (3x2 � 1) < 0, or when

3x2 < 1

� 1p
3
< x <

1p
3
:

33. Since f(0) = �5=1 = �5, the tangent line passes through the point (0;�5), so its vertical intercept is �5. To find the
slope of the tangent line, we find the derivative of f(x) using the quotient rule:

f 0(x) =
(x+ 1) � 2� (2x� 5) � 1

(x+ 1)2
=

7

(x+ 1)2
:

At x = 0, the slope of the tangent line is m = f 0(0) = 7. The equation of the tangent line is y = 7x� 5.
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34.

f(t) =
1

et

f 0(t) =
et � 0� et � 1

(et)2

=
�1
et

= �e�t:

35. f(x) = ex � ex
f 0(x) = ex � ex + ex � ex = 2e2x:

36.
f(x) = exe2x

f 0(x) = ex(e2x)0 + (ex)0e2x

= 2exe2x + exe2x (from Problem 35)

= 3e3x:

37. Since d
dx
e2x = 2e2x and d

dx
e3x = 3e3x, we might guess that d

dx
e4x = 4e4x.

38. (a) Although the answer you would get by using the quotient rule is equivalent, the answer looks simpler in this case if
you just use the product rule:

d

dx

�
ex

x

�
=

d

dx

�
ex � 1

x

�
=

ex

x
� ex

x2

d

dx

�
ex

x2

�
=

d

dx

�
ex � 1

x2

�
=

ex

x2
� 2ex

x3

d

dx

�
ex

x3

�
=

d

dx

�
ex � 1

x3

�
=

ex

x3
� 3ex

x4
:

(b)
d

dx

ex

xn
=

ex

xn
� nex

xn+1:
39.

d(x2)

dx
=

d

dx
(x � x)

= x
d(x)

dx
+ x

d(x)

dx
= 2x:

d(x3)

dx
=

d

dx
(x2 � x)

= x2
d(x)

dx
+ x

d(x2)

dx

= x2
d(x)

dx
+ x

�
x
d(x)

dx
+ x

d(x)

dx

�
= x2

d(x)

dx
+ x2

d(x)

dx
+ x2

d(x)

dx

= 3x2:
40. Since

x1=2 � x1=2 = x;

we differentiate to obtain
d

dx
(x1=2) � x1=2 + x1=2 � d

dx
(x1=2) = 1:

Now solve for d(x1=2)=dx:

2x1=2
d

dx
(x1=2) = 1

d

dx
(x1=2) =

1

2x1=2
:
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41. (a) We have h0(2) = f 0(2) + g0(2) = 5� 2 = 3.
(b) We have h0(2) = f 0(2)g(2) + f(2)g0(2) = 5(4) + 3(�2) = 14.

(c) We have h0(2) =
f 0(2)g(2)� f(2)g0(2)

(g(2))2
=

5(4)� 3(�2)
42

=
26

16
=

13

8
.

42. (a) G0(z) = F 0(z)H(z) +H 0(z)F (z), so
G0(3) = F 0(3)H(3) +H 0(3)F (3) = 4 � 1 + 3 � 5 = 19.

(b) G0(w) =
F 0(w)H(w)�H 0(w)F (w)

[H(w)]2
; so G0(3) =

4(1) � 3(5)

12
= �11.

43. f 0(x) = 10x9ex + x10ex is of the form g0h+ h0g, where

g(x) = x10; g0(x) = 10x9

and
h(x) = ex; h0(x) = ex:

Therefore, using the product rule, let f = g � h, with g(x) = x10 and h(x) = ex. Thus

f(x) = x10ex:

44. (a) f(140) = 15;000 says that 15;000 skateboards are sold when the cost is $140 per board.
f 0(140) = �100 means that if the price is increased from $140, roughly speaking, every dollar of increase will
decrease the total sales by 100 boards.

(b)
dR

dp
=

d

dp
(p � q) = d

dp
(p � f(p)) = f(p) + pf 0(p).

So,

dR

dp

����
p=140

= f(140) + 140f 0(140)

= 15;000 + 140(�100) = 1000:

(c) From (b) we see that
dR

dp

����
p=140

= 1000 > 0. This means that the revenue will increase by about $1000 if the price

is raised by $1.

45. We want dR=dr1. Solving for R:

1

R
=

1

r1
+

1

r2
=
r2 + r1
r1r2

; which gives R =
r1r2

r2 + r1
:

So, thinking of r2 as a constant and using the quotient rule,

dR

dr1
=
r2(r2 + r1)� r1r2(1)

(r2 + r1)2
=

r22
(r1 + r2)2

:

46. (a) If the museum sells the painting and invests the proceeds P (t) at time t, then t years have elapsed since 2000, and
the time span up to 2020 is 20� t. This is how long the proceeds P (t) are earning interest in the bank. Each year the
money is in the bank it earns 5% interest, which means the amount in the bank is multiplied by a factor of 1:05. So,
at the end of (20� t) years, the balance is given by

B(t) = P (t)(1 + 0:05)20�t = P (t)(1:05)20�t:

(b)

B(t) = P (t)(1:05)20(1:05)�t = (1:05)20
P (t)

(1:05)t
:

(c) By the quotient rule,

B0(t) = (1:05)20
�
P 0(t)(1:05)t � P (t)(1:05)t ln 1:05

(1:05)2t

�
:
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So,

B0(10) = (1:05)20
�
5000(1:05)10 � 150;000(1:05)10 ln 1:05

(1:05)20

�
= (1:05)10(5000 � 150;000 ln 1:05)

� �3776:63:

47. Note first that f(v) is in liters
km

, and v is in km
hour

:

(a) g(v) = 1
f(v)

. (This is in km
liter

.) Differentiating gives

g0(v) =
�f 0(v)
(f(v))2

:

So,

g(80) =
1

0:05
= 20 km

liter
:

g0(80) =
�0:0005
(0:05)2

= �1

5
km
liter

for each 1km
hr

increase in speed:

(b) h(v) = v � f(v). (This is in km
hour

� liters
km

= liters
hour

.) Differentiating gives

h0(v) = f(v) + v � f 0(v);

so
h(80) = 80(0:05) = 4 liters

hr
:

h0(80) = 0:05 + 80(0:0005) = 0:09 liters
hr

for each 1km
hr

increase in speed:

(c) Part (a) tells us that at 80 km/hr, the car can go 20 km on 1 liter. Since the first derivative evaluated at this velocity
is negative, this implies that as velocity increases, fuel efficiency decreases, i.e., at higher velocities the car will not
go as far on 1 liter of gas. Part (b) tells us that at 80 km/hr, the car uses 4 liters in an hour. Since the first derivative
evaluated at this velocity is positive, this means that at higher velocities, the car will use more gas per hour.

48. Assume for g(x) 6= f(x), g0(x) = g(x) and g(0) = 1. Then for

h(x) =
g(x)

ex

h0(x) =
g0(x)ex � g(x)ex

(ex)2
=
ex(g0(x)� g(x))

(ex)2
=
g0(x)� g(x)

ex
:

But, since g(x) = g0(x), h0(x) = 0, so h(x) is constant. Thus, the ratio of g(x) to ex is constant. Since
g(0)

e0
=

1

1
= 1,

g(x)

ex
must equal 1 for all x. Thus g(x) = ex = f(x) for all x, so f and g are the same function.

49. (a) f 0(x) = (x� 2) + (x� 1):
(b) Think of f as the product of two factors, with the first as (x� 1)(x� 2): (The reason for this is that we have already

differentiated (x� 1)(x� 2)).
f(x) = [(x� 1)(x� 2)](x� 3):

Now f 0(x) = [(x� 1)(x� 2)]0(x� 3) + [(x� 1)(x� 2)](x� 3)0

Using the result of a):

f 0(x) = [(x� 2) + (x� 1)](x� 3) + [(x� 1)(x� 2)] � 1
= (x� 2)(x� 3) + (x� 1)(x� 3) + (x� 1)(x� 2):

(c) Because we have already differentiated (x� 1)(x� 2)(x� 3); rewrite f as the product of two factors, the first being
(x� 1)(x� 2)(x� 3):

f(x) = [(x� 1)(x� 2)(x� 3)](x� 4)

Now f 0(x) = [(x� 1)(x� 2)(x� 3)]0(x� 4) + [(x� 1)(x� 2)(x� 3)](x� 4)0:
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f 0(x) = [(x� 2)(x� 3) + (x� 1)(x� 3) + (x� 1)(x� 2)](x� 4)

+[(x� 1)(x� 2)(x� 3)] � 1
= (x� 2)(x� 3)(x� 4) + (x� 1)(x� 3)(x� 4)

+(x� 1)(x� 2)(x� 4) + (x� 1)(x� 2)(x� 3):

From the solutions above, we can observe that when f is a product, its derivative is obtained by differentiating each
factor in turn (leaving the other factors alone), and adding the results.

50. From the answer to Problem 49, we find that

f 0(x) = (x� r1)(x� r2) � � � (x� rn�1) � 1
+(x� r1)(x� r2) � � � (x� rn�2) � 1 � (x� rn)

+(x� r1)(x� r2) � � � (x� rn�3) � 1 � (x� rn�1)(x� rn)

+ � � �+ 1 � (x� r2)(x� r3) � � � (x� rn)

= f(x)
�

1

x� r1
+

1

x� r2
+ � � �+ 1

x� rn

�
:

51. (a) We can approximate d
dx

[F (x)G(x)H(x)] using the large rectangular solids by which our original cube is increased:

Volume of whole � volume of original solid = change in volume.

F (x+ h)G(x+ h)H(x+ h)� F (x)G(x)H(x) = change in volume.

G0(x)h
G(x)

F (x)

F 0(x)h

H(x)

H 0(x)h

The volume of this slab is F 0(x)G(x)H(x)h

As in the book, we will ignore the smaller regions which are added (the long, thin rectangular boxes and the
small cube in the corner.) This can be justified by recognizing that as h ! 0, these volumes will shrink much faster
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than the volumes of the big slabs and will therefore be insignificant. (Note that these smaller regions have an h2 or
h3 in the formulas of their volumes.) Then we can approximate the change in volume above by:

F (x+ h)G(x+ h)H(x+ h)� F (x)G(x)H(x) � F 0(x)G(x)H(x)h (top slab)

+ F (x)G0(x)H(x)h (front slab)

+ F (x)G(x)H 0(x)h (other slab).

Dividing by h gives

F (x+ h)G(x+ h)H(x+ h)� F (x)G(x)H(x)

h

� F 0(x)G(x)H(x) + F (x)G0(x)H(x) + F (x)G(x)H 0(x):

Letting h! 0
(FGH)0 = F 0GH + FG0H + FGH 0:

(b) Verifying,

d

dx
[(F (x) �G(x)) �H(x)] = (F �G)0(H) + (F � G)(H)0

= [F 0G+ FG0]H + FGH 0

= F 0GH + FG0H + FGH 0

as before.
(c) From the answer to (b), we observe that the derivative of a product is obtained by differentiating each factor in turn

(leaving the other factors alone), and adding the results. So, in general,

(f1 � f2 � f3 � : : : � fn)0 = f 01f2f3 � � � fn + f1f
0
2f3 � � � fn + � � �+ f1 � � � fn�1f 0n:

52. (a) Since x = a is a double zero of a polynomial P (x), we can write P (x) = (x� a)2Q(x), so P (a) = 0. Using the
product rule, we have

P 0(x) = 2(x� a)Q(x) + (x� a)2Q0(x):

Substituting in x = a, we see P 0(a) = 0 also.
(b) Since P (a) = 0, we know x = a is a zero of P , so that x� a is a factor of P and we can write

P (x) = (x� a)Q(x);

where Q is some polynomial. Differentiating this expression for P using the product rule, we get

P 0(x) = Q(x) + (x� a)Q0(x):

Since we are told that P 0(a) = 0, we have

P 0(a) = Q(a) + (a� a)Q0(a) = 0

and so Q(a) = 0. Therefore x = a is a zero of Q, so again we can write

Q(x) = (x� a)R(x);

where R is some other polynomial. As a result,

P (x) = (x� a)Q(x) = (x� a)2R(x);

so that x = a is a double zero of P .

Solutions for Section 3.4

Exercises

1. f 0(x) = 99(x+ 1)98 � 1 = 99(x+ 1)98:

2. f 0(x) =
1

2
(1� x2)�

1
2 (�2x) = �xp

1� x2
:

3. w0 = 100(t2 + 1)99(2t) = 200t(t2 + 1)99:
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4. w0 = 100(t3 + 1)99(3t2) = 300t2(t3 + 1)99:

5. w0 = 100(
p
t+ 1)99

�
1

2
p
t

�
= 50p

t
(
p
t+ 1)99 .

6. f 0(t) = (e3t)(3) = 3e3t:

7. h0(w) = 5(w4 � 2w)4(4w3 � 2)

8. We can write w(r) = (r4 + 1)1=2 , so

w0(r) =
1

2
(r4 + 1)�1=2(4r3) =

2r3p
r4 + 1

:

9. g(x) = �e�x.

10. f(�) = (2�1)� = ( 1
2
)� so f 0(�) = (ln 1

2
)2�� .

11. y0 = (ln�)�(x+2).

12. g0(x) = 2(ln 3)3(2x+7).

13. k0(x) = 4(x3 + ex)3(3x2 + ex).

14. f 0(x) = 2e2x[x2 + 5x] + e2x[2x+ (ln 5)5x] = e2x[2x2 + 2x+ (ln 5 + 2)5x].

15. Using the product rule gives v0(t) = 2te�ct � ce�ctt2 = (2t� ct2)e�ct:

16. p0(t) = 4e4t+2.

17.
d

dt
e(1+3t)2 = e(1+3t)2 d

dt
(1 + 3t)2 = e(1+3t)2 � 2(1 + 3t) � 3 = 6(1 + 3t)e(1+3t)2 :

18. z0(x) =
(ln 2)2x

3 3
p

(2x + 5)2
.

19. z0 = 5 � ln 2 � 25t�3:
20. w0 =

3

2

p
x2 � 5x[2x(5x) + (ln 5)(x2)(5x)] =

3

2
x2
p
53x(2 + x ln 5).

21. y0 = 3
2
e
3
2
w:

22. y0 = �4e�4t:
23. y0 =

3s2

2
p
s3 + 1

:

24. w0 =
1

2
p
s
e
p
s:

25. y0 = 1 � e�t2 + te�t
2

(�2t)
26. f 0(z) =

1

2
p
z
e�z �pze�z:

27. We can write this as f(z) =
p
ze�z , in which case it is the same as problem 26. So f0(z) =

1

2
p
z
e�z �pze�z:

28. y0 =
2z

2
p
z
� (
p
z)(ln 2)(2z)

22z
=

1� 2z ln 2

2z+1
p
z

.

29. f 0(t) = 1 � e5�2t + te5�2t(�2) = e5�2t(1� 2t):

30. y0 = 2

�
x2 + 2

3

��
2x

3

�
=

4

9
x
�
x2 + 2

�
31. We can write h(x) =

�
x2 + 9

x+ 3

�1=2

, so

h0(x) =
1

2

�
x2 + 9

x+ 3

��1=2 �
2x(x+ 3)� (x2 + 9)

(x+ 3)2

�
=

1

2

r
x+ 3

x2 + 9

�
x2 + 6x� 9

(x+ 3)2

�
:

32.
dy

dx
=

2e2x(x2 + 1)� e2x(2x)

(x2 + 1)2
=

2e2x(x2 + 1� x)

(x2 + 1)2

33. y0 =
�(3e3x + 2x)

(e3x + x2)2
.
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34. h0(z) =
�8b4z

(a+ z2)5

35. h0(x) = (ln 2)(3e3x)2e
3x

= 3e3x2e
3x

ln 2.

36. f 0(z) = �2(ez + 1)�3 � ez =
�2ez

(ez + 1)3
:

37. f 0(�) = �1(1 + e��)�2(e��)(�1) = e��

(1 + e��)2
:

38. f 0(x) = 6(e5x)(5) + (e�x
2

)(�2x) = 30e5x � 2xe�x
2

:

39.
f 0(w) = (ew

2

)(10w) + (5w2 + 3)(ew
2

)(2w)

= 2wew
2

(5 + 5w2 + 3)

= 2wew
2

(5w2 + 8):

40. w0 = (2t+ 3)(1� e�2t) + (t2 + 3t)(2e�2t):

41. f(y) =
�
10(5�y)

� 1
2 = 10

5
2
� 1

2
y

f 0(y) = (ln 10)
�
10

5
2
� 1

2
y
��

�1

2

�
= �1

2
(ln 10)(10

5
2
� 1

2
y).

42. f 0(x) = e�(x�1)
2 � (�2)(x� 1):

43. f 0(y) = ee
(y2)

h
(ey

2

)(2y)
i
= 2ye[e

(y2)+y2]:

44. f 0(t) = 2(e�2e
2t

)(�2e2t)2 = �8(e�2e2t+2t):

45. Since a and b are constants, we have f0(t) = aebt(b) = abebt.

46. Since a and b are constants, we have f0(x) = 3(ax2 + b)2(2ax) = 6ax(ax2 + b)2.

47. We use the product rule. We have

f 0(x) = (ax)(e�bx(�b)) + (a)(e�bx) = �abxe�bx + ae�bx:

48. f 0(x) = 6x(ex � 4) + (3x2 + �)ex = 6xex � 24x+ 3x2ex + �ex:

Problems

49. We have f(2) = (2� 1)3 = 1, so (2; 1) is a point on the tangent line. Since f 0(x) = 3(x� 1)2, the slope of the tangent
line is

m = f 0(2) = 3(2� 1)2 = 3:

The equation of the line is
y � 1 = 3(x� 2) or y = 3x� 5:

50.

f(x) = 6e5x + e�x
2

f(1) = 6e5 + e�1
f 0(x) = 30e5x � 2xe�x

2

f 0(1) = 30e5 � 2(1)e�1

y � y1 = m(x� x1)

y � (6e5 + e�1) = (30e5 � 2e�1)(x� 1)

y � (6e5 + e�1) = (30e5 � 2e�1)x� (30e5 � 2e�1)

y = (30e5 � 2e�1)x� 30e5 + 2e�1 + 6e5 + e�1

� 4451:66x � 3560:81:
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51. The graph is concave down when f00(x) < 0.

f 0(x) = e�x
2

(�2x)
f 00(x) =

h
e�x

2

(�2x)
i
(�2x) + e�x

2

(�2)

=
4x2

ex2
� 2

ex2

=
4x2 � 2

ex2
< 0

The graph is concave down when 4x2 < 2. This occurs when x2 < 1
2

, or � 1p
2
< x < 1p

2
.

