Solutions for Section 3.1
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The derivative, f'(z), is defined as

, flz+h) = fz)
f(z) = lim b
If f(z) =7,then
ron e (=T 0
F@O=m =5 ==’
The definition of the derivative says that
oy — o F@ ) — f(x)
f(@) = lim, h '
Therefore,
vy o L7 +h)+11] - 172 +11] . 17h _
f (@) = Jim, h = fim == =17
y =11z
y' =12zh
y =11z 12,

y =17+ 1227172,
Dividing gives g(t) = t* + k/t so g'(t) = 2t — &
The power rule gives f'(z) = 20z — %

B (w) = 6w™* + gw_lﬂ
y =18z% 4+ 8z — 2.

y =15¢t" — 3¢~/ — T
y =6t — tg% + %3

y =2z — 2%2

yzac—{—%,SOy':l—m%.
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26. f(t) = = +

27.

28. J,(ﬁ): T+— —C
29. Since4/3, , and b are all constants, we have

dv 4 8

% = §7T(27')b = gﬂ'?"b.
30. Sincew isaconstant times g, we have dw/dq = 3ab”.

31. Sincea, b, and c are al constants, we have

dy _ a(2z) +b(1) + 0 = 2az +b.
dx
32. Sincea and b are constants, we have
dp 1, 4s b
dt 0+ 2 2/t

33, ¢'(x) = —%(5954 +2).

34. ' = —122® — 1227 — 6.
35. g(z) = 2" +52" — 2
g (z) = 52" +202° — 1.

Problems

36. So far, we can only take the derivative of powers of x and the sums of constant multiples of powers of x. Since we cannot
write v/ + 3 in thisform, we cannot yet take its derivative.

37. Thez isin the exponent and we haven't learned how to handle that yet.
38. ¢'(z) = mz™ " 4+ 72~V by the power and sum rules.
39. ¢ =6x. (power rule and sum rule)

40. We cannot write M++4 as the sum of powers of x multiplied by constants.
41, ' = —2/32%.  (power rule and sum rule)
2 ft)y=6>-8+3 and  f'(t)=12t—8.

43,
fllx) =122° 4122 — 23 > 1
1222 +122 — 24 >0
12(2° +2-2) >0
12(z +2)(z — 1) > 0.

Hencex >1 or z < -2.

44. Decreasing means f'(z) < 0:
f(x) = 42® — 1227 = 42° (z — 3),

s0 f'(z) < 0 whenz < 3 and = # 0. Concave up means f”' (z) > 0:

' (x) = 1227 — 242 = 122(x — 2)
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so f''(z) > 0 when
122(z —2) >0

r<0 or x>2.
So, both conditions hold forz < 0 or2 < x < 3.
45. The graph increases when dy /dz > 0:
dy
dx
5(z'—1)>0 s0 z'>1 s0 z>1lorz<—1.

=52 —5>0

The graph is concave up when d?y /dz? > 0:

d2y 3

72 0z">0 s0 >0
We need values of z where { > 1 orz < —1} AND {z > 0}, which impliesz > 1. Thus, both conditions hold for all
values of z larger than 1.

46. Since f(z) = z® — 62 — 15z + 20, we have f'(z) = 32> — 12z — 15. Tofind the points a which f'(z) = 0, we solve
32° — 122 —15=10
3(2° -4 —5)=0
3(x+1)(xz —5) =0.

Weseethat f'(z) =0atz = —1and at z = 5. Thegraph of f(z) in Figure 3.1 appears to be horizontal at x = —1 and
at x = 5, confirming what we found analytically.

f(x)
/1 > .
I
—1 I
\J
Figure 3.1

47.
f(z) = —-8+2V2z

fl(r)=—-8+2V2r =4

12
r=—">—=3V2.
22

48. (a) Since the power of x will go down by one every time you take a derivative (until the exponent is zero after which the
derivative will be zero), we can see immediately that £ (z) = 0.
b) FfP(@)=7-6-5-4-3-2-1-2°=5040.

49. Differentiating gives
f(r)y=62" -4z so f(1)=6—-4=2.

Thus the equation of the tangent lineis(y — 1) = 2(x — 1) ory = 2z — 1.
50. (a) Wehave f(2) = 8, so apoint on the tangent lineis (2, 8). Since f'(z) = 3z, the slope of the tangent is given by
m=f(2) =3(2)°=12.

Thus, the equation is
y—8=12(zx —2) or y=12z—16.
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(b) See Figure 3.2. The tangent line lies below the function f(z) = z®, so estimates made using the tangent line are
underestimates.

y =122 — 16

Figure 3.2

51. The slopes of the tangent linesto y = 2? — 2 + 4 are given by y/ = 22 — 2. A line through the origin has equation
y = ma. So, at the tangent point, 2 — 2z + 4 = mz wherem =y’ = 2z — 2.