52.

f 0(x) = [10(2x + 1)9(2)][(3x� 1)7] + [(2x+ 1)10][7(3x� 1)6(3)]

= (2x+ 1)9(3x� 1)6[20(3x� 1) + 21(2x+ 1)]

= [(2x+ 1)9(3x� 1)6](102x+ 1)

f 00(x) = [9(2x+ 1)8(2)(3x� 1)6 + (2x+ 1)9(6)(3x� 1)5(3)](102x+ 1)

+(2x+ 1)9(3x� 1)6(102):

53. (a) H(x) = F (G(x))
H(4) = F (G(4)) = F (2) = 1

(b) H(x) = F (G(x))
H 0(x) = F 0(G(x)) �G0(x)
H 0(4) = F 0(G(4)) �G0(4) = F 0(2) � 6 = 5 � 6 = 30

(c) H(x) = G(F (x))
H(4) = G(F (4)) = G(3) = 4

(d) H(x) = G(F (x))
H 0(x) = G0(F (x)) � F 0(x)
H 0(4) = G0(F (4)) � F 0(4) = G0(3) � 7 = 8 � 7 = 56

(e) H(x) = F (x)

G(x)

H 0(x) = G(x)�F 0(x)�F (x)�G0(x)
[G(x)]2

H 0(4) = G(4)�F 0(4)�F (4)�G0(4)
[G(4)]2

= 2�7�3�6
22

= 14�18
4

= �4
4

= �1
54. (a) Differentiating g(x) =

p
f(x) = (f(x))1=2, we have

g0(x) =
1

2
(f(x))�1=2 � f 0(x) = f 0(x)

2
p
f(x)

g0(1) =
f 0(1)

2
p
f(1)

=
3

2
p
4
=

3

4
:

(b) Differentiating h(x) = f(
p
x), we have

h0(x) = f 0(
p
x) � 1

2
p
x

h0(1) = f 0(
p
1) � 1

2
p
1
=
f 0(1)

2
=

3

2
:

55. (a) Since h0(x) = f 0(g(x)) � g0(x), we have

h0(2) = f 0(g(2)) � g0(2) = f 0(5) � g0(2) = �
p
2:

(b) Since h0(x) = g0(f(x)) � f 0(x), we have

h0(2) = g0(f(2)) � f 0(2) = g0(5) � f 0(2) = 7e:

(c) We have h0(x) = f 0(f(x)) � f 0(x), so

h0(2) = f 0(f(2)) � f 0(2) = f 0(5) � f 0(2) = �e:
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56. (a) If
p(x) = k(2x);

then
p0(x) = k0(2x) � 2:

When x = 1
2

,

p0
�
1

2

�
= k0

�
2 � 1

2

�
(2) = 2 � 2 = 4:

(b) If
q(x) = k(x+ 1);

then
q0(x) = k0(x+ 1) � 1:

When x = 0,
q0(0) = k0(0 + 1)(1) = 2 � 1 = 2:

(c) If

r(x) = k
�
1

4
x
�
;

then

r0(x) = k0
�
1

4
x
�
� 1
4
:

When x = 4,

r0(4) = k0
�
1

4
4
�
1

4
= 2 � 1

4
=

1

2
:

57. Yes. To see why, simply plug x = 3
p
2t+ 5 into the expression 3x2

dx

dt
and evaluate it. To do this, first we calculate

dx

dt
.

By the chain rule,
dx

dt
=

d

dt
(2t+ 5)

1
3 =

2

3
(2t+ 5)�

2
3 =

2

3
[(2t + 5)

1
3 ]�2:

But since x = (2t+ 5)
1
3 , we have (by substitution)

dx

dt
=

2

3
x�2:

It follows that 3x2
dx

dt
= 3x2

�
2

3
x�2

�
= 2.

58. We see that m0(x) is nearly of the form f 0(g(x)) � g0(x) where

f(g) = eg and g(x) = x6;

but g0(x) is off by a multiple of 6. Therefore, using the chain rule, let

m(x) =
f(g(x))

6
=
e(x

6)

6
:

59. We can find the rate the balance changes by differentiatingB with respect to time:B0(t) = 5000e0:08t �0:08 = 400e0:08t .
CalculatingB0 at time t = 5, we haveB0(5) = $596:73/yr. In 5 years, the account is generating $597 per year of interest.

60. The concentration of the drug in the body after 4 hours is

f(4) = 27e�0:14(4) = 15:4 ng/ml:

The rate of change of the concentration is the derivative

f 0(t) = 27e�0:14t(�0:14) = �3:78e�0:14t:

At t = 4, the concentration is changing at a rate of

f 0(4) = �3:78e�0:14(4) = �2:16 ng/ml per hour.
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61. We have f(0) = 6 and f(10) = 6e0:013(10) = 6:833. The derivative of f(t) is

f 0(t) = 6e0:013t � 0:013 = 0:078e0:013t ;

and so f 0(0) = 0:078 and f 0(10) = 0:089.
These values tell us that in 1999 (at t = 0), the population of the world was 6 billion people and the population was

growing at a rate of 0:078 billion people per year. In the year 2009 (at t = 10), this model predicts that the population of
the world will be 6:833 billion people and growing at a rate of 0:089 billion people per year.

62. (a)

dQ

dt
=

d

dt
e�0:000121t

= �0:000121e�0:000121t :

(b)
10000 60000

�0:00002

�0:00004

�0:00006

�0:00008

�0:0001

�0:000121

t

Q

dQ

dt
= �0:000121e�0:000121t

63. (a)
dH

dt
=

d

dt
(40 + 30e�2t) = 30(�2)e�2t = �60e�2t:

(b) Since e�2t is always positive,
dH

dt
< 0; this makes sense because the temperature of the soda is decreasing.

(c) The magnitude of
dH

dt
is ���dH

dt

��� = ���60e�2t�� = 60e�2t � 60 =

���dH
dt t=0

��� ;
since e�2t � 1 for all t � 0 and e0 = 1. This is just saying that at the moment that the can of soda is put in the
refrigerator (at t = 0), the temperature difference between the soda and the inside of the refrigerator is the greatest,
so the temperature of the soda is dropping the quickest.

64. (a)
dB

dt
= P

�
1 +

r

100

�t
ln
�
1 +

r

100

�
: The expression

dB

dt
tells us how fast the amount of money in the bank is

changing with respect to time for fixed initial investment P and interest rate r.

(b)
dB

dr
= Pt

�
1 +

r

100

�t�1 1

100
: The expression

dB

dr
indicates how fast the amount of money changes with respect

to the interest rate r , assuming fixed initial investment P and time t.

65. The ripple’s area and radius are related by A(t) = �[r(t)]2. Taking derivatives and using the chain rule gives

dA

dt
= � � 2r dr

dt
:

We know that dr=dt = 10 cm/sec, so when r = 20 cm we have

dA

dt
= � � 2 � 20 � 10cm2=sec = 400�cm2=sec:
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66. (a)

dm

dv
=

d

dv

"
m0

�
1� v2

c2

��1=2#

= m0

�
�1

2

��
1� v2

c2

��3=2 �
�2v

c2

�
=

m0v

c2
1q�

1� v2

c2

�3 :
(b)

dm

dv
represents the rate of change of mass with respect to the speed v.

67. (a) For t < 0; I =
dQ

dt
= 0.

For t > 0; I =
dQ

dt
= � Q0

RC
e�t=RC .

(b) For t > 0, t! 0 (that is, as t! 0+),

I = � Q0

RC
e�t=RC ! � Q0

RC
:

Since I = 0 just to the left of t = 0 and I = �Q0=RC just to the right of t = 0, it is not possible to define I at
t = 0.

(c) Q is not differentiable at t = 0 because there is no tangent line at t = 0.

68. The time constant for Q is the time, TQ, such that Q = Q0=e. Thus, TQ satisfies

Q0

e
= Q0e

�TQ=RC :

Canceling Q0 and taking natural logs gives

e�TQ=RC =
1

e
= e�1

�TQ
RC

= �1
TQ = RC:

To find I = dQ=dt, differentiate Q:

I =
dQ

dt
=
�Q0

RC
e�t=RC :

Since the exponent of e is unchanged, so is the time constant. We know that the initial current is

I0 =
�Q0

RC
:

If TI is the time constant for I , we know

1

e

��Q0

RC

�
=
�Q0

RC
e�TI=RC :

Canceling �Q0=RC gives
1

e
= e�TI=RC :

This is the same equation as the one we solved for TQ, so

TI = RC:
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69. Recall that v = dx=dt. We want to find the acceleration, dv=dt, when x = 2. Differentiating the expression for v with
respect to t using the chain rule and substituting for v gives

dv

dt
=

d

dx
(x2 + 3x� 2) � dx

dt
= (2x+ 3)v = (2x+ 3)(x2 + 3x� 2):

Substituting x = 2 gives

Acceleration =
dv

dt

���
x=2

= (2(2) + 3)(22 + 3 � 2� 2) = 56 cm/sec2:

70. (a) The population is increasing if dP=dt > 0, that is, if

kP (L� P ) > 0:

Since P � 0 and k; L > 0, we must have P > 0 and L�P > 0 for this to be true. Thus, the population is increasing
if 0 < P < L.

The population is decreasing if dP=dt < 0, that is, if P > L.
The population remains constant if dP=dt = 0, so P = 0 or P = L.

(b) Differentiating with respect to t using the chain rule gives

d2P

dt2
=

d

dt
(kP (L� P )) =

d

dP
(kLP � kP 2) � dP

dt
= (kL� 2kP )(kP (L� P ))

= k2P (L� 2P )(L� P ):

71. Let f have a zero of multiplicity m at x = a so that

f(x) = (x� a)mh(x); h(a) 6= 0:

Differentiating this expression gives

f 0(x) = (x� a)mh0(x) +m(x� a)(m�1)h(x)

and both terms in the sum are zero when x = a so f0(a) = 0. Taking another derivative gives

f 00(x) = (x� a)mh00(x) + 2m(x� a)(m�1)h0(x) +m(m� 1)(x� a)(m�2)h(x):

Again, each term in the sum contains a factor of (x � a) to some positive power, so at x = a this will evaluate to 0.
Differentiating repeatedly, all derivatives will have positive integer powers of (x � a) until the mth and will therefore
vanish. However,

f (m)(a) = m!h(a) 6= 0:

Solutions for Section 3.5

Exercises

1.
Table 3.1
x cosx Difference Quotient � sinx

0 1:0 �0:0005 0:0

0:1 0:995 �0:10033 �0:099833

0:2 0:98007 �0:19916 �0:19867

0:3 0:95534 �0:296 �0:29552

0:4 0:92106 �0:38988 �0:38942

0:5 0:87758 �0:47986 �0:47943

0:6 0:82534 �0:56506 �0:56464
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2. r0(�) = cos � � sin �.

3. s0(�) = � sin � sin � + cos � cos � = cos2 � � sin2 � = cos 2�.

4. z0 = �4 sin(4�):
5. f 0(x) = cos(3x) � 3 = 3 cos(3x):

6.
d

dx
sin(2� 3x) = cos(2� 3x)

d

dx
(2� 3x) = �3 cos(2� 3x).

7. Using the chain rule gives R0(x) = 3� sin(�x):

8. g0(�) = 2 sin(2�) cos(2�) � 2� � = 4 sin(2�) cos(2�)� �

9. f 0(x) = (2x)(cosx) + x2(� sinx) = 2x cos x� x2 sinx.

10. w0 = et cos(et):

11. f 0(x) = (ecos x)(� sinx) = � sinxecosx:

12. f 0(y) = (cos y)esiny:

13. z0 = ecos � � �(sin �)ecos �:

14. Using the chain rule gives R0(�) = 3 cos(3�)esin(3�):

15. g0(�) =
cos(tan �)

cos2 �

16. w0(x) =
2x

cos2(x2)

17.
f(x) = (1� cosx)

1
2

f 0(x) =
1

2
(1� cos x)�

1
2 (�(� sinx))

=
sinx

2
p
1� cos x

:

18. f 0(x) = [� sin(sinx)](cosx):

19. f 0(x) =
cos x

cos2(sinx)
.

20. k0(x) = 3
2

p
sin(2x)(2 cos(2x)) = 3 cos(2x)

p
sin(2x).

21. f 0(x) = 2 � [sin(3x)] + 2x[cos(3x)] � 3 = 2 sin(3x) + 6x cos(3x)

22. y0 = e� sin(2�) + 2e� cos(2�):

23. f 0(x) = (e�2x)(�2)(sinx) + (e�2x)(cosx) = �2 sinx(e�2x) + (e�2x)(cosx) = e�2x[cos x� 2 sinx]:

24. z0 =
cos t

2
p
sin t

:

25. y0 = 5 sin4 � cos �:

26. g0(z) =
ez

cos2(ez)
:

27. z0 =
�3e�3�

cos2(e�3�)
:

28. w0 = (� cos �)e� sin �:

29. h0(t) = 1 � (cos t) + t(� sin t) + 1
cos2 t

= cos t� t sin t+ 1
cos2 t

:

30. f 0(�) = � sin�+ 3 cos�

31. k0(�) = (5 sin4 � cos�) cos3 �+ sin5 �(3 cos2 �(� sin�)) = 5 sin4 � cos4 �� 3 sin6 � cos2 �

32. t0(�) =
� sin � sin � � cos � cos �

sin2 �
= � (sin2 � + cos2 �)

sin2 �
= � 1

sin2 �
.

33. Using the power and quotient rules gives

f 0(x) =
1

2

�
1� sinx

1 � cosx

��1=2 �� cos x(1� cos x)� (1 � sin x) sinx

(1� cos x)2

�
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=
1

2

r
1� cos x

1 � sin x

�
� cos x(1� cosx)� (1� sinx) sinx

(1� cos x)2

�

=
1

2

r
1� cos x

1 � sin x

�
1� cos x� sinx

(1� cos x)2

�
:

34. The quotient rule gives G0(x) =
2 sin x cosx(cos2 x+ 1) + 2 sinx cos x(sin2 x+ 1)

(cos2 x+ 1)2

or, using sin2 x+ cos2 x = 1,

G0(x) =
6 sinx cosx

(cos2 x+ 1)2
:

35.
d

dy

�
y

cos y + a

�
=

cos y + a� y(� sin y)

(cos y + a)2
=

cos y + a+ y sin y

(cos y + a)2
.

36. h0(x) = (ln 2)2sin x cosx.

37. w0 = (ln 2)(22 sin x+e
x

)(2 cos x+ ex).

38. f 0(x) = 2 cos(2x) sin(3x) + 3 sin(2x) cos(3x):

39. f 0(�) = 2� sin � + �2 cos � + 2 cos � � 2� sin � � 2 cos � = �2 cos �.

40. f 0(x) = cos(cosx+ sin x)(cosx� sinx)

41. f 0(w) = �2 cosw sinw � sin(w2)(2w) = �2(cosw sinw +w sin(w2))

Problems

42. The pattern in the table below allows us to generalize and say that the (4n)th derivative of cos x is cosx, i.e.,

d4y

dx4
=

d8y

dx8
= � � � = d4ny

dx4n
= cos x:

Thus we can say that d48y=dx48 = cos x. From there we differentiate twice more to obtain d50y=dx50 = � cos x.

n 1 2 3 4 � � � 48 49 50

nth derivative � sin x � cosx sinx cosx cosx � sinx � cosx

43. We see that q0(x) is of the form
g(x) � f 0(x)� f(x) � g0(x)

(g(x))2
;

with f(x) = ex and g(x) = sinx. Therefore, using the quotient rule, let

q(x) =
f(x)

g(x)
=

ex

sinx
:

44. Since F 0(x) is of the form sin u, we can make an initial guess that

F (x) = cos(4x);

then
F 0(x) = �4 sin(4x)

so we’re off by a factor of �4. To fix this problem, we modify our guess by a factor of �4, so the next try is

F (x) = �(1=4) cos(4x);

which has
F 0(x) = sin(4x):
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45. We begin by taking the derivative of y = sin(x4) and evaluating at x = 10:

dy

dx
= cos(x4) � 4x3:

Evaluating cos(10;000) on a calculator (in radians) we see cos(10;000) < 0, so we know that dy=dx < 0, and therefore
the function is decreasing.
Next, we take the second derivative and evaluate it at x = 10;

d2y

dx2
= cos(x4) � (12x2)| {z }

negative

+4x3 � (� sin(x4))(4x3)| {z }
positive, but much
larger in magnitude

:

From this we can see that d2y=dx2 > 0, thus the graph is concave up.

46. (a) v(t) =
dy

dt
=

d

dt
(15 + sin(2�t)) = 2� cos(2�t):

(b)

1 2 3

14

15

16

y = 15 + sin 2�t

t

y

1 2 3

�2�

2�

v = 2� cos 2�t

t

v

47. (a) Differentiating gives
dy

dt
= �4:9�

6
sin

�
�

6
t
�
:

The derivative represents the rate of change of the depth of the water in feet/hour.
(b) The derivative, dy=dt, is zero where the tangent line to the curve y is horizontal. This occurs when dy=dt =

sin(�
6
t) = 0, or at t = 6, 12, 18 and 24 (6 am, noon, 6 pm, and midnight). When dy=dt = 0, the depth of the

water is no longer changing. Therefore, it has either just finished rising or just finished falling, and we know that the
harbor’s level is at a maximum or a minimum.

48. (a) Differentiating, we find

Rate of change of voltage
with time

=
dV

dt
= �120� � 156 sin(120�t)
= �18720� sin(120�t) volts per second:

(b) The rate of change of voltage with time is zero when sin(120�t) = 0. This occurs when 120�t equals any multiple
of �. For example, sin(120�t) = 0 when 120�t = �, or at t = 1=120 seconds. Since there are an infinite number of
multiples of �, there are many times when the rate of change dV=dt is zero.

(c) The maximum value of the rate of change is 18720� = 58810:6 volts/sec.

49. (a) When
p

k
m
t = �

2
the spring is farthest from the equilibrium position. This occurs at time t = �

2

p
m
k

v = A
p

k
m

cos
�p

k
m
t
�

, so the maximum velocity occurs when t = 0

a = �A k
m

sin
�p

k
m
t
�

, so the maximum acceleration occurs when
p

k
m
t = 3�

2
, which is at time t = 3�

2

p
m
k

(b) T = 2�p
k=m

= 2�
p

m
k

(c)
dT

dm
=

2�p
k
� 1
2
m� 1

2 =
�p
km

Since
dT

dm
> 0, an increase in the mass causes the period to increase.

50. The tangent lines to f(x) = sinx have slope d
dx

(sinx) = cosx. The tangent line at x = 0 has slope f 0(0) = cos 0 = 1
and goes through the point (0; 0). Consequently, its equation is y = g(x) = x. The approximate value of sin �

6
given by

this equation is then g(�
6
) = �

6
� 0:524.
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Similarly, the tangent line at x = �
3

has slope f 0(�
3
) = cos �

3
= 1

2
and goes through the point (�

3
;
p
3
2
). Con-

sequently, its equation is y = h(x) = 1
2
x + 3

p
3��
6

. The approximate value of sin �
6

given by this equation is then

h(�
6
) = 6

p
3��
12

� 0:604.
The actual value of sin �

6
is 1

2
, so the approximation from 0 is better than that from �

3
. This is because the slope of

the function changes less between x = 0 and x = �
6

than it does between x = �
6

and x = �
3
: This is illustrated below.

�
6

�
3

1

x

y

y = sinx

y = g(x)

y = h(x)

51. If the graphs of y = sinx and y = ke�x are tangent, then the y-values and the derivatives,
dy

dx
= cos x and

dy

dx
=

�ke�x, are equal at that point, so

sinx = ke�x and cos x = �ke�x:
Thus sin x = � cos x so tanx = �1. The smallest x-value is x = 3�=4, which leads to the smallest k value

k =
sin(3�=4)

e�3�=4
= 7:46:

When x =
3�

4
, we have y = sin

�
3�

4

�
=

1p
2

so the point is

�
3�

4
;

1p
2

�
.

52. Differentiating with respect to t using the chain rule and substituting for dx=dt gives

d2x

dt2
=

d

dt

�
dx

dt

�
=

d

dx
(x sinx) � dx

dt
= (sinx+ x cos x)x sinx:

53. (a) If f(x) = sinx, then

f 0(x) = lim
h!0

sin(x+ h)� sinx

h

= lim
h!0

(sinx cosh+ sinh cos x)� sinx

h

= lim
h!0

sinx(cosh � 1) + sinh cosx

h

= sinx lim
h!0

cosh� 1

h
+ cosx lim

h!0

sinh

h
:

(b) cos h�1
h

! 0 and sin h
h
! 1, as h! 0: Thus, f 0(x) = sinx � 0 + cosx � 1 = cos x.

(c) Similarly,

g0(x) = lim
h!0

cos(x+ h)� cosx

h

= lim
h!0

(cosx cosh� sinx sinh)� cosx

h

= lim
h!0

cosx(cosh � 1) � sinx sinh

h

= cosx lim
h!0

cosh� 1

h
� sinx lim

h!0

sinh

h
= � sinx:
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54. (a) Sector OAQ is a sector of a circle with radius 1
cos �

and angle ��. Thus its area is the left side of the inequality.
Similarly, the area of Sector OBR is the right side of the equality. The area of the triangle OQR is 1

2
�tan � since it

is a triangle with base �tan � (the segment QR) and height 1 (if you turn it sideways, it is easier to see this). Thus,
using the given fact about areas (which is also clear from looking at the picture), we have

��

2�
� �

�
1

cos �

�2

� 1

2
��(tan �) � ��

2�
� �

�
1

cos(� +��)

�2

:

(b) Dividing the inequality through by ��
2

and canceling the �’s gives:

�
1

cos �

�2
� �tan �

��
�
�

1

cos(� +��)

�2

Then as �� ! 0, the right and left sides both tend towards
�

1
cos �

�2
while the middle (which is the difference

quotient for tangent) tends to (tan �)0. Thus, the derivative of tangent is “squeezed” between two values heading

towards the same thing and must, itself, also tend to that value. Therefore, (tan �)0 =
�

1
cos �

�2
.

(c) Take the identity sin2 � + cos2 � = 1 and divide through by cos2 � to get (tan �)2 + 1 = ( 1
cos �

)2: Differentiating
with respect to � yields:

2(tan �) � (tan �)0 = 2
�

1

cos �

�
�
�

1

cos �

�0
2
�
sin �

cos �

�
�
�

1

cos �

�2
= 2

�
1

cos �

�
� (�1)

�
1

cos �

�2

(cos �)0

2
sin �

cos3 �
= (�1)2 1

cos3 �
(cos �)0

� sin � = (cos �)0:

(d)

d

d�

�
sin2 � + cos2 �

�
=

d

d�
(1)

2 sin � � (sin �)0 + 2 cos � � (cos �)0 = 0

2 sin � � (sin �)0 + 2 cos � � (� sin �) = 0

(sin �)0 � cos � = 0

(sin �)0 = cos �:

Solutions for Section 3.6

Exercises

1. f 0(t) = 2t
t2+1

:

2. f 0(x) = �1
1�x = 1

x�1 :

3. Since ln(e2x) = 2x, the derivative f 0(x) = 2.

4. Since eln(e
2x2+3) = e2x

2+3, the derivative f 0(x) = 4xe2x
2+3.

5. f 0(z) = �1(ln z)�2 � 1
z
= �1

z(lnz)2
:

6. f 0(�) = � sin �
cos �

= � tan �:

7. f 0(x) = 1
1�e�x � �e�x(�1) = e�x

1�e�x :

8. f 0(�) = 1
sin�

� cos� = cos �
sin�

:

9. f 0(x) = 1
ex+1

� ex:
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10.
dy

dx
= lnx+ x

�
1

x

�
� 1 = lnx

11. j0(x) =
aeax

(eax + b)

12. Using the product and chain rules gives h0(w) = 3w2 ln(10w) + w3 10

10w
= 3w2 ln(10w) + w2.

13. f 0(x) = 1
e7x

� (e7x)7 = 7:
(Note also that ln(e7x) = 7x implies f 0(x) = 7.)

14. Note that f(x) = elnx � e1 = x � e = ex: So f 0(x) = e. (Remember, e is just a constant.) You might also use the chain
rule to get:

f 0(x) = e(lnx)+1 � 1
x

.
[Are the two answers the same? Of course they are, since

e(lnx)+1
�
1

x

�
= elnx � e

�
1

x

�
= xe

�
1

x

�
= e:]

15. f 0(w) = 1
cos(w�1) [� sin(w � 1)] = � tan(w � 1):

[This could be done easily using the answer from Problem 6 and the chain rule.]

16. f(t) = ln t (because ln ex = x or because eln t = t), so f 0(t) = 1
t
.

17. f 0(y) =
2yp
1� y4

:

18. g0(t) =
3

(3t� 4)2 + 1
:

19. g(�) = �, so g0(�) = 1.

20. g0(t) = earctan(3t
2)

�
1

1 + (3t2)2

�
(6t) = earctan(3t

2)
�

6t

1 + 9t4

�
.

21. g0(t) =
� sin(ln t)

t
.

22. h0(z) = (ln 2)z(ln 2�1).

23. h0(w) = arcsinw +
wp

1� w2
:

24. Note that f(x) = kx so, f 0(x) = k:

25. Using the chain rule gives r0(t) =
2p

1� 4t2
:

26. j0(x) = � sin
�
sin�1 x

�
�
�

1p
1� x2

�
= � xp

1� x2

27. f 0(x) = � sin(arctan 3x)

�
1

1 + (3x)2

�
(3) =

�3 sin(arctan 3x)
1 + 9x2

.

28. Note that g(x) = arcsin(sin�x) = �x:
Thus, g0(x) = �:

29. Using the quotient rule gives

f 0(x) =
1 + lnx� x( 1

x
)

(1 + lnx)2

=
lnx

(1 + lnx)2
:

30.
dy

dx
= 2(lnx+ ln 2) + 2x

�
1

x

�
� 2 = 2(lnx+ ln 2) = 2 ln(2x)

31. Using the chain rule gives f0(x) =
cosx� sinx

sinx+ cos x
:

32. f 0(t) =
1

ln t
� 1
t
=

1

t ln t
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33. Using the chain rule gives

T 0(u) =

"
1

1 +
�

u
1+u

�2
#�

(1 + u)� u

(1 + u)2

�

=
(1 + u)2

(1 + u)2 + u2

�
1

(1 + u)2

�
=

1

1 + 2u+ 2u2
:

34. Since ln

��
1� cos t

1 + cos t

�4�
= 4 ln

h�
1� cos t

1 + cos t

�i
we have

a0(t) = 4
�
1 + cos t

1� cos t

��
sin t(1 + cos t) + sin t(1� cos t)

(1 + cos t)2

�

=
h
1 + cos t

1 � cos t

i �
8 sin t

(1 + cos t)2

�
=

8 sin t

1� cos2 t

=
8

sin t
:

35. f 0(x) = � sin(arcsin(x+ 1))(
1p

1� (x+ 1)2
) =

�(x+ 1)p
1� (x+ 1)2

.

Problems

36. Differentiating

f 0(x) =
1

x2 + 1
� 2x = 2x(x2 + 1)�1

f 00(x) = 2(x2 + 1)�1 � 2x(x2 + 1)�2 � 2x

=
2

(x2 + 1)
� 4x2

(x2 + 1)2
=

2x2 + 2

(x2 + 1)2
� 4x2

(x2 + 1)2

=
2(1� x2)

(x2 + 1)2
:

Since (x2 + 1)2 > 0 for all x, we see that f 00(0) > 0 for 1� x2 > 0 or x2 < 1. That is, ln(x2 +1) is concave up on the
interval �1 < x < 1.

37. Let
g(x) = arcsin x

so
sin[g(x)] = x:

Differentiating,
cos[g(x)] � g0(x) = 1

g0(x) =
1

cos[g(x)]

Using the fact that sin2 � + cos2 � = 1, and cos[g(x)] � 0, since ��
2
� g(x) � �

2
, we get

cos[g(x)] =
p

1� (sin[g(x)])2:

Therefore,

g0(x) =
1p

1� (sin[g(x)])2

Since sin[g(x)] = x, we have

g0(x) =
1p

1� x2
;�1 < x < 1:
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38. Let
g(x) = log x:

Then
10g(x) = x:

Differentiating,

(ln 10)[10g(x)]g0(x) = 1

g0(x) =
1

(ln 10)[10g(x)]

g0(x) =
1

(ln 10)x
:

39. (a) From the second figure in the problem, we see that � � 3:3 when t = 2. The coordinates of P are given by x = cos �,
y = sin �. When t = 2, the coordinates of P are

(x; y) � (cos 3:3; sin 3:3) = (�0:99;�0:16):

(b) Using the chain rule, the velocity in the x-direction is given by

vx =
dx

dt
=
dx

d�
� d�
dt

= � sin � � d�
dt
:

From Figure 3.5, we estimate that when t = 2,

d�

dt

���
t=2

� 2:

So

vx =
dx

dt
� �(�0:16) � (2) = 0:32:

Similarly, the velocity in the y-direction is given by

vy =
dy

dt
=
dy

d�
� d�
dt

= cos � � d�
dt
:

When t = 2

vy =
dy

dt
� (�0:99) � (2) = �1:98:

2

3:3

t

�

Figure 3.5

40. (a) The definition of the derivative of ln(1 + x) at x = 0 is

lim
h!0

ln(1 + h)� ln 1

h
= lim

h!0

ln(1 + h)

h
=

1

1 + x

����
x=0

= 1:

(b) The rules of logarithms give

lim
h!0

ln(1 + h)

h
= lim

h!0

1

h
ln(1 + h) = lim

h!0
ln(1 + h)1=h = 1:
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Thus, taking e to both sides and using the fact that elnA = A, we have

elimh!0 ln(1+h)
1=h

= lim
h!0

eln(1+h)
1=h

= e1

lim
h!0

(1 + h)1=h = e:

This limit is sometimes used as the definition of e.
(c) Let n = 1=h. Then as h! 0+, we have n!1. Since

lim
h!0+

(1 + h)1=h = lim
h!0

(1 + h)1=h = e;

we have

lim
n!1

�
1 +

1

n

�n
= e:

This limit is also sometimes used as the definition of e.

41. pH = 2 = � log x means log x = �2 so x = 10�2 . Rate of change of pH with hydrogen ion concentration is

d

dx
pH = � d

dx
(log x) =

�1
x(ln 10)

= � 1

(10�2) ln 10
= �43:4

42. The closer you look at the function, the more it begins to look like a line with slope equal to the derivative of the function
at x = 0. Hence, functions whose derivatives at x = 0 are equal will look the same there.

The following functions look like the line y = x since, in all cases, y0 = 1 at x = 0.
y = x y0 = 1
y = sinx y0 = cosx
y = tanx y0 = 1

cos2 x

y = ln(x+ 1) y0 = 1
x+1

The following functions look like the line y = 0 since, in all cases, y0 = 0 at x = 0.
y = x2 y0 = 2x
y = x sinx y0 = x cos x+ sinx
y = x3 y0 = 3x2

y = 1
2
ln (x2 + 1) y0 = 2x � 1

2
� 1
x2+1

= x
x2+1

y = 1� cosx y0 = sinx

The following functions look like the line x = 0 since, in all cases, as x! 0+, the slope y0 !1.
y =

p
x y0 = 1

2
p
x

y =
p

x
x+1

y0 = (x+1)�x
(x+1)2

� 1
2
� 1p

x
x+1

= 1
2(x+1)2

�
p

x+1
x

y =
p
2x� x2 y0 = (2� 2x) 1

2
� 1p

2x�x2
= 1�xp

2x�x2

43. (a)

f 0(x) =
1

1 + x2
+

1

1 + 1
x2

� (� 1

x2
)

=
1

1 + x2
+
�
� 1

x2 + 1

�
=

1

1 + x2
� 1

1 + x2

= 0

(b) f is a constant function. Checking at a few values of x,

Table 3.2
x arctan x arctan x�1 f(x) = arctan x+ arctanx�1

1 0:785392 0:7853982 1:5707963

2 1:1071487 0:4636476 1:5707963

3 1:2490458 0:3217506 1:5707963
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44. (a) y = lnx, y0 = 1
x

; f 0(1) = 1
1
= 1.

y � y1 = m(x� x1), y � 0 = 1(x� 1); y = g(x) = x� 1.
(b) g(1:1) = 1:1� 1 = 0:1; g(2) = 2 � 1 = 1.
(c) f(1:1) and f(2) are below g(x) = x � 1. f(0:9) and f(0:5) are also below g(x). This would be true for any

approximation of this function by a tangent line since f is concave down (f00(x) = � 1
x2

< 0 for all x 6= 0). See
figure below. Thus, for a given x-value, the y-value given by the function is always below the value given by the
tangent line.

-2 2 4 6 8

-4

-2

2

4

6

x

g(x) = x� 1

f(x) = lnx

45. (a) Let g(x) = ax2 + bx + c be our quadratic and f(x) = lnx. For the best approximation, we want to find a
quadratic with the same value as lnx at x = 1 and the same first and second derivatives as lnx at x = 1. g0(x) =
2ax+ b; g00(x) = 2a; f 0(x) = 1

x
; f 00(x) = � 1

x2
:

g(1) = a(1)2 + b(1) + c f(1) = 0

g0(1) = 2a(1) + b f 0(1) = 1

g00(1) = 2a f 00(1) = �1
Thus, we obtain the equations

a+ b+ c = 0

2a+ b = 1

2a = �1
We find a = � 1

2
, b = 2 and c = � 3

2
. Thus our approximation is:

g(x) = �1

2
x2 + 2x� 3

2

(b) From the graph below, we notice that around x = 1, the value of f(x) = lnx and the value of g(x) = �1
2
x2+2x� 3

2

are very close.

x

y

g(x) = � 1
2
x2 + 2x� 3

2

f(x) = lnx

(c) g(1:1) = 0:095 g(2) = 0:5
Compare with f(1:1) = 0:0953; f(2) = 0:693:
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46. We differentiate F = k=r2 with respect to t using the chain rule to give

dF

dt
= �2k

r3
� dr
dt
:

We know that k = 1013 newton � km2 and that the rocket is moving at 0:2 km/sec when r = 104 km. In other words,
dr=dt = 0:2 km/sec when r = 104 . Substituting gives

dF

dt
= �2 � 1013

(104)3
� 0:2 = �4 newtons/sec.

47. (a) Assuming that T (1) = 98:6 � 2 = 96:6, we get

96:6 = 68 + 30:6e�k�1

28:6 = 30:6e�k

0:935 = e�k:

So
k = � ln(0:935) � 0:067:

(b) We’re looking for a value of t which gives T 0(t) = �1. First we find T 0(t):

T (t) = 68 + 30:6e�0:067t

T 0(t) = (30:6)(�0:067)e�0:067t � �2e�0:067t:

Setting this equal to �1ÆF per hour gives

�1 = �2e�0:067t
ln(0:5) = �0:067t

t = � ln(0:5)

0:067
� 10:3:

Thus, when t � 10:3 hours, we have T 0(t) � �1ÆF per hour.
(c) The coroner’s rule of thumb predicts that in 24 hours the body temperature will decrease 25ÆF, to about 73.6ÆF. The

formula predicts a temperature of

T (24) = 68 + 30:6e�0:067�24 � 74:1ÆF:

48. (a) Since P = 1 when V = 20, we have
k = 1 � (201:4) = 66:29:

Thus, we have
P = 66:29V �1:4:

Differentiating gives
dP

dV
= 66:29(�1:4V �2:4) = �92:8V �2:4 atmospheres/cm3:

(b) We are given that dV=dt = 2 cm3=min when V = 30 cm3. Using the chain rule, we have

dP

dt
=

dP

dV
� dV
dt

=
�
�92:8V �2:4 atm

cm3

��
2

cm3

min

�
= �92:8

�
30�2:4

�
2

atm
min

= �0:0529 atmospheres/min

Thus, the pressure is decreasing at 0:0529 atmospheres per minute.
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49. If V is the volume of the balloon and r is its radius, then

V =
4

3
�r3:

We want to know the rate at which air is being blown into the balloon, which is the rate at which the volume is increasing,
dV=dt. We are told that

dr

dt
= 2 cm/sec when r = 10 cm.

Using the chain rule, we have
dV

dt
=
dV

dr
� dr
dt

= 4�r2
dr

dt
:

Substituting gives
dV

dt
= 4�(10)22 = 800� = 2513:3 cm3/sec:

50. We are given that the volume is increasing at a constant rate dV
dt

= 400. The radius r is related to the volume by the
formula V = 4

3
�r3. By implicit differentiation, we have

dV

dt
=

4

3
�3r2

dr

dt
= 4�r2

dr

dt

Plugging in dV
dt

= 400 and r = 10, we have

400 = 400�
dr

dt

so dr
dt

= 1
�
� 0:32�m/day.

51. Let r be the radius of the raindrop. Then its volume V = 4
3
�r3 cm3 and its surface area is S = 4�r2 cm2. It is given that

dV

dt
= 2S = 8�r2:

Furthermore,
dV

dr
= 4�r2;

so from the chain rule,
dV

dt
=

dV

dr
� dr
dt

and thus
dr

dt
=

dV=dt

dV=dr
= 2:

Since dr=dt is a constant, dr=dt = 2, the radius is increasing at a constant rate of 2 cm/sec.

52. The volume, V , of a cone of height h and radius r is

V =
1

3
�r2h:

Since the angle of the cone is �=6, so r = h tan(�=6) = h=
p
3

V =
1

3
�

�
hp
3

�2

h =
1

9
�h3:

Differentiating gives
dV

dh
=

1

3
�h2:

To find dh=dt, use the chain rule to obtain
dV

dt
=
dV

dh

dh

dt
:

So,
dh

dt
=

dV=dt

dV=dh
=

0:1meters/hour
�h2=3

=
0:3

�h2
meters/hour:

Since r = h tan(�=6) = h=
p
3, we have

dr

dt
=
dh

dt

1p
3
=

1p
3

0:3

�h2
meters/hour:
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53. (a) Using Pythagoras’ theorem, we see
z2 = 0:52 + x2

so
z =

p
0:25 + x2:

(b) We want to calculate dz=dt. Using the chain rule, we have

dz

dt
=

dz

dx
� dx
dt

=
2x

2
p
0:25 + x2

dx

dt
:

Because the train is moving at 0:8 km/hr, we know that

dx

dt
= 0:8 km/hr:

At the moment we are interested in z = 1 km so

12 = 0:25 + x2

giving
x =

p
0:75 = 0:866 km:

Therefore
dz

dt
=

2(0:866)

2
p
0:25 + 0:75

� 0:8 = 0:866 � 0:8 = 0:693 km/min:

(c) We want to know d�=dt, where � is as shown in Figure 3.6. Since
x

0:5
= tan �

we know
� = arctan

�
x

0:5

�
;

so
d�

dt
=

1

1 + (x=0:5)2
� 1

0:5

dx

dt
:

We know that dx=dt = 0:8 km/min and, at the moment we are interested in, x =
p
0:75. Substituting gives

d�

dt
=

1

1 + 0:75=0:25
� 1

0:5
� 0:8 = 0:4 radians/min:

0 x km Train

z km

Camera

0:5

-

�
,

Figure 3.6

54. Using the triangle OSL in Figure 3.7, we label the distance x.

x

L

2

S

�

O

Figure 3.7

We want to calculate dx=d�. First we must find x as a function of �. From the triangle, we see
x

2
= tan � so x = 2 tan �:

Thus,
dx

d�
=

2

cos2 �
:
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55. (a) Since the elevator is descending at 30 ft/sec, its height from the ground is given by h(t) = 300 � 30t; for 0 �
t � 10.

(b) From the triangle in the figure,

tan � =
h(t)� 100

150
=

300 � 30t � 100

150
=

200 � 30t

150
:

Therefore

� = arctan
�
200� 30t

150

�
and

d�

dt
=

1

1 +
�
200�30t

150

�2 � ��30150

�
= �1

5

�
1502

1502 + (200� 30t)2

�
:

Notice that d�
dt

is always negative, which is reasonable since � decreases as the elevator descends.
(c) If we want to know when � changes (decreases) the fastest, we want to find out when d�=dt has the largest magnitude.

This will occur when the denominator, 1502 + (200 � 30t)2, in the expression for d�=dt is the smallest, or when
200 � 30t = 0. This occurs when t = 200

30
seconds, and so h(200

30
) = 100 feet, i.e., when the elevator is at the level

of the observer.

Solutions for Section 3.7

Exercises

1. We differentiate implicitly both sides of the equation with respect to x.

2x+ 2y
dy

dx
= 0 ,

dy

dx
= �2x

2y
= �x

y
:

2. We differentiate implicitly both sides of the equation with respect to x.

2x+
�
y + x

dy

dx

�
� 3y2

dy

dx
= y2 + x(2y)

dy

dx
,

x
dy

dx
� 3y2

dy

dx
� 2xy

dy

dx
= y2 � y � 2x ,

dy

dx
=

y2 � y � 2x

x� 3y2 � 2xy
:

3. We differentiate implicitly both sides of the equation with respect to x.

x1=2 = 5y1=2

1

2
x�1=2 =

5

2
y�1=2

dy

dx

dy

dx
=

1
2
x�1=2

5
2
y�1=2

=
1

5

q
y

x
=

1

25
:

We can also obtain this answer by realizing that the original equation represents part of the line x = 25y which has slope 1=25.

4. We differentiate implicitly both sides of the equation with respect to x.

x
1
2 + y

1
2 = 25 ,

1

2
x�

1
2 +

1

2
y�

1
2
dy

dx
= 0 ,

dy

dx
= �

1
2
x�

1
2

1
2
y�

1
2

= �x
� 1

2

y�
1
2

= �
p
yp
x

= �
q

y

x
:
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5. We differentiate implicity with respect to x.

y + x
dy

dx
� 1� 3dy

dx
= 0

(x� 3)
dy

dx
= 1� y

dy

dx
=

1� y

x� 3

6.

12x+ 8y
dy

dx
= 0

dy

dx
=
�12x
8y

=
�3x
2y

7.

2ax� 2by
dy

dx
= 0

dy

dx
=
�2ax
�2by =

ax

by

8. We differentiate implicitly both sides of the equation with respect to x.

lnx+ ln(y2) = 3

1

x
+

1

y2
(2y)

dy

dx
= 0

dy

dx
=
�1=x
2y=y2

= � y

2x
:

9. We differentiate implicitly both sides of the equation with respect to x.

ex
2

+ ln y = 0

2xex
2

+
1

y

dy

dx
= 0

dy

dx
= �2xyex2 :

10. We differentiate implicitly both sides of the equation with respect to x.

arctan(x2y) = xy2

1

1 + x4y2
(2xy + x2

dy

dx
) = y2 + 2xy

dy

dx

2xy + x2
dy

dx
= [1 + x4y2][y2 + 2xy

dy

dx
]

dy

dx
[x2 � (1 + x4y2)(2xy)] = (1 + x4y2)y2 � 2xy

dy

dx
=

y2 + x4y4 � 2xy

x2 � 2xy � 2x5y3
:

11. We differentiate implicitly both sides of the equation with respect to x.

ln y + x
1

y

dy

dx
+ 3y2

dy

dx
=

1

x
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x

y

dy

dx
+ 3y2

dy

dx
=

1

x
� ln y

dy

dx

�
x

y
+ 3y2

�
=

1� x ln y

x

dy

dx

�
x+ 3y3

y

�
=

1� x ln y

x

dy

dx
=

(1� x ln y)

x
� y

(x+ 3y3)

12. We differentiate implicitly both sides of the equation with respect to x.

cos(xy)
�
y + x

dy

dx

�
= 2

y cos(xy) + x cos(xy)
dy

dx
= 2

dy

dx
=

2� y cos(xy)

x cos(xy)
:

13.
2

3
x�1=3 +

2

3
y�1=3 � dy

dx
= 0,

dy

dx
= �x

�1=3

y�1=3
= �y1=3

x1=3
.

14. We differentiate implicitly both sides of the equation with respect to x.

ecos y(� sin y)
dy

dx
= 3x2 arctan y + x3

1

1 + y2
dy

dx

dy

dx

�
�ecos y sin y � x3

1 + y2

�
= 3x2 arctan y

dy

dx
=

3x2 arctan y

�ecos y sin y � x3(1 + y2)�1
:

15. Using the relation cos2 y + sin2 y = 1, the equation becomes:

1 = y + 2 or y = �1. Hence,
dy

dx
= 0.

16. Differentiating x2 + y2 = 1 with respect to x gives

2x+ 2yy0 = 0

so that
y0 = �x

y

At the point (0; 1) the slope is 0.

17. Differentiating sin(xy) = x with respect to x gives

(y + xy0) cos(xy) = 1

or
xy0 cos(xy) = 1� y cos(xy)

so that

y0 =
1� y cos(xy)

x cos(xy)
:

As we move along the curve to the point (1; �
2
), the value of dy=dx!1, which tells us the tangent to the curve at (1; �

2
)

has infinite slope; the tangent is the vertical line x = 1.
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18. The slope is given by dy=dx, which we find using implicit differentiation. Notice that the product rule is needed for the
second term. We differentiate to obtain:

3x2 + 5x2
dy

dx
+ 10xy + 4y

dy

dx
= 4

dy

dx

(5x2 + 4y � 4)
dy

dx
= �3x2 � 10xy

dy

dx
=
�3x2 � 10xy

5x2 + 4y � 4
:

At the point (1; 2), we have dy=dx = (�3 � 20)=(5 + 8 � 4) = �23=9. The slope of this curve at the point (1; 2) is
�23=9.

19. Differentiating with respect to x gives
3x2 + 2xy0 + 2y + 2yy0 = 0

so that

y0 = �3x2 + 2y

2x+ 2y

At the point (1; 1) the slope is�5
4

.

20. First, we must find the slope of the tangent, i.e.
dy

dx

����
(1;�1)

. Differentiating implicitly, we have:

y2 + x(2y)
dy

dx
= 0;

dy

dx
= � y2

2xy
= � y

2x
:

Substitution yields
dy

dx

����
(1;�1)

= ��1
2

=
1

2
. Using the point-slope formula for a line, we have that the equation for the

tangent line is y + 1 = 1
2
(x� 1) or y = 1

2
x� 3

2
.

21. First we must find the slope of the tangent,
dy

dx
, at (1; e2). Differentiating implicitly, we have:

1

xy

�
x
dy

dx
+ y

�
= 2

dy

dx
=

2xy � y

x
:

Evaluating dy=dx at (1; e2) yields (2(1)e2 � e2)=1 = e2. Using the point-slope formula for the equation of the line, we
have:

y � e2 = e2(x� 1);

or
y = e2x:

22. First, we must find the slope of the tangent,
dy

dx

����
(4;2)

. Implicit differentiation yields:

2y
dy

dx
=

2x(xy � 4)� x2
�
x dy
dx

+ y
�

(xy � 4)2
:

Given the complexity of the above equation, we first want to substitute 4 for x and 2 for y (the coordinates of the point

where we are constructing our tangent line), then solve for
dy

dx
. Substitution yields:

2 � 2dy
dx

=
(2 � 4)(4 � 2� 4)� 42

�
4 dy
dx

+ 2
�

(4 � 2� 4)2
=

8(4)� 16(4 dy
dx

+ 2)

16
= �4dy

dx
.

4
dy

dx
= �4dy

dx
,
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Solving for
dy

dx
, we have:

dy

dx
= 0.

The tangent is a horizontal line through (4; 2), hence its equation is y = 2.

23. First, we must find the slope of the tangent,
dy

dx

����
(a;0)

. We differentiate implicitly, obtaining:

2

3
x�

1
3 +

2

3
y�

1
3
dy

dx
= 0 ,

dy

dx
= �

2
3
x�

1
3

2
3
y�

1
3

= �
3
p
y

3
p
x

.

Substitution yields,
dy

dx

����
(a;0)

=
3
p
0

3
p
a
= 0. The tangent is a horizontal line through (a; 0), hence its equation is y = 0.

Problems

24. (a) By implicit differentiation, we have:

2x+ 2y
dy

dx
� 4 + 7

dy

dx
= 0

(2y + 7)
dy

dx
= 4� 2x

dy

dx
=

4� 2x

2y + 7
:

(b) The curve has a horizontal tangent line when dy=dx = 0, which occurs when 4� 2x = 0 or x = 2. The curve has a
horizontal tangent line at all points where x = 2.
The curve has a vertical tangent line when dy=dx is undefined, which occurs when 2y + 7 = 0 or when y = �7=2.
The curve has a vertical tangent line at all points where y = �7=2.

25. (a) Taking derivatives implicitly, we get

2

25
x+

2

9
y
dy

dx
= 0

dy

dx
=
�9x
25y

(b) The slope is not defined anywhere along the line y = 0. This ellipse intersects that line in two places, (�5; 0) and
(5; 0). (These are, of course, the “ends” of the ellipse where the tangent is vertical.)

26. (a) If x = 4 then 16 + y2 = 25, so y = �3. We find
dy

dx
implicitly:

2x+ 2y
dy

dx
= 0

dy

dx
= �x

y

So the slope at (4; 3) is� 4
3

and at (4;�3) is 4
3

. The tangent lines are:

(y � 3) = �4

3
(x� 4) and (y + 3) =

4

3
(x� 4)

(b) The normal lines have slopes that are the negative of the reciprocal of the slopes of the tangent lines. Thus,

(y � 3) =
3

4
(x� 4) so y =

3

4
x

and

(y + 3) = �3

4
(x� 4) so y = �3

4
x

are the normal lines.
(c) These lines meet at the origin, which is the center of the circle.
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27. (a) Solving for dy
dx

by implicit differentiation yields

3x2 + 3y2
dy

dx
� y2 � 2xy

dy

dx
= 0

dy

dx
=

y2 � 3x2

3y2 � 2xy
:

(b) We can approximate the curve near x = 1, y = 2 by its tangent line. The tangent line will have slope (2)2�3(1)2
3(2)2�2(1)(2) =

1
8
= 0:125. Thus its equation is

y = 0:125x + 1:875

Using the y-values of the tangent line to approximate the y-values of the curve, we get:

x 0:96 0:98 1 1:02 1:04

approximate y 1:995 1:9975 2:000 2:0025 2:005

(c) When x = 0:96, we get the equation 0:963 + y3 � 0:96y2 = 5, whose solution by numerical methods is 1:9945,
which is close to the one above.

(d) The tangent line is horizontal when dy
dx

is zero and vertical when dy
dx

is undefined. These will occur when the numerator
is zero and when the denominator is zero, respectively.

Thus, we know that the tangent is horizontal when y2 � 3x2 = 0) y = �p3x. To find the points that satisfy
this condition, we substitute back into the original equation for the curve:

x3 + y3 � xy2 = 5

x3 � 3
p
3x3 � 3x3 = 5

x3 =
5

�3p3� 2

So x � 1:1609 or x � �0:8857:
Substituting,

y = �
p
3x so y � 2:0107 or y � 1:5341:

Thus, the tangent line is horizontal at (1:1609; 2:0107) and (�0:8857; 1:5341).
Also, we know that the tangent is vertical whenever 3y2�2xy = 0, that is, when y = 2

3
x or y = 0. Substituting

into the original equation for the curve gives us x3+( 2
3
x)3�( 2

3
)2x3 = 5. This means x3 � 5:8696, so x � 1:8039,

y � 1:2026. The other vertical tangent is at y = 0, x = 3
p
5:

28. The slope of the tangent to the curve y = x2 at x = 1 is 2 so the equation of such a tangent will be of the form y = 2x+c.
As the tangent must pass through (1; 1), c = �1 and so the required tangent is y = 2x� 1.

Any circle centered at (8; 0) will be of the form

(x� 8)2 + y2 = R2:

The slope of this curve at (x; y) is given by implicit differentiation:

2(x� 8) + 2yy0 = 0

or

y0 =
8� x

y

For the tangent to the parabola to be tangential to the circle we need

8� x

y
= 2

so that at the point of contact of the circle and the line the coordinates are given by (x; y) when y = 4�x=2. Substituting
into the equation of the tangent line gives x = 2 and y = 3. From this we conclude that R2 = 45 so that the equation of
the circle is

(x� 8)2 + y2 = 45:
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29. Let the point of intersection of the tangent line with the smaller circle be (x1; y1) and the point of intersection with the
larger be (x2; y2). Let the tangent line be y = mx + c. Then at (x1; y1) and (x2; y2) the slopes of x2 + y2 = 1 and
y2+(x�3)2 = 4 are alsom. The slope of x2+y2 = 1 is found by implicit differentiation: 2x+2yy0 = 0 so y0 = �x=y.
Similarly, the slope of y2 + (x� 3)2 = 4 is y0 = �(x� 3)=y. Thus,

m =
y2 � y1
x2 � x1

= �x1
y1

= � (x2 � 3)

y2
;

where y1 =
p

1� x21 and y2 =
p

4� (x2 � 3)2. The positive values for y1 and y2 follow from Figure 3.8 and from
our choice of m > 0. We obtain

x1p
1� x21

=
x2 � 3p

4� (x2 � 3)2

x21
1� x21

=
(x2 � 3)2

4� (x2 � 3)2

x21[4� (x2 � 3)2] = (1� x21)(x2 � 3)2

4x21 � (x21)(x2 � 3)2 = (x2 � 3)2 � x21(x2 � 3)2

4x21 = (x2 � 3)2

2jx1j = jx2 � 3j:
From the picture x1 < 0 and x2 < 3. This gives x2 = 2x1 + 3 and y2 = 2y1. From

y2 � y1
x2 � x1

= �x1
y1
;

substituting y1 =
p

1� x21, y2 = 2y1 and x2 = 2x1 + 3 gives

x1 = �1

3
:

From x2 = 2x1 + 3 we get x2 = 7=3. In addition, y1 =
p

1� x21 gives y1 = 2
p
2=3, and finally y2 = 2y1 gives

y2 = 4
p
2=3.

�1 1 2 3 4 5

�2

�1

1

2

x

y

Figure 3.8

30. y = x
m
n . Taking nth powers of both sides of this expression yields (y)n = (x

m
n )n, or yn = xm:

d

dx
(yn) =

d

dx
(xm)

nyn�1
dy

dx
= mxm�1

dy

dx
=

m

n

xm�1

yn�1

=
m

n

xm�1

(xm=n)n�1

=
m

n

xm�1

xm�
m
n

=
m

n
x(m�1)�(m�

m
n
) =

m

n
x
m
n
�1:
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Solutions for Section 3.8

Exercises

1. Between times t = 0 and t = 1, x goes at a constant rate from 0 to 1 and y goes at a constant rate from 1 to 0. So the
particle moves in a straight line from (0; 1) to (1; 0). Similarly, between times t = 1 and t = 2, it goes in a straight line
to (0;�1), then to (�1; 0), then back to (0; 1). So it traces out the diamond shown in Figure 3.9.

�1 1

�1

1

x

y

t = 0, t = 4

t = 1

t = 2

t = 3

Figure 3.9

2. This is like Example 2, except that the x-coordinate goes all the way to 2 and back. So the particle traces out the rectangle
shown in Figure 3.10.

1 2
x

y

t = 3 t = 2

t = 1t = 0, t = 4

Figure 3.10

3. Between times t = 0 and t = 1, x goes from �1 to 1, while y stays fixed at 1. So the particle goes in a straight line from
(�1; 1) to (1; 1). Then both the x- and y-coordinates decrease at a constant rate from 1 to �1. So the particle goes in a
straight line from (1; 1) to (�1;�1). Then it moves across to (1;�1), then back diagonally to (�1; 1). See Figure 3.11.

�1 1

�1

1

x

y

t = 0
t = 4 t = 1

t = 3t = 2

Figure 3.11
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4. As the x-coordinate goes at a constant rate from 2 to 0, the y-coordinate goes from 0 to 1, then down to �1, then back
to 0. So the particle zigs and zags from (2; 0) to (1:5; 1) to (1; 0) to (:5;�1) to (0; 0). Then it zigs and zags back again,
forming the shape in Figure 3.12.

1 2

�1

1

x

y

t = 2

t = 1:5

t = 1
t = 3

t = 3:5

t = 0
t = 4

t = :5t = 2:5

Figure 3.12

5. The particle moves clockwise: For 0 � t � �
2

, we have x = cos t decreasing and y = � sin t decreasing. Similarly, for
the time intervals �

2
� t � �; � � t � 3�

2
; and 3�

2
� t � 2�; we see that the particle moves clockwise.

6. For 0 � t � �
2

, we have x = sin t increasing and y = cos t decreasing, so the motion is clockwise for 0 � t � �
2

.
Similarly, we see that the motion is clockwise for the time intervals �

2
� t � �; � � t � 3�

2
, and 3�

2
� t � 2�.

7. Let f(t) = t2. The particle is moving clockwise when f(t) is decreasing, that is, when f0(t) = 2t < 0, so when t < 0.
The particle is moving counterclockwise when f0(t) = 2t > 0, so when t > 0.

8. Let f(t) = t3 � t. The particle is moving clockwise when f(t) is decreasing, that is, when f0(t) = 3t2 � 1 < 0,
and counterclockwise when f0(t) = 3t2 � 1 > 0. That is, it moves clockwise when �

p
1
3
< t <

p
1
3

, between

(cos((�
p

1
3
)3 +

p
1
3
); sin((�

p
1
3
)3 +

p
1
3
)) and (cos((

p
1
3
)3 �

p
1
3
); sin((

p
1
3
)3 �

p
1
3
), and counterclockwise

when t < �
p

1
3

or t >
p

1
3

.

9. Let f(t) = ln t. Then f 0(t) = 1
t

. The particle is moving counterclockwise when f0(t) > 0, that is, when t > 0. Any
other time, when t � 0, the position is not defined.

10. Let f(t) = cos t. Then f 0(t) = � sin t. The particle is moving clockwise when f0(t) < 0, or � sin t < 0, that is, when

2k� < t < (2k + 1)�;

where k is an integer. The particle is otherwise moving counterclockwise, that is, when

(2k � 1)� < t < 2k�;

where k is an integer. Actually, the particle does not fully trace out a circle. The range of f(t) is [�1; 1] so the particle
oscillates between the points (cos(�1); sin(�1)) and (cos 1; sin 1).

11. One possible answer is x = 3 cos t; y = �3 sin t; 0 � t � 2�.

12. One possible answer is x = �2; y = t.

13. One possible answer is x = 2 + 5 cos t; y = 1 + 5 sin t; 0 � t � 2�.

14. The parameterization x = 2 cos t, y = 2 sin t, 0 � t � 2�, is a circle of radius 2 traced out counterclockwise starting at
the point (2; 0). To start at (�2; 0), put a negative in front of the first coordinate

x = �2 cos t y = 2 sin t; 0 � t � 2�:

Now we must check whether this parameterization traces out the circle clockwise or counterclockwise. Since when t
increases from 0, sin t is positive, the point (x; y) moves from (�2; 0) into the second quadrant. Thus, the circle is traced
out clockwise and so this is one possible parameterization.
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15. The slope of the line is

m =
3� (�1)
1� 2

= �4:
The equation of the line with slope �4 through the point (2;�1) is y � (�1) = (�4)(x� 2), so one possible parame-
terization is x = t and y = �4t+ 8� 1 = �4t+ 7:

16. The ellipse x2=25 + y2=49 = 1 can be parameterized by x = 5 cos t, y = 7 sin t; 0 � t � 2�.

17. The parameterization x = �3 cos t, y = 7 sin t, 0 � t � 2�, starts at the right point but sweeps out the ellipse
in the wrong direction (the y-coordinate becomes positive as t increases). Thus, a possible parameterization is x =
�3 cos(�t) = �3 cos t, y = 7 sin(�t) = �7 sin t, 0 � t � 2�.

18. We have
dy

dx
=

dy=dt

dx=dt
=

2t

3t2 � 1
:

Thus when t = 2, the slope of the tangent line is 4=11. Also when t = 2, we have

x = 23 � 2 = 6; y = 22 = 4:

Therefore the equation of the tangent line is

(y � 4) =
4

11
(x� 6):

19. We have
dy

dx
=

dy=dt

dx=dt
=

4 cos(4t)

3 cos(3t)
:

Thus when t = �, the slope of the tangent line is �4=3. Since x = 0 and y = 0 when t = �, the equation of the tangent
line is y = �(4=3)x.

20. We have
dy

dx
=

dy=dt

dx=dt
=

2t+ 2

2t� 2
:

When t = 1, the denominator is zero and the numerator is nonzero, so the tangent line is vertical. Since x = �1 when
t = 1, the equation of the tangent line is x = �1.

21. We have dx=dt = 2t and dy=dt = 3t2. Therefore, the speed of the particle is

v =

r�
dx

dt

�2

+
�
dy

dt

�2

=
p

((2t)2 + (3t2)2) = jtj �
p

(4 + 9t2):

The particle comes to a complete stop when its speed is 0, that is, if t
p
4 + 9t2 = 0, and so when t = 0:

22. We have dx=dt = �2t sin(t2) and dy=dt = 2t cos(t2). Therefore, the speed of the particle is given by

v =
p

(�2t sin(t2))2 + (2t cos(t2))2

=
p

4t2(sin(t2))2 + 4t2(cos(t2))2

= 2jtj
p

sin2(t2) + cos2(t2)

= 2jtj:
The particle comes to a complete stop when speed is 0, that is, if 2jtj = 0, and so when t = 0 .

23. We have
dx

dt
= �2 sin 2t; dy

dt
= cos t:

The speed is

v =
p

4 sin2(2t) + cos2 t:

Thus, v = 0 when sin(2t) = cos t = 0, and so the particle stops when t = ��=2;�3�=2; : : : or t = (2n+1)�
2

, for any
integer n.

24. We have
dx

dt
= (2t� 2);

dy

dt
= (3t2 � 3):

The speed is given by:
v =

p
(2t� 2)2 + (3t2 � 3)2:

The particle stops when 2t� 2 = 0 and 3t2 � 3 = 0. Since these are both satisfied only by t = 1, this is the only time
that the particle stops.
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25. At t = 2, the position is (22; 23) = (4; 8), the velocity in the x-direction is 2 � 2 = 4, and the velocity in the y-direction
is 3 � 22 = 12. So we want the line going through the point (4; 8) at the time t = 2, with the given x- and y-velocities:

x = 4 + 4(t� 2); y = 8 + 12(t� 2):

Problems

26. (a) Eliminating t between
x = 2 + t; y = 4 + 3t

gives

y � 4 = 3(x� 2);

y = 3x� 2:

Eliminating t between
x = 1� 2t; y = 1 � 6t

gives

y � 1 = 3(x� 1);

y = 3x� 2:

Since both parametric equations give rise to the same equation in x and y, they both parameterize the same line.
(b) Slope = 3, y-intercept = �2.

27. (a) We get the part of the line with x < 10 and y < 0.
(b) We get the part of the line between the points (10; 0) and (11; 2).

28. (a) If t � 0, we have x � 2; y � 4, so we get the part of the line to the right of and above the point (2; 4).
(b) When t = 0; (x; y) = (2; 4). When t = �1; (x; y) = (�1;�3): Restricting t to the interval �1 � t � 0 gives the

part of the line between these two points.
(c) If x < 0, giving 2 + 3t < 0 or t < �2=3. Thus t < �2=3 gives the points on the line to the left of the y-axis.

29. (a) The curve is a spiral as shown in Figure 3.13.

x

y

Figure 3.13: The spiral
x = t cos t; y = t sin t for 0 � t � 4�

(b) At t = 2, the position is (2 cos 2; 2 sin 2) = (�0:8323; 1:8186), and at t = 2:01 the position is (2:01 cos 2:01; 2:01 sin 2:01) =
(�0:8546; 1:8192). The distance between these points isp

(�0:8546 � (�0:8323))2 + (1:8192 � 1:8186)2 � 0:022:

Thus the speed is approximately 0:022=0:01 � 2:2.
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x

y

t = 2

t = 4

t = 6

Figure 3.14: The spiral x = t cos t; y = t sin t and three velocity vectors

(c) Evaluating the exact formula
v =

p
(cos t� t sin t)2 + (sin t+ t cos t)2

gives :
v(2) =

p
(�2:235)2 + (0:077)2 = 2:2363:

30. (a) In order for the particle to stop, its velocity both dx=dt and dy=dt must be zero,

dx

dt
= 3t2 � 3 = 3(t� 1)(t+ 1) = 0;

dy

dt
= 2t� 2 = 2(t� 1) = 0:

The value t = 1 is the only solution. Therefore, the particle stops when t = 1 at the point (t3 � 3t; t2 � 2t)jt=1 =
(�2;�1):

(b) In order for the particle to be traveling straight up or down, the velocity in the x-direction must be 0. Thus, we
solve dx=dt = 3t2 � 3 = 0 and obtain t = �1. However, at t = 1 the particle has no vertical motion, as we
saw in part (a). Thus, the particle is moving straight up or down only when t = �1: The position at that time is
(t3 � 3t; t2 � 2t)jt=�1 = (2; 3).

(c) For horizontal motion we need dy=dt = 0. That happens when dy=dt = 2t� 2 = 0; and so t = 1. But from part (a)
we also have dx=dt = 0 also at t = 1, so the particle is not moving at all when t = 1. Thus, there is no time when
the motion is horizontal.

31. In all three cases, y = x2, so that the motion takes place on the parabola y = x2.
In case (a), the x-coordinate always increases at a constant rate of one unit distance per unit time, so the equations

describe a particle moving to the right on the parabola at constant horizontal speed.
In case (b), the x-coordinate is never negative, so the particle is confined to the right half of the parabola. As t moves

from �1 to +1, x = t2 goes from 1 to 0 to 1. Thus the particle first comes down the right half of the parabola,
reaching the origin (0; 0) at time t = 0, where it reverses direction and goes back up the right half of the parabola.

In case (c), as in case (a), the particle traces out the entire parabola y = x2 from left to right. The difference is that
the horizontal speed is not constant. This is because a unit change in t causes larger and larger changes in x = t3 as t
approaches �1 or 1. The horizontal motion of the particle is faster when it is farther from the origin.

32. (I) has a positive slope and so must be l1 or l2. Since its y-intercept is negative, these equations must describe l2. (II)
has a negative slope and positive x-intercept, so these equations must describe l3.

33. (a) C1 has center at the origin and radius 5, so a = b = 0; k = 5 or �5.
(b) C2 has center at (0; 5) and radius 5, so a = 0; b = 5; k = 5 or �5.
(c) C3 has center at (10;�10), so a = 10; b = �10. The radius of C3 is

p
102 + (�10)2 =

p
200, so k =

p
200 or

k = �p200.

34. It is a straight line through the point (3; 5) with slope �1. A linear parameterization of the same line is x = 3 + t,
y = 5� t.

35. (a) To find the equations of the moon’s motion relative to the star, you must first calculate the equation of the planet’s
motion relative to the star, and then the moon’s motion relative to the planet, and then add the two together.
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The distance from the planet to the star is R, and the time to make one revolution is one unit, so the parametric
equations for the planet relative to the star are x = R cos t, y = R sin t.

The distance from the moon to the planet is 1, and the time to make one revolution is twelve units, therefore, the
parametric equations for the moon relative to the planet are x = cos 12t, y = sin 12t.

Adding these together, we get:

x = R cos t+ cos 12t;

y = R sin t+ sin 12t:

(b) For the moon to stop completely at time t, the velocity of the moon must be equal to zero. Therefore,

dx

dt
= �R sin t� 12 sin 12t = 0;

dy

dt
= R cos t+ 12 cos 12t = 0:

There are many possible values to choose for R and t that make both of these equations equal to zero. We choose
t = �, and R = 12.

(c) The graph with R = 12 is shown below.

36. For 0 � t � 2�

x

y

�1 1

37. For 0 � t � 2�

x

y

1

1
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38. For 0 � t � 2�

x

y

1

39. This curve never closes on itself. The plot for 0 � t � 8� is in Figure 3.15.

�1 1

�1

1

x

y

Figure 3.15

40. (a) Since x = t3 + t and y = t2, we have

w =
dy

dx
=

dy=dt

dx=dt
=

2t

3t2 + 1
:

Differentiating w with respect to t, we get

dw

dt
=

(3t2 + 1)2� (2t)(6t)

(3t2 + 1)2
=
�6t2 + 2

(3t2 + 1)2
;

so
d2y

dx2
=
dw

dx
=
dw=dt

dx=dt
=
�6t2 + 2

(3t2 + 1)3
:

When t = 1, we have d2y=dx2 = �1=16 < 0, so the curve is concave down.
(b) We have

w =
dy

dx
=

dy=dt

dx=dt
:

To find dw=dt, we use the quotient rule:

dw

dt
=

(dx=dt)(d2y=dt2)� (dy=dt)(d2x=dt2)

(dx=dt)2
:

We then divide this by dx=dt again to get the required formula, since

d2y

dx2
=
dw

dx
=
dw=dt

dx=dt
:
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Solutions for Section 3.9

Exercises

1. With f(x) =
p
1 + x, the chain rule gives f 0(x) = 1=(2

p
1 + x), so f(0) = 1 and f 0(0) = 1=2. Therefore the tangent

line approximation of f near x = 0,
f(x) � f(0) + f 0(0)(x� 0);

becomes p
1 + x � 1 +

x

2
:

This means that, near x = 0, the function
p
1 + x can be approximated by its tangent line y = 1 + x=2. (See Figure 3.16.)

�2 �1 0 1 2

1

2

x

y
y = 1 + x=2

y =
p
1 + x

Figure 3.16

2. With f(x) = ex, the tangent line approximation to f near x = 0 is f(x) � f(0) + f0(0)(x � 0) which becomes
ex � e0 + e0x = 1 + 1x = 1 + x. Thus, our local linearization of ex near x = 0 is ex � 1 + x.

3. With f(x) = 1=x, we see that the tangent line approximation to f near x = 1 is

f(x) � f(1) + f 0(1)(x� 1);

which becomes
1

x
� 1 + f 0(1)(x� 1):

Since f 0(x) = �1=x2, f 0(1) = �1. Thus our formula reduces to

1

x
� 1� (x� 1) = 2� x:

This is the local linearization of 1=x near x = 1.

4. With f(x) = 1=(
p
1 + x), we see that the tangent line approximation to f near x = 0 is

f(x) � f(0) + f 0(0)(x� 0);

which becomes
1p
1 + x

� 1 + f 0(0)x:

Since f 0(x) = (�1=2)(1 + x)�3=2, f 0(0) = �1=2. Thus our formula reduces to

1p
1 + x

� 1� x=2:

This is the local linearization of
1p
1 + x

near x = 0.

5. Let f(x) = e�x. Then f 0(x) = �e�x. So f(0) = 1, f 0(0) = �e0 = �1. Therefore, e�x � f(0) + f 0(0)x = 1� x.

6. With f(x) = ex
2

, we get a tangent line approximation of f(x) � f(1) + f0(1)(x � 1) which becomes ex
2 � e +�

2xex
2
� ����

x=1

(x� 1) = e+ 2e(x� 1) = 2ex� e. Thus, our local linearization of ex
2

near x = 1 is ex
2 � 2ex� e.
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Problems

7. (a) Let f(x) = (1 + x)k. Then f 0(x) = k(1 + x)k�1. Since

f(x) � f(0) + f 0(0)(x� 0)

is the tangent line approximation, and f(0) = 1, f0(0) = k, for small x we get

f(x) � 1 + kx:

(b) Since
p
1:1 = (1 + 0:1)1=2 � 1 + (1=2)0:1 = 1:05 by the above method, this estimate is about right.

(c) The real answer is less than 1:05. Since (1:05)2 = (1+0:05)2 = 1+2(1)(0:05)+(0:05)2 = 1:1+(0:05)2 > 1:1,
we have (1:05)2 > 1:1 Therefore p

1:1 < 1:05:

Graphically, this because the graph of
p
1 + x is concave down, so it bends below its tangent line. Therefore the true

value (
p
1:1) which is on the curve is below the approximate value (1:05) which is on the tangent line.

8. The local linearization of ex near x = 0 is 1 + 1x so

ex � 1 + x:

Squaring this yields, for small x,
e2x = (ex)2 � (1 + x)2 = 1 + 2x+ x2:

Local linearization of e2x directly yields
e2x � 1 + 2x

for small x. The two approximations are consistent because they agree: the tangent line approximation to 1 + 2x+ x2 is
just 1 + 2x.

The first approximation is more accurate. One can see this numerically or by noting that the approximation for e2x

given by 1 + 2x is really the same as approximating ey at y = 2x. Since the other approximation approximates ey at
y = x, which is twice as close to 0 and therefore a better general estimate, it’s more likely to be correct.

9. (a) Let f(x) = 1=(1 + x). Then f 0(x) = �1=(1 + x)2 by the chain rule. So f(0) = 1, and f 0(0) = �1. Therefore, for
x near 0, 1=(1 + x) � f(0) + f 0(0)x = 1� x:

(b) We know that for small y, 1=(1 + y) � 1 � y. Let y = x2; when x is small, so is y = x2. Hence, for small x,
1=(1 + x2) � 1� x2.

(c) Since the linearization of 1=(1 + x2) is the line y = 1, and this line has a slope of 0, the derivative of 1=(1 + x2) is
zero at x = 0.

10. The local linearizations of f(x) = ex and g(x) = sinx near x = 0 are

f(x) = ex � 1 + x

and
g(x) = sinx � x:

Thus, the local linearization of ex sinx is the local linearization of the product:

ex sinx � (1 + x)x = x+ x2 � x:

We therefore know that the derivative of ex sinx at x = 0 must be 1. Similarly, using the local linearization of 1=(1 + x)
near x = 0, 1=(1 + x) � 1� x, we have

ex sinx

1 + x
= (ex)(sinx)

�
1

1 + x

�
� (1 + x)(x)(1� x) = x� x3

so the local linearization of the triple product
ex sinx

1 + x
at x = 0 is simply x. And therefore the derivative of

ex sinx

1 + x
at

x = 0 is 1.

11. (a) Suppose

g = f(r) =
GM

r2
:

Then

f 0(r) =
�2GM
r3

:
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So

f(r +�r) � f(r)� 2GM

r3
(�r):

Since f(r +�r)� f(r) = �g, and g = GM=r2, we have

�g � �2GM
r3

(�r) = �2g�r
r
:

(b) The negative sign tells us that the acceleration due to gravity decreases as the distance from the center of the earth
increases.

(c) The fractional change in g is given by
�g

g
� �2�r

r
:

So, since �r = 4:315 km and r = 6400 km, we have

�g

g
� �2

�
4:315

6400

�
= �0:00135 = �0:135%:

12. (a) Suppose g is a constant and

T = f(l) = 2�

r
l

g
:

Then

f 0(l) =
2�p
g

1

2
l�1=2 =

�p
gl
:

Thus, local linearity tells us that

f(l+�l) � f(l) +
�p
gl
�l:

Now T = f(l) and �T = f(l +�l)� f(l), so

�T � �p
gl
�l = 2�

r
l

g
� 1
2

�l

l
=
T

2

�l

l
:

(b) Knowing that the length of the pendulum increases by 2% tells us that

�l

l
= 0:02:

Thus,

�T � T

2
(0:02) = 0:01T:

So
�T

T
� 0:01:

Thus, T increases by 1%.

13. (a) Considering l as a constant, we have

T = f(g) = 2�

r
l

g
:

Then,

f 0(g) = 2�
p
l
�
�1

2
g�3=2

�
= ��

r
l

g3
:

Thus, local linearity gives

f(g +�g) � f(g)� �

r
l

g3
(�g):

Since T = f(g) and �T = f(g +�g)� f(g), we have

�T � ��
r

l

g3
�g = �2�

r
l

g

�g

2g
=
�T
2

�g

g
:

�T � �T
2

�g

g
:
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(b) If g increases by 1%, we know
�g

g
= 0:01:

Thus,
�T

T
� �1

2

�g

g
= �1

2
(0:01) = �0:005;

So, T decreases by 0.5%.

14. Since f has a positive second derivative, its graph is concave up, as in Figure 3.17 or 3.18. This means that the graph of
f(x) is above its tangent line. We see that in both cases

f(1 + �x) � f(1) + f 0(1)�x:

(The diagrams show �x positive, but the result is also true if �x is negative.)

1 1 + �x

f(1)

f(1) + f 0(1)�x
f(1 + �x)

Tangent line
Slope = f 0(1)

f(x)

x

y

Figure 3.17

1 1 +�x

f(1)

f(1) + f 0(1)�x

f(1 +�x)

Tangent line
Slope = f 0(1)

f(x)

x

y

Figure 3.18

15. (a) Since f 0 is decreasing, f 0(5) is larger.
(b) Since f 0 is decreasing, its derivative, f 00, is negative. Thus, f 00(5) is negative, so 0 is larger.
(c) Since f 00(x) is negative for all x, the graph of f is concave down. Thus the graph of f(x) is below its tangent line.

From Figure 3.19, we see that f(5 + �x) is below f(5) + f 0(5)�x. Thus, f(5) + f 0(5)�x is larger.

5 5 + �x

Tangent line
Slope = f 0(5)

f(x)
6

?
f 0(5)�x

6

?

f(5)

-� �x

6

?

f(5 + �x)

x

Figure 3.19

16. Note that

[f(x)g(x)]0 = lim
h!0

f(x+ h)g(x+ h)� f(x)g(x)

h
:

We use the hint: For small h, f(x+ h) � f(x) + f 0(x)h, and g(x+ h) � g(x) + g0(x)h. Therefore

f(x+ h)g(x+ h)� f(x)g(x) � [f(x) + hf 0(x)][g(x) + hg0(x)]� f(x)g(x)

= f(x)g(x) + hf 0(x)g(x) + hf(x)g0(x)

+h2f 0(x)g0(x)� f(x)g(x)

= hf 0(x)g(x) + hf(x)g0(x) + h2f 0(x)g0(x):
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Therefore

lim
h!0

f(x+ h)g(x+ h)� f(x)g(x)

h
= lim

h!0

hf 0(x)g(x) + hf(x)g0(x) + h2f 0(x)g0(x)

h

= lim
h!0

h (f 0(x)g(x) + f(x)g0(x) + hf 0(x)g0(x))

h

= lim
h!0

�
f 0(x)g(x) + f(x)g0(x) + hf 0(x)g0(x)

�
= f 0(x)g(x) + f(x)g0(x):

A more complete derivation can be given using the error term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that section to this problem, we write

f(x+ h) = f(x) + f 0(x)h+Ef (h) and g(x+ h) = g(x) + g0(x)h+Eg(h);

where lim
h!0

Ef(h)

h
= lim

h!0

Eg(h)

h
= 0. (This implies that lim

h!0
Ef(h) = lim

h!0
Eg(h) = 0.)

We have

f(x+ h)g(x+ h)� f(x)g(x)

h
=

f(x)g(x)

h
+ f(x)g0(x) + f 0(x)g(x) + f(x)

Eg(h)

h
+ g(x)

Ef(h)

h

+f 0(x)g0(x)h+ f 0(x)Eg(h) + g0(x)Ef(h) +
Ef(h)Eg(h)

h
� f(x)g(x)

h

The terms f(x)g(x)=h and �f(x)g(x)=h cancel out. All the remaining terms on the right, with the exception of the
second and third terms, go to zero as h! 0. Thus, we have

[f(x)g(x)]0 = lim
h!0

f(x+ h)g(x+ h)� f(x)g(x)

h
= f(x)g0(x) + f 0(x)g(x):

17. Note that

[f(g(x))]0 = lim
h!0

f(g(x+ h))� f(g(x))

h
:

Using the local linearizations of f and g, we get that

f(g(x+ h))� f(g(x)) � f
�
g(x) + g0(x)h

�
� f(g(x))

� f (g(x)) + f 0(g(x))g0(x)h� f(g(x))

= f 0(g(x))g0(x)h:

Therefore,

[f(g(x))]0 = lim
h!0

f(g(x+ h))� f(g(x))

h

= lim
h!0

f 0(g(x))g0(x)h

h

= lim
h!0

f 0(g(x))g0(x) = f 0(g(x))g0(x):

A more complete derivation can be given using the error term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that section to this problem, we write

f(z + k) = f(z) + f 0(z)k +Ef(k) and g(x+ h) = g(x) + g0(x)h+Eg(h);

where lim
h!0

Eg(h)

h
= lim

k!0

Ef(k)

k
= 0.

Now we let z = g(x) and k = g(x+ h)� g(x). Then we have k = g0(x)h+Eg(h). Thus,

f(g(x+ h))� f(g(x))

h
=

f(z + k)� f(z)

h

=
f(z) + f 0(z)k +Ef(k)� f(z)

h
=
f 0(z)k +Ef (k)

h
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=
f 0(z)g0(x)h+ f 0(z)Eg(h)

h
+
Ef (k)

k
�
�
k

h

�
= f 0(z)g0(x) +

f 0(z)Eg(h)

h
+
Ef (k)

k

�
g0(x)h+Eg(h)

h

�
= f 0(z)g0(x) +

f 0(z)Eg(h)

h
+
g0(x)Ef(k)

k
+
Eg(h) �Ef (k)

h � k
Now, if h ! 0 then k ! 0 as well, and all the terms on the right except the first go to zero, leaving us with the term
f 0(z)g0(x). Substituting g(x) for z, we obtain

[f(g(x))]0 = lim
h!0

f(g(x+ h))� f(g(x))

h
= f 0(g(x))g0(x):

18. We want to show that

lim
x!a

f(x)� f(a)

x� a
= L:

Substituting for f(x) we have

lim
x!a

f(x)� f(a)

x� a
= lim

x!a

f(a) + L(x� a) +EL(x)� f(a)

x� a

= lim
x!a

�
L+

EL(x)

x� a

�
= L + lim

x!0

EL(x)

x� a
= L:

Thus, we have shown that f is differentiable at x = a and that its derivative is L, that is, f0(a) = L.

Solutions for Section 3.10

Exercises

1. Since f 0(a) > 0 and g0(a) < 0, l’Hopital’s rule tells us that

lim
x!a

f(x)

g(x)
=

f 0(a)

g0(a)
< 0:

2. Since f 0(a) < 0 and g0(a) < 0, l’Hopital’s rule tells us that

lim
x!a

f(x)

g(x)
=

f 0(a)

g0(a)
> 0:

3. Here f(a) = g(a) = f 0(a) = g0(a) = 0, and f 00(a) > 0 and g00(a) < 0.

lim
x!a

f(x)

g(x)
= lim

x!a

f 0(x)

g0(x)
=
f 00(a)

g00(a)
< 0

4. Note that f(0) = g(0) = 0 and f 0(0) = g0(0). Since x = 0 looks like a point of inflection for each curve, f00(0) =
g00(0) = 0. Therefore, applying l’Hopital’s rule successively gives us

lim
x!0

f(x)

g(x)
= lim

x!0

f 0(x)

g0(x)
= lim

x!0

f 00(x)

g00(x)
= lim

x!0

f 000(x)

g000(x)
:

Now notice how the concavity of f changes: for x < 0, it is concave up, so f00(x) > 0, and for x > 0 it is concave
down, so f 00(x) < 0. Thus f 00(x) is a decreasing function at 0 and so f000(0) is negative. Similarly, for x < 0, we see g
is concave down and for x > 0 it is concave up, so g00(x) is increasing at 0 and so g000(0) is positive. Consequently,

lim
x!0

f(x)

g(x)
= lim

x!0

f 000(x)

g000(0)
< 0:
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5. The denominator approaches zero as x goes to zero and the numerator goes to zero even faster, so you should expect that
the limit to be 0. You can check this by substituting several values of x close to zero. Alternatively, using l’Hopital’s rule,
we have

lim
x!0

x2

sinx
= lim

x!0

2x

cosx
= 0:

6. The numerator goes to zero faster than the denominator, so you should expect the limit to be zero. Using l’Hopital’s rule,
we have

lim
x!0

sin2 x

x
= lim

x!0

2 sinx cos x

1
= 0:

7. The denominator goes to zero more slowly than x does, so the numerator goes to zero faster than the denominator, so you
should expect the limit to be zero. With l’Hopital’s rule,

lim
x!0

sinx

x1=3
= lim

x!0

cosx
1
3
x�2=3

= lim
x!0

3x2=3 cosx = 0:

8. The denominator goes to zero more slowly than x. Therefore, you should expect that the limit to be 0. Using l’Hopital’s
rule,

lim
x!0

x

(sinx)1=3
= lim

x!0

1
1
3
(sinx)�2=3 cos x

= lim
x!0

3(sin x)2=3

cos x
= 0;

since sin 0 = 0 and cos 0 = 1.

9. The larger power dominates. Using l’Hopital’s rule

lim
x!1

x5

0:1x7
= lim

x!1

5x4

0:7x6
= lim

x!1

20x3

4:2x5

= lim
x!1

60x2

21x4
= lim

x!1

120x

84x3
= lim

x!1

120

252x2
= 0

so 0:1x7 dominates.

10. We apply l’Hopital’s rule twice to the ratio 50x2=0:01x3:

lim
x!1

50x2

0:01x3
= lim

x!1

100x

0:03x2
= lim

x!1

100

0:06x
= 0:

Since the limit is 0, we see that 0:01x3 is much larger than 50x2 as x!1.

11. The power function dominates. Using l’Hopital’s rule

lim
x!1

ln(x+ 3)

x0:2
= lim

x!1

1
(x+3)

0:2x�0:8
= lim

x!1

x0:8

0:2(x+ 3)
:

Using l’Hopital’s rule again gives

lim
x!1

x0:8

0:2(x+ 3)
= lim

x!1

0:8x�0:2

0:2
= 0;

so x0:2 dominates.

12. The exponential dominates. After 10 applications of l’Hopital’s rule

lim
x!1

x10

e0:1x
= lim

x!1

10x9

0:1e0:1x
= � � � = lim

x!1

10!

(0:1)10e0:1x
= 0:

so e0:1x dominates.

Problems

13. Let f(x) = lnx and g(x) = 1=x so f 0(x) = 1=x and g0(x) = �1=x2 and

lim
x!0+

lnx

1=x
= lim

x!0+

1=x

�1=x2 = lim
x!0+

x

�1 = 0:
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14. (a) Since f 0(x) = 3 cos(3x); we have f 0(0) = 3.
(b) Since g0(x) = 5, we have g0(0) = 5:
(c) Since f(x) = sin 3x and g(x) = 5x are both 0 at x = 0, we apply l’Hopital’s rule to obtain

lim
x!0

sin(3x)

5x
=
f 0(0)

g0(0)
=

3

5
:

15. Let f(x) = sin(2x) and g(x) = x. Observe that f(1) = sin 2 6= 0 and g(1) = 1 6= 0. Therefore l’Hopital’s rule does
not apply. However,

lim
x!1

sin 2x

x
=

sin 2

1
= 0:909297:

16. Let f(x) = cosx and g(x) = x. Observe that since f(0) = 1, l’Hopital’s rule does not apply. But since g(0) = 0,

lim
x!0

cos x

x
does not exist.

17. Let f(x) = e�x and g(x) = sinx. Observe that as x increases, f(x) approaches 0 but g(x) oscillates between �1 and
1. Since g(x) does not approach 0 in the limit, l’Hopital’s rule does not apply. Because g(x) is in the denominator and
oscillates through 0 forever, the limit does not exist.

18. We want to find lim
x!1

f(x), which we do by three applications of l’Hopital’s rule:

lim
x!1

2x3 + 5x2

3x3 � 1
= lim

x!1

6x2 + 10x

9x2
= lim

x!1

12x+ 10

18x
= lim

x!1

12

18
=

2

3
:

So the line y = 2=3 is the horizontal asymptote.

19. Observe that both f(4) and g(4) are zero. Also, f0(4) = 1:4 and g0(4) = �0:7, so by l’Hopital’s rule,

lim
x!4

f(x)

g(x)
=
f 0(4)

g0(4)
=

1:4

�0:7 = �2:

Solutions for Chapter 3 Review

Exercises

1. f 0(t) =
d

dt

�
2tet � 1p

t

�
= 2et + 2tet +

1

2t3=2
:

2.

dw

dz
=

(�3)(5 + 3z)� (5� 3z)(3)

(5 + 3z)2

=
�15� 9z � 15 + 9z

(5 + 3z)2
=

�30
(5 + 3z)2

3.
d

dy
ln ln(2y3) =

1

ln(2y3)

1

2y3
6y2 =

3

y ln(2y3)
:

4. f 0(x) =
3x2

9
(3 lnx� 1) +

x3

9

�
3

x

�
= x2 lnx� x2

3
+
x2

3
= x2 lnx

5. g0(x) =
d

dx

�
xk + kx

�
= kxk�1 + kx ln k:

6.
dz

d�
= 3 sin2 � cos �

7.

f 0(t) = 2 cos(3t+ 5) � (� sin(3t+ 5))3

= �6 cos(3t+ 5) � sin(3t+ 5)
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8.

M 0(�) = 2 tan(2 + 3�) � 1

cos2(2 + 3�)
� 3

= 6 � tan(2 + 3�)

cos2(2 + 3�)

9. s0(�) =
d

d�
sin2(3� � �) = 6 cos(3� � �) sin(3� � �):

10. h0(t) =
1

e�t � t

�
�e�t � 1

�
:

11.
d

d�

�
sin(5 � �)

�2

�
=

cos(5� �)(�1)�2 � sin(5� �)(2�)

�4

= �� cos(5� �) + 2 sin(5� �)

�3
:

12. w0(�) =
1

sin2 �
� 2� cos �

sin3 �

13. g0(x) =
d

dx

�
x
1
2 + x�1 + x�

3
2

�
=

1

2
x�

1
2 � x�2 � 3

2
x�

5
2 :

14. s0(x) =
d

dx
(arctan(2� x)) =

�1
1 + (2� x)2

:

15. r0(�) =
d

d�

�
e(e

�+e��)
�
= e(e

�+e��) �e� � e��
�
:

16. Using the chain rule, we get:
m0(n) = cos(en) � (en)

17. Using the chain rule we get:

k0(�) = etan(sin�)(tan(sin�))0 = etan(sin�) � 1

cos2(sin�)
� cos�:

18. Here we use the product rule, and then the chain rule, and then the product rule.

g0(t) = cos(
p
tet) + t(cos

p
tet)0 = cos(

p
tet) + t(� sin(

p
tet) � (

p
tet)0)

= cos(
p
tet)� t sin(

p
tet) �

�p
tet +

1

2
p
t
et
�

19. f 0(r) = e(tan 2 + tan r)e�1(tan 2 + tan r)0 = e(tan 2 + tan r)e�1
�

1

cos2 r

�
20. y0 = 0

21.
d

dx
xetanx = etanx + xetanx

1

cos2 x
:

22.
dy

dx
= 2e2x sin2(3x) + e2x(2 sin(3x) cos(3x)3) = 2e2x sin(3x)(sin(3x) + 3 cos(3x))

23. g0(x) =
6x

1 + (3x2 + 1)2
=

6x

9x4 + 6x2 + 2

24. g0(w) =
d

dw

�
1

2w + ew

�
= �2w ln 2 + ew

(2w + ew)2
:

25.
dy

dx
= (ln 2)2sinx cos x � cosx+ 2sinx(� sinx) = 2sin x

�
(ln 2) cos2 x� sinx

�
26. h(x) = ax � ln e = ax, so h0(x) = a.

27. k0(x) = a

28. f 0(�) = kek�

29. Using the product rule and factoring gives f0(t) = e�4kt(cos t� 4k sin t):
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30. Using the chain rule gives f0(x) = 5 ln(a)a5x:

31. Using the quotient rule gives

f 0(x) =
(�2x)(a2 + x2)� (2x)(a2 � x2)

(a2 + x2)2

=
�4a2x

(a2 + x2)2
:

32. Using the quotient rule gives

w0(r) =
2ar(b+ r3)� 3r2(ar2)

(b+ r3)2

=
2abr� ar4

(b+ r3)2
:

33. Using the quotient rule gives

f 0(s) =

�2spa2 + s2 � sp
a2+s2

(a2 � s2)

(a2 + s2)

=
�2s(a2 + s2)� s(a2 � s2)

(a2 + s2)3=2

=
�2a2s� 2s3 � a2s+ s3

(a2 + s2)3=2

=
�3a2s� s3

(a2 + s2)3=2
:

34. Using the product rule gives

H 0(t) = 2ate�ct � c(at2 + b)e�ct

= (�cat2 + 2at� bc)e�ct:

35.
d

d�

p
a2 � sin2 � =

1

2
p
a2 � sin2 �

(�2 sin � cos �) = � sin � cos �p
a2 � sin2 �

.

36.
dy

dx
=

1

1 +
�
2
x

�2 ��2x2
�
=

�2
x2 + 4

37. Using the chain rule gives r0(t) =
cos( t

k
)

sin( t
k
)

�
1

k

�
:

38. g0(u) =
aeau

a2 + b2

39. Since g(w) = 5(a2 � w2)�2; g0(w) = �10(a2 � w2)�3(�2w) = 20w

(a2 �w2)3

40.

dy

dx
=

(ex + e�x)(ex + e�x)� (ex � e�x)(ex � e�x)

(ex + e�x)2

=
(ex + e�x)2 � (ex � e�x)2

(ex + e�x)2
=

(e2x + 2 + e�2x)� (e2x � 2 + e�2x)

(ex + e�x)2

=
4

(ex + e�x)2
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41. Using the quotient and chain rules, we have

dy

dx
=

(aeax + ae�ax)(eax + e�ax)� (eax � e�ax)(aeax � ae�ax)

(eax + e�ax)2

=
a(eax + e�ax)2 � a(eax � e�ax)2

(eax + e�ax)2

=
a[(e2ax + 2 + e�2ax)� (e2ax � 2 + e�2ax)]

(eax + e�ax)2

=
4a

(eax + e�ax)2

42.
dy

d�
=

1

2
(cos(5�))�

1
2 (� sin(5�) � 5) + 2 sin(6�) cos(6�) � 6

= �5

2

sin(5�)p
cos(5�)

+ 12 sin(6�) cos(6�)

43. r0(�) =
d

d�
sin[(3� � �)2] = cos[(3� � �)2] � 2(3� � �) � 3 = 6(3� � �) cos[(3� � �)2]:

44.
dy

dz
= 3(x2 + 5)2(2x)(3x3 � 2)2 + (x2 + 5)3[2(3x3 � 2)(9x2)]

= 3(2x)(x2 + 5)2(3x3 � 2)[(3x3 � 2) + (x2 + 5)(3x)]

= 6x(x2 + 5)2(3x3 � 2)[6x3 + 15x� 2]

45. Since tan(arctan(k�)) = k�, because tan and arctan are inverse functions, we have N0(�) = k.

46. Using the product rule gives h0(t) = kekt(sin at+ cos bt) + ekt(a cos at� b sin bt):

47. f 0(x) =
d

dx
(2� 4x� 3x2)(6xe � 3�) = (�4� 6x)(6xe � 3�) + (2� 4x� 3x2)(6exe�1):

48. f 0(t) = 4(sin(2t)� cos(3t))3[2 cos(2t) + 3 sin(3t)]

49. Since cos2 y + sin2 y = 1, we have s(y) = 3
p
1 + 3 =

3
p
4. Thus s0(y) = 0.

50.

f 0(x) = (�2x+ 6x2)(6� 4x+ x7) + (4� x2 + 2x3)(�4 + 7x6)

= (�12x+ 44x2 � 24x3 � 2x8 + 6x9) + (�16 + 4x2 � 8x3 + 28x6 � 7x8 + 14x9)

= �16� 12x+ 48x2 � 32x3 + 28x6 � 9x8 + 20x9

51.

h0(x) =
�
� 1

x2
+

2

x3

��
2x3 + 4

�
+
�
1

x
� 1

x2

��
6x2

�
= �2x+ 4� 4

x2
+

8

x3
+ 6x� 6

= 4x� 2� 4x�2 + 8x�3

52. Note: f(z) = (5z)1=2 +5z1=2 + 5z�1=2 �p5z�1=2 +
p
5, so f 0(z) =

5

2
(5z)�1=2 +

5

2
z�1=2 � 5

2
z�3=2 +

p
5

2
z�3=2.

53. We wish to find the slope m = dy=dx. To do this, we can implicitly differentiate the given formula in terms of x:

x2 + 3y2 = 7

2x+ 6y
dy

dx
=

d

dx
(7) = 0

dy

dx
=
�2x
6y

=
�x
3y

:

Thus, at (2;�1), m = �(2)=3(�1) = 2=3.
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54. Taking derivatives implicitly, we find

dy

dx
+ cos y

dy

dx
+ 2x = 0

dy

dx
=

�2x
1 + cos y

So, at the point x = 3; y = 0;
dy

dx
=

(�2)(3)
1 + cos 0

=
�6
2

= �3:

55.

2xy + x2
dy

dx
� 2

dy

dx
= 0

(x2 � 2)
dy

dx
= �2xy

dy

dx
=

�2xy
(x2 � 2)

56.

3x2 + 3y2
dy

dx
� 8xy � 4x2

dy

dx
= 0

(3y2 � 4x2)
dy

dx
= 8xy � 3x2

dy

dx
=

8xy � 3x2

3y2 � 4x2

57. Differentiating implicitly on both sides with respect to x,

a cos(ay)
dy

dx
� b sin(bx) = y + x

dy

dx

(a cos(ay)� x)
dy

dx
= y + b sin(bx)

dy

dx
=

y + b sin(bx)

a cos(ay)� x
:

58. First, we differentiate with respect to x:

x � dy
dx

+ y � 1 + 2y
dy

dx
= 0

dy

dx
(x+ 2y) = �y

dy

dx
=

�y
x+ 2y

:

At x = 3, we have

3y + y2 = 4

y2 + 3y � 4 = 0

(y � 1)(y + 4) = 0:

Our two points, then, are (3; 1) and (3;�4).

At (3; 1);
dy

dx
=

�1
3 + 2(1)

= �1

5
; Tangent line: (y � 1) = �1

5
(x� 3):

At (3;�4); dy

dx
=

�(�4)
3 + 2(�4) = �4

5
; Tangent line: (y + 4) = �4

5
(x� 3):
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Problems

59. Since W is proportional to r3, we have W = kr3 for some constant k. Thus, dW=dr = k(3r2) = 3kr2. Thus, dW=dr
is proportional to r2.

60. Taking the values of f , f 0, g, and g0 from the table we get:

(a) h(4) = f(g(4)) = f(3) = 1.
(b) h0(4) = f 0(g(4))g0(4) = f 0(3) � 1 = 2.
(c) h(4) = g(f(4)) = g(4) = 3.
(d) h0(4) = g0(f(4))f 0(4) = g0(4) � 3 = 3.
(e) h0(4) = (f(4)g0(4)� g(4)f 0(4)) =f2(4) = �5=16.
(f) h0(4) = f(4)g0(4) + g(4)f 0(4) = 13.

61. (a) H 0(2) = r0(2)s(2) + r(2)s0(2) = �1 � 1 + 4 � 3 = 11:

(b) H 0(2) =
r0(2)

2
p
r(2)

=
�1
2
p
4
= �1

4
:

(c) H 0(2) = r0(s(2))s0(2) = r0(1) � 3, but we don’t know r0(1).
(d) H 0(2) = s0(r(2))r0(2) = s0(4)r0(2) = �3:

62. (a) f(x) = x2 � 4g(x)
f 0(x) = 2x� 4g0(x)
f 0(2) = 2(2)� 4(�4) = 4 + 16 = 20

(b) f(x) = x
g(x)

f 0(x) = g(x)�xg0(x)
(g(x))2

f 0(2) = g(2)�2g0(2)
(g(2))2

= 3�2(�4)
(3)2

= 11
9

(c) f(x) = x2g(x)
f 0(x) = 2xg(x) + x2g0(x)
f 0(2) = 2(2)(3) + (2)2(�4) = 12� 16 = �4

(d) f(x) = (g(x))2

f 0(x) = 2g(x) � g0(x)
f 0(2) = 2(3)(�4) = �24

(e) f(x) = x sin(g(x))
f 0(x) = sin(g(x)) + x cos(g(x)) � g0(x)
f 0(2) = sin(g(2)) + 2 cos(g(2)) � g0(2)

= sin 3 + 2 cos(3) � (�4)
= sin 3 � 8 cos 3

(f) f(x) = x2 ln(g(x))

f 0(x) = 2x ln(g(x)) + x2( g
0(x)
g(x)

)

f 0(2) = 2(2) ln 3 + (2)2(�4
3
)

= 4 ln 3� 16
3

63. (a) f(x) = x2 � 4g(x)
f(2) = 4� 4(3) = �8
f 0(2) = 20
Thus, we have a point (2;�8) and slope m = 20. This gives

�8 = 2(20) + b

b = �48; so

y = 20x� 48:

(b) f(x) =
x

g(x)

f(2) =
2

3

f 0(2) =
11

9
Thus, we have point (2; 2

3
) and slope m = 11

9
. This gives

2

3
= (

11

9
)(2) + b
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b =
2

3
� 22

9
=
�16
9

; so

y =
11

9
x� 16

9
:

(c) f(x) = x2g(x)
f(2) = 4 � g(2) = 4(3) = 12
f 0(2) = �4
Thus, we have point (2; 12) and slope m = �4. This gives

12 = 2(�4) + b

b = 20; so

y = �4x+ 20:

(d) f(x) = (g(x))2

f(2) = (g(2))2 = (3)2 = 9
f 0(2) = �24
Thus, we have point (2; 9) and slope m = �24. This gives

9 = 2(�24) + b

b = 57; so

y = �24x+ 57:

(e) f(x) = x sin(g(x))
f(2) = 2 sin(g(2)) = 2 sin 3
f 0(2) = sin 3� 8 cos 3
We will use a decimal approximation for f(2) and f0(2), so the point (2; 2 sin 3) � (2; 0:28) and m � 8:06. Thus,

0:28 = 2(8:06) + b

b = �15:84; so

y = 8:06x� 15:84:

(f) f(x) = x2 ln g(x)
f(2) = 4 ln g(2) = 4 ln 3 � 4:39

f 0(2) = 4 ln 3� 16

3
� �0:94.

Thus, we have point (2; 4:39) and slope m = �0:94. This gives

4:39 = 2(�0:94) + b

b = 6:27; so

y = �0:94x+ 6:27:

64. When we zoom in on the origin, we find that two functions are not defined there. The other functions all look like straight
lines through the origin. The only way we can tell them apart is their slope.

The following functions all have slope 0 and are therefore indistinguishable:
sinx� tanx, x2

x2+1
, x� sinx, and 1�cos x

cos x
.

These functions all have slope 1 at the origin, and are thus indistinguishable:
arcsin x, sinx

1+sinx
, arctanx, ex � 1, x

x+1
, and x

x2+1
.

Now, sinx
x
� 1 and �x lnx both are undefined at the origin, so they are distinguishable from the other functions. In

addition, while sinx
x
� 1 has a slope that approaches zero near the origin, �x lnx becomes vertical near the origin, so

they are distinguishable from each other.
Finally, x10 + 10

p
x is the only function defined at the origin and with a vertical tangent there, so it is distinguishable

from the others.

65. It makes sense to define the angle between two curves to be the angle between their tangent lines. (The tangent lines are
the best linear approximations to the curves). See Figure 3.20. The functions sinx and cosx are equal at x = �

4
.

For f1(x) = sinx; f 01(
�

4
) = cos(

�

4
) =

p
2

2

For f2(x) = cosx; f 02(
�

4
) = � sin(

�

4
) = �

p
2

2
:



172 Chapter Three /SOLUTIONS

Using the point (�
4
;
p
2
2
) for each tangent line we get y =

p
2
2
x+

p
2
2
(1� �

4
) and y = �

p
2
2
x+

p
2
2
(1+ �

4
), respectively.

�
4

p
2
2

�
1 � �

4

�

p
2
2

�
1 + �

4

�

�
�

y = sinx

y = �

p
2
2 x+

p
2
2

�
1 + �

4

�

y =

p
2
2 x+

p
2
2

�
1� �

4

�

y = cosx
x

y

Figure 3.20
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�

p
2
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�
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�
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�
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6

?

p
2�
8

y

Figure 3.21

There are two possibilities of how to define the angle between the tangent lines, indicated by � and � above. The
choice is arbitrary, so we will solve for both. To find the angle, �, we consider the triangle formed by these two lines and
the y-axis. See Figure 3.21.

tan
�
1

2
�
�
=

p
2�=8

�=4
=

p
2

2

1

2
� = 0:61548 radians

� = 1:231 radians, or 70:5Æ:

Now let us solve for �; the other possible measure of the angle between the two tangent lines. Since � and � are
supplementary, � = � � 1:231 = 1:909 radians, or 109:4Æ .

66. The curves meet when 1 + x� x2 = 1� x+ x2, that is when 2x(1� x) = 0 so that x = 1 or x = 0. Let

y1(x) = 1 + x� x2 and y2(x) = 1� x+ x2:

Then
y1
0 = 1� 2x and y2

0 = �1 + 2x:

At x = 0, y10 = 1, y20 = �1 so that y10 � y20 = �1 and the curves are perpendicular. At x = 1, y10 = �1, y20 = 1
so that y10 � y20 = �1 and the curves are perpendicular.

67. The curves meet when 1 � x3=3 = x � 1, that is when x3 + 3x � 6 = 0. So the roots of this equation give us the x-
coordinates of the intersection point. By numerical methods, we see there is one solution near x = 1:3. See Figure 3.22.
Let

y1(x) = 1� x3

3
and y2(x) = x� 1:

So we have
y1
0 = �x2 and y2

0 = 1:

However, y20(x) = +1, so if the curves are to be perpendicular when they cross, then y10 must be �1. Since y10 = �x2,
y1
0 = �1 only at x = �1 which is not the point of intersection. The curves are therefore not perpendicular when they

cross.

�2 �1

1

2

�20

�15

�10

�5

5

y = x3 + 3x� 6

x

y

Figure 3.22
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68. Differentiating gives
dy

dx
= lnx+ 1� b.

To find the point at which the graph crosses the x-axis, set y = 0 and solve for x:

0 = x lnx� bx

0 = x(lnx� b):

Since x > 0, we have

lnx� b = 0

x = eb:

At the point (eb; 0), the slope is
dy

dx
= ln

�
eb
�
+ 1� b = b+ 1� b = 1:

Thus the equation of the tangent line is

y � 0 = 1(x� eb)

y = x� eb:

69. (a)
dg

dr
= GM

d

dr

�
1

r2

�
= GM

d

dr

�
r�2

�
= GM(�2)r�3 = �2GM

r3
.

(b)
dg

dr
is the rate of change of acceleration due to the pull of gravity. The further away from the center of the earth, the

weaker the pull of gravity is. So g is decreasing and therefore its derivative,
dg

dr
, is negative.

(c) By part (a),

dg

dr

����
r=6400

= �2GM

r3

����
r=6400

= �2(6:67� 10�20)(6� 1024)

(6400)3
� �3:05 � 10�6:

(d) It is reasonable to assume that g is a constant near the surface of the earth.

70. The population of Mexico is given by the formula

M = 84(1 + 0:026)t = 84(1:026)t million

and that of the US by
U = 250(1 + 0:007)t = 250(1:007)t million;

where t is measured in years (t = 0 corresponds to the year 1990). So,

dM

dt

����
t=0

= 84
d

dt
(1:026)t

����
t=0

= 84(1:026)t ln(1:026)

����
t=0

� 2:156

and
dU

dt

����
t=0

= 250
d

dt
(1:007)t

����
t=0

= 250(1:007)t ln(1:007)

����
t=0

� 1:744

Since
dM

dt

����
t=0

>
dU

dt

����
t=0

, the population of Mexico was growing faster in 1990.
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71. (a) If the distance s(t) = 20e
t
2 , then the velocity, v(t), is given by

v(t) = s0(t) =
�
20e

t
2

�0
=
�
1

2

��
20e

t
2

�
= 10e

t
2 :

(b) Observing the differentiation in (a), we note that

s0(t) = v(t) =
1

2

�
20e

t
2

�
=

1

2
s(t):

Substituting s(t) for 20e
t
2 , we obtain s0(t) = 1

2
s(t):

72. (a)

30

P = 30e�3:23�10
�5h

P

h

(b)
dP

dh
= 30e�3:23�10

�5h(�3:23� 10�5)

so
dP

dh

����
h=0

= �30(3:23 � 10�5) = �9:69 � 10�4

Hence, at h = 0; the slope of the tangent line is�9:69 � 10�4, so the equation of the tangent line is

y � 30 = (�9:69 � 10�4)(h� 0)

y = (�9:69 � 10�4)h+ 30:

(c) The rule of thumb says �
Drop in pressure from
sea level to height h

�
=

h

1000

But since the pressure at sea level is 30 inches of mercury, this drop in pressure is also (30� P ); so

30� P =
h

1000

giving
P = 30� 0:001h:

(d) The equations in (b) and (c) are almost the same: both have P intercepts of 30, and the slopes are almost the same
(9:69 � 10�4 � 0:001): The rule of thumb calculates values of P which are very close to the tangent lines, and
therefore yields values very close to the curve.

(e) The tangent line is slightly below the curve, and the rule of thumb line, having a slightly more negative slope, is
slightly below the tangent line (for h > 0). Thus, the rule of thumb values are slightly smaller.

73.
dy

dt
= �7:5(0:507) sin(0:507t) = �3:80 sin(0:507t)

(a) When t = 6, dy
dt

= �3:80 sin(0:507 � 6) = �0:38 meters/hour. So the tide is falling at 0:38 meters/hour.
(b) When t = 9, dy

dt
= �3:80 sin(0:507 � 9) = 3:76 meters/hour. So the tide is rising at 3:76 meters/hour.

(c) When t = 12, dy
dt

= �3:80 sin(0:507 � 12) = 0:75 meters/hour. So the tide is rising at 0:75 meters/hour.
(d) When t = 18, dy

dt
= �3:80 sin(0:507 � 18) = �1:12 meters/hour. So the tide is falling at 1:12 meters/hour.
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74. Since we’re given that the instantaneous rate of change of T at t = 30 is 2, we want to choose a and b so that the derivative
of T agrees with this value. Differentiating, T 0(t) = ab � e�bt. Then we have

2 = T 0(30) = abe�30b or e�30b =
2

ab

We also know that at t = 30, T = 120, so

120 = T (30) = 200� ae�30b or e�30b =
80

a

Thus
80

a
= e�30b =

2

ab
, so b = 1

40
= 0:025 and a = 169:36.

75. (a) Differentiating, we see

v =
dy

dt
= �2�!y0 sin(2�!t)

a =
dv

dt
= �4�2!2y0 cos(2�!t):

(b) We have

y = y0 cos(2�!t)

v = �2�!y0 sin(2�!t)
a = �4�2!2y0 cos(2�!t):

So

Amplitude of y is jy0j;
Amplitude of v is j2�!y0j = 2�!jy0j;
Amplitude of a is j4�2!2y0j = 4�2!2jy0j:

The amplitudes are different (provided 2�! 6= 1). The periods of the three functions are all the same, namely 1=!.
(c) Looking at the answer to part (a), we see

d2y

dt2
= a = �4�2!2 (y0 cos(2�!t))

= �4�2!2y:

So we see that
d2y

dt2
+ 4�2!2y = 0:

76. (a) Since lim
t!1

e�0:1t = 0, we see that lim
t!1

1000000

1 + 5000e�0:1t
= 1000000. Thus, in the long run, close to 1;000;000

people will have had the disease. This can be seen in the figure below.

1;000;000 N(t)

t

N

(b) The rate at which people fall sick is given by the first derivative N0(t):
N 0(t) � �N

�t
, where �t = 1 day.

N 0(t) =
500;000;000

e0:1t(1 + 5000e�0:1t)2
=

500;000;000

e0:1t + 25;000;000e�0:1t + 104
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Graphing this we see that the maximum value of N0(t) is approximately 25;000. Therefore the maximum
number of people to fall sick on any given day is 25;000.

50 100 150 200

5;000

10;000

15;000

20;000

25;000

N 0(t)

t

dN
dt

77. Let r be the radius of the balloon. Then its volume, V , is

V =
4

3
�r3:

We need to find the rate of change of V with respect to time, that is dV=dt. Since V = V (r),

dV

dr
= 4�r2

so that by the chain rule,
dV

dt
=
dV

dr

dr

dt
= 4�r2 � 1:

When r = 5, dV=dt = 100� cm3/sec.

78. The radius r is related to the volume by the formula V = 4
3
�r3. By implicit differentiation, we have

dV

dt
=

4

3
�3r2

dr

dt
= 4�r2

dr

dt
:

The surface area of a sphere is 4�r2, so we have

dV

dt
= s � dr

dt
;

but since
dV

dt
=

1

3
s was given, we have

dr

dt
=

1

3
:

79. (a) Since d�=dt represents the rate of change of � with time, d�=dt represents the angular velocity of the disk.
(b) Suppose P is the point on the rim shown in Figure 3.23.

�

a

x

s

P

K

I

Figure 3.23
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Any other point on the rim is moving at the same speed, though in a different direction. We know that since � is
in radians,

s = a�:

Since a is a constant, we know
ds

dt
= a

d�

dt
:

But ds=dt = v, the speed of the point on the rim, so

v = a
d�

dt
:

80. Using Pythagoras’ theorem, we see that the distance x between the aircraft’s current position and the point 2 miles directly
above the ground station are related to s by the formula x = (s2� 22)1=2. See Figure 3.24. The speed along the aircraft’s
constant altitude flight path is

dx

dt
=
�
1

2

�
(s2 � 4)�1=2(2s)

�
ds

dt

�
=

s

x

ds

dt
:

When s = 4:6 and ds=dt = 210,

dx

dt
=

4:6p
(4:6)2 � 4

210

=
966p

21:16 � 4

=
966

4:14
� 233:2 miles/hour.

G (Ground station)

A (Aircraft)

s

x

2

Figure 3.24

81. We want to find dP=dV . Solving PV = k for P gives

P = k=V

so,
dP

dV
= � k

V 2
:

82. (a) Since V = k=P , the volume decreases.
(b) Since PV = k and P = 2 when V = 10, we have k = 20, so

V =
20

P
:

We think of both P and V as functions of time, so by the chain rule

dV

dt
=

dV

dP

dP

dt
;

dV

dt
= � 20

P 2

dP

dt
:

We know that dP=dt = 0:05 atm/min when P = 2 atm, so

dV

dt
= �20

22
� (0:05) = �0:25 cm3/min:
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83. (a) If y = lnx, then

y0 =
1

x

y00 = � 1

x2

y000 =
2

x3

y0000 = �3 � 2
x4

and so
y(n) = (�1)n+1(n� 1)!x�n:

(b) If y = xex, then

y0 = xex + ex

y00 = xex + 2ex

y000 = xex + 3ex

so that
y(n) = xex + nex:

(c) If y = ex cos x, then

y0 = ex(cosx� sinx)

y00 = �2ex sinx
y000 = ex(�2 cosx� 2 sinx)

y(4) = �4ex cosx
y(5) = ex(�4 cosx+ 4 sinx)

y(6) = 8ex sinx:

Combining these results we get

y(n) = (�4)(n�1)=4ex(cos x� sinx); n = 4m+ 1; m = 0; 1; 2; 3; : : :

y(n) = �2(�4)(n�2)=4ex sinx; n = 4m+ 2; m = 0; 1; 2; 3; : : :

y(n) = �2(�4)(n�3)=4ex(cosx+ sin x); n = 4m+ 3; m = 0; 1; 2; 3; : : :

y(n) = (�4)(n=4)ex cosx; n = 4m; m = 1; 2; 3; : : : :

84. (a) We multiply through by h = f � g and cancel as follows:

f 0

f
+
g0

g
=

h0

h�
f 0

f
+
g0

g

�
� fg =

h0

h
� fg

f 0

f
� fg + g0

g
� fg =

h0

h
� h

f 0 � g + g0 � f = h0;

which is the product rule.
(b) We start with the product rule, multiply through by 1=(fg) and cancel as follows:

f 0 � g + g0 � f = h0

(f 0 � g + g0 � f) � 1

fg
= h0 � 1

fg

(f 0 � g) � 1

fg
+ (g0 � f) � 1

fg
= h0 � 1

fg

f 0

f
+
g0

g
=

h0

h
;

which is the additive rule shown in part (a).
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85. This problem can be solved by using either the quotient rule or the fact that

f 0

f
=

d

dx
(ln f) and

g0

g
=

d

dx
(ln g):

We use the second method. The relative rate of change of f=g is (f=g)0=(f=g), so

(f=g)0

f=g
=

d

dx
ln

�
f

g

�
=

d

dx
(ln f � ln g) =

d

dx
(ln f)� d

dx
(ln g) =

f 0

f
� g0

g
:

Thus, the relative rate of change of f=g is the difference between the relative rates of change of f and of g.

CAS Challenge Problems

86. (a) Answers from different computer algebra systems may be in different forms. One form is:

d

dx
(x+ 1)x = x(x+ 1)x�1 + (x+ 1)x ln(x+ 1)

d

dx
(sinx)x = x cos x(sinx)x�1 + (sinx)x ln(sinx)

(b) Both the answers in part (a) follow the general rule:

d

dx
f(x)x = xf 0(x) (f(x))x�1 + (f(x))x ln(f(x)):

(c) Applying this rule to g(x), we get

d

dx
(lnx)x = x(1=x)(lnx)x�1 + (lnx)x ln(lnx) = (lnx)x�1 + (lnx)x ln(lnx):

This agrees with the answer given by the computer algebra system.
(d) We can write f(x) = eln(f(x)). So

(f(x))x = (eln(f(x)))x = ex ln(f(x)):

Therefore, using the chain rule and the product rule,

d

dx
(f(x))x =

d

dx
(x ln(f(x))) � ex ln(f(x)) =

�
ln(f(x)) + x

d

dx
ln(f(x))

�
ex ln(f(x))

=

�
ln(f(x)) + x

f 0(x)

f(x)

�
(f(x))x = ln(f(x)) (f(x))x + xf 0(x) (f(x))x�1

= xf 0(x) (f(x))x�1 + (f(x))x ln(f(x)):

87. (a) A CAS gives f 0(x) = 1:
(b) By the chain rule,

f 0(x) = cos(arcsinx) � 1p
1� x2

:

Now cos t = �
p

1� sin2 t. Furthermore, if ��=2 � t � �=2 then cos t � 0, so we take the positive square root

and get cos t =
p

1� sin2 t. Since��=2 � arcsin x � �=2 for all x in the domain of arcsin, we have

cos(arcsin x) =
p

1� (sin(arcsin x))2 =
p

1� x2;

so
d

dx
sin(arcsin(x)) =

p
1� x2 � 1p

1� x2
= 1:

(c) Since sin(arcsin(x)) = x, its derivative is 1.

88. (a) A CAS gives g0(r) = 0.
(b) Using the product rule,

g0(r) =
d

dr
(2�2r) � 4r + 2�2r

d

dr
(4r) = �2 ln 2 � 2�2r4r + 2�2r ln 4 � 4r

= � ln 4 � 2�2r4r + ln 4 � 2�2r4r = (� ln 4 + ln 4)2�2r4r = 0 � 2�2r4r = 0:

(c) By the laws of exponents, 4r = (22)r = 22r , so 2�2r4r = 2�2r22r = 20 = 1. Therefore, its derivative is zero.
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89. (a) A CAS gives h0(t) = 0
(b) By the chain rule

h0(t) =
d
dt

�
1� 1

t

�
1� 1

t

+
d
dt

�
t

t�1
�

t
t�1

=
1
t2

t�1
t

+

1
t�1 � t

(t�1)2
t

t�1

=
1

t2 � t
+

(t� 1)� t

t2 � t
=

1

t2 � t
+

�1
t2 � t

= 0:

(c) The expression inside the first logarithm is 1 � (1=t) = (t� 1)=t. Using the property logA + logB = log(AB),
we get

ln
�
1 � 1

t

�
+ ln

�
t

t� 1

�
= ln

�
t� 1

t

�
+ ln

�
t

t� 1

�
= ln

�
t� 1

t
� t

1� t

�
= ln 1 = 0:

Thus h(t) = 0, so h0(t) = 0 also.

CHECK YOUR UNDERSTANDING

1. True. Since d(xn)=dx = nxn�1, the derivative of a power function is a power function, so the derivative of a polynomial
is a polynomial.

2. False, since
d

dx

�
�

x2

�
=

d

dx

�
�x�2

�
= �2�x�3 =

�2�
x3

:

3. True, since cos � and therefore cos2 � are periodic, and

d

d�
(tan �) =

1

cos2 �
:

4. False. Since
d

dx
ln(x2) =

1

x2
� 2x =

2

x
and

d2

dx2
ln(x2) =

d

dx

�
2

x

�
= � 2

x2
;

we see that the second derivative of ln(x2) is negative for x > 0. Thus, the graph is concave down.

5. True. Since f 0(x) is the limit

f 0(x) = lim
h!0

f(x+ h)� f(x)

h
;

the function f must be defined for all x.

6. True. The slope of f(x) + g(x) at x = 2 is the sum of the derivatives, f0(2) + g0(2) = 3:1 + 7:3 = 10:4.

7. False. The product rule gives
(fg)0 = fg0 + f 0g:

Differentiating this and using the product rule again, we get

(fg)00 = f 0g0 + fg00 + f 0g0 + f 00g = fg00 + 2f 0g0 + f 00g:

Thus, the right hand side is not equal to fg00 + f 00g in general.

8. True. If f(x) is periodic with period c, then f(x+ c) = f(x) for all x. By the definition of the derivative, we have

f 0(x) = lim
h!0

f(x+ h)� f(x)

h

and

f 0(x+ c) = lim
h!0

f(x+ c+ h)� f(x+ c)

h
:

Since f is periodic, for any h 6= 0, we have

f(x+ h)� f(x)

h
=

f(x+ c+ h)� f(x+ c)

h
:

Taking the limit as h! 0, we get that f 0(x) = f 0(x+ c), so f 0 is periodic with the same period as f(x).
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9. True; differentiating the equation with respect to x, we get

2y
dy

dx
+ y + x

dy

dx
= 0:

Solving for dy=dx, we get that
dy

dx
=

�y
2y + x

:

Thus dy=dx exists where 2y + x 6= 0. Now if 2y + x = 0, then x = �2y. Substituting for x in the original equation,
y2 + xy � 1 = 0, we get

y2 � 2y2 � 1 = 0:

This simplifies to y2 + 1 = 0, which has no solutions. Thus dy=dx exists everywhere.

10. False. The slope is given by
dy

dx
=

dy=dt

dx=dt
=

2t cos(t2)

�2t sin(t2) = �cos(t2)

sin(t2)
:

11. False. If f(x) = jxj, then f(x) is not differentiable at x = 0 and f 0(x) does not exist at x = 0.

12. False. If f(x) = lnx, then f 0(x) = 1=x, which is decreasing for x > 0.

13. False; the fourth derivative of cos t+C, whereC is any constant, is indeed cos t. But any function of the form cos t+p(t),
where p(t) is a polynomial of degree less than or equal to 3, also has its fourth derivative equal to cos t. So cos t+ t2 will
work.

14. False; For example, the inverse function of f(x) = x3 is x1=3, and the derivative of x1=3 is (1=3)x�2=3, which is not
1=f 0(x) = 1=(3x2).

15. False; for example, if both f(x) and g(x) are constant functions, such as f(x) = 6; g(x) = 10, then (fg)0(x) = 0, and
f 0(x) = 0 and g0(x) = 0.

16. True; looking at the statement from the other direction, if both f(x) and g(x) are differentiable at x = 1, then so is their
quotient, f(x)=g(x), as long as it is defined there, which requires that g(1) 6= 0. So the only way in which f(x)=g(x)
can be defined but not differentiable at x = 1 is if either f(x) or g(x), or both, is not differentiable there.

17. False; for example, if both f and g are constant functions, then the derivative of f(g(x)) is zero, as is the derivative of
f(x). Another example is f(x) = 5x+ 7 and g(x) = x+ 2.

18. True. Since f 00(x) > 0 and g00(x) > 0 for all x, we have f 00(x) + g00(x) > 0 for all x, which means that f(x) + g(x) is
concave up.

19. False. Let f(x) = x2 and g(x) = x2 � 1. Let h(x) = f(x)g(x). Then h00(x) = 12x2 � 2. Since h00(0) < 0, clearly h
is not concave up for all x.

20. False. Let f(x) = 2x2 and g(x) = x2. Then f(x)� g(x) = x2, which is concave up for all x.

21. False. Let f(x) = e�x and g(x) = x2. Let h(x) = f(g(x)) = e�x
2

. Then h0(x) = �2xe�x2 and h00(x) = (�2 +

4x2)e�x
2

. Since h00(0) < 0, clearly h is not concave up for all x.

22. (a) False. Only if k = f 0(a) is L the local linearization of f .
(b) False. Since f(a) = L(a) for any k, we have limx!a(f(x)� L(x)) = f(a)� L(a) = 0, but only if k = f 0(a) is

L the local linearization of f .

23. (a) This is not a counterexample. Although the product rule says that (fg)0 = f 0g + fg0, that does not rule out the
possibility that also (fg)0 = f 0g0. In fact, if f and g are both constant functions, then both f0g + fg0 and f 0g0 are
zero, so they are equal to each other.

(b) This is not a counterexample. In fact, it agrees with the product rule:

d

dx
(xf(x)) =

�
d

dx
(x)

�
f(x) + x

d

dx
f(x) = f(x) + xf 0(x) = xf 0(x) + f(x):

(c) This is not a counterexample. Although the product rule says that

d

dx
(f(x)2) =

d

dx
f(x) � f(x) = f 0(x)f(x) + f(x)f 0(x) = 2f(x)f 0(x);

it could be true that f 0(x) = 1, so that the derivative is also just 2f(x). In fact, f(x) = x is an example where this
happens.
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(d) This would be a counterexample. If f 0(a) = g0(a) = 0, then

d

dx
(f(x)g(x))

���
x=a

= f 0(a)g(a) + f(a)g0(a) = 0:

So fg cannot have positive slope at x = a. Of course such a counterexample could not exist, since the product rule
is true.

PROJECTS FOR CHAPTER THREE

1. Let r = i=100. (For example if i = 5%, r = 0:05.) Then the balance, $B, after t years is given by

B = P (1 + r)t;

where $P is the original deposit. If we are doubling our money, then B = 2P , so we wish to solve for t in the
equation 2P = P (1 + r)t. This is equivalent to

2 = (1 + r)t:

Taking natural logarithms of both sides and solving for t yields

ln 2 = t ln(1 + r);

t =
ln 2

ln(1 + r)
:

We now approximate ln(1 + r) near r = 0. Let f(r) = ln(1 + r). Then f 0(r) = 1=(1 + r). Thus, f(0) = 0
and f 0(0) = 1, so

f(r) � f(0) + f 0(0)r

becomes
ln(1 + r) � r:

Therefore,

t =
ln 2

ln(1 + r)
�

ln 2

r
=

100 ln 2

i
�

70

i
;

as claimed. We expect this approximation to hold for small values of i; it turns out that values of i up to 10
give good enough answers for most everyday purposes.

2. (a) (i) Set f(x) = sinx, so f 0(x) = cosx. Guess x0 = 3. Then

x1 = 3�
sin 3

cos 3
� 3:1425

x2 = x1 �
sinx1
cosx1

� 3:1415926533;

which is correct to one billionth!
(ii) Newton’s method uses the tangent line at x = 3, i.e. y � sin 3 = cos(3)(x � 3): Around x = 3,

however, sinx is almost linear, since the second derivative sin 00(�) = 0. Thus using the tangent line
to get an approximate value for the root gives us a very good approximation.

3
x

� tangent line

� f(x) = sinx
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(iii) For f(x) = sinx, we have

f(3) = 0:14112

f(4) = �0:7568;

so there is a root in [3; 4]. We now continue bisecting:

[3; 3:5] : f(3:5) = �0:35078 (bisection 1)

[3; 3:25] : f(3:25) = �0:10819 (bisection 2)

[3:125; 3:25] : f(3:125) = 0:01659 (bisection 3)

[3:125; 3:1875] : f(3:1875) = �0:04584 (bisection 4)

We continue this process; after 11 bisections, we know the root lies between 3.1411 and 3.1416, which
still is not as good an approximation as what we get from Newton’s method in just two steps.

(b) (i) We have f(x) = sinx� 2

3
x and f 0(x) = cosx� 2

3
.

Using x0 = 0:904,

x1 = 0:904�
sin(0:904)� 2

3
(0:904)

cos(0:904)� 2

3

� 4:704;

x2 = 4:704�
sin(4:704)� 2

3
(4:704)

cos(4:704)� 2

3

� �1:423;

x3 = �1:433�
sin(�1:423)� 2

3
(�1:423)

cos(�1:423)� 2

3

� �1:501;

x4 = �1:499�
sin(�1:501)� 2

3
(�1:501)

cos(�1:501)� 2

3

� �1:496;

x5 = �1:496�
sin(�1:496)� 2

3
(�1:496)

cos(�1:496)� 2

3

� �1:496:

Using x0 = 0:905,

x1 = 0:905�
sin(0:905)� 2

3
(0:905)

cos(0:905)� 2

3

� 4:643;

x2 = 4:643�
sin(4:643)� 2

3
(4:643)

cos(4:643)� 2

3

� �0:918;

x3 = �0:918�
sin(�0:918)� 2

3
(�0:918)

cos(�0:918)� 2

3

� �3:996;

x4 = �3:996�
sin(�3:996)� 2

3
(�3:996)

cos(�3:996)� 2

3

� �1:413;

x5 = �1:413�
sin(�1:413)� 2

3
(�1:413)

cos(�1:413)� 2

3

� �1:502;

x6 = �1:502�
sin(�1:502)� 2

3
(�1:502)

cos(�1:502)� 2

3

� �1:496:

Now using x0 = 0:906,

x1 = 0:906�
sin(0:906)� 2

3
(0:906)

cos(0:906)� 2

3

� 4:584;
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x2 = 4:584�
sin(4:584)� 2

3
(4:584)

cos(4:584)� 2

3

� �0:509;

x3 = �0:510�
sin(�0:509)� 2

3
(�0:509)

cos(�0:509)� 2

3

� :207;

x4 = �1:300�
sin(:207)� 2

3
(:207)

cos(:207)� 2

3

� �0:009;

x5 = �1:543�
sin(�0:009)� 2

3
(�0:009)

cos(�0:009)� 2

3

� 0;

(ii) Starting with 0.904 and 0.905 yields the same value, but the two paths to get to the root are very
different. Starting with 0.906 leads to a different root. Our starting points were near the maximum
value of f . Consequently, a small change in x0 makes a large change in x1.