©’ =2z +4=2c-2)z
2 =2z 4+4=22" -2z

—2?4+4=0
—(z+2)(z—-2)=0
r=2,-2.

Thus, the points of tangency are (2,4) and (—2,12). The lines through these points and the origin are y = 2z and
y = —6x, respectively. Graphically, this can be seen in Figure 3.3:

(—2,12) y=a2—-2x+4

y = —6x

Figure 3.3

52. If f(x) = 2™, then f'(z) = nz™~'. Thismeans f'(1) = n- 1! = n - 1 = n, because any power of 1 equals 1.
53. Since f(z) = az™, f'(z) = anz™ . Weknow that f'(2) = (an)2" ! = 3,and f'(4) = (an)4™ " = 24. Therefore,

fl4) 24

f1(2) 3
(an)4™ '  ra\nt
(an)2n—1 (5) =8

2"~! =8 andthusn = 4.

Substituting n = 4 into the expression for f'(2), we get 3 = a(4)(8), or a = 3/32.
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54. Yes. To see why, we substitute y = z™ into the equation 13z3—y = y. Wefirst calculate % = di(m”) =nz""'. The
T T X
differential equation becomes
13z(nz" ') = 2"

But 13z(nz™~ ') = 13n(z - 2"~ ') = 13nz", s0 we have
13n(z™) = z"

This equality must hold for all z, soweget 13n = 1, s0n = 1/13. Thus, y = «'/'* isasolution.

55. Since f(t) = 700 — 3t*, we have f(5) = 700 — 3(25) = 625 cm. Since f'(t) = —6t, we have f'(5) = —30 cm/year.
In the year 2000, the sand dune was 625 cm high and it was eroding at arate of 30 centimeters per year.
56. (a) Velocity v(t) = & = 4 (1250 — 16t”) = —32¢.
Sincet > 0, the ball’s velocity is negative. Thisisreasonable, since its height y is decreasing.
(b) Accelerationa(t) = v = 4 (—32¢) = —32.
So its acceleration is the negative constant —32.
(c) Theball hitsthe ground when its height y = 0. This gives

1250 — 16t =0
t = £8.84 seconds

We discard t = —8.84 because time ¢ is nonnegative. So the ball hits the ground 8.84 seconds after its release, at
which timeitsvelocity is

v(8.84) = —32(8.84) = —282.88 feet/sec = —192.84 mph.

57. (a) Theaverage velocity betweent = 0 andt = 2 isgiven by

Average velocity — f2) - £(0) _ —4.9(2%) +25(2) +3 -3 _334-3

50 50 5 = 15.2 m/sec.

(b) Since f'(t) = —9.8t + 25, we have
Instantaneous velocity = f'(2) = —9.8(2) + 25 = 5.4 m/sec.

(c) Accelerationisgiven f"(t) = —9.8. Theacceleration at t = 2 (and all other times) isthe acceleration due to gravity,
which is —9.8 m/sec®.

(d) We can use agraph of height against time to estimate the maximum height of the tomato. See Figure 3.4. Alternately,
we can find the answer analytically. The maximum height occurs when thevelocity iszeroand v(t) = —9.8t+25 = 0
when ¢t = 2.6 sec. At thistime the tomato is at aheight of £(2.6) = 34.9. The maximum height is 34.9 meters.

height (m)
34.9

t (sec)
2.6 5.2

Figure 3.4

(e) We seein Figure 3.4 that the tomato hits ground at about ¢ = 5.2 seconds. Alternately, we can find the answer
analytically. The tomato hits the ground when

ft) = —4.9t> + 25t +3 =0.
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We solve for ¢ using the quadratic formula:

=254 ,/(25)% —4(—4.9)(3)
b= 2(—4.9)
_ —25+/6838

-9.8
t=-0.12 and t=5.2.

t

We use the positive values, so the tomato hits the ground at ¢ = 5.2 seconds.
dFF  2GMm

dr r3

l 2w (.1 drT 2w (1 _1 T
50. (@) T = 2n —=_(zz),so_:_(_l 2):__
© \/; V9 i Vg2 Vil

dT
(b) Since 2 is positive, the period T increases as the length [ increases.

58.

60. (@) A =nr?
% = 27r.

(b) Thisistheformulafor the circumference of acircle.

(© A'(r) =~ AH=AC) for small h. When h > 0, the numerator of the difference quotient denotes the area of the
region contained between the inner circle (radius r) and the outer circle (radius » + h). See figure below. As h
approaches 0, this area can be approximated by the product of the circumference of the inner circle and the “width”
of theregion, i.e., h. Dividing this by the denominator, h, we get A" = the circumference of the circle with radius r.

We can also think about the derivative of A astherate of change of areafor asmall change inradius. If the radius
increases by atiny amount, the areawill increase by athin ring whose areais simply the circumference at that radius
times the small amount. To get the rate of change, we divide by the small amount and obtain the circumference.

61. V = 27r® Differentiating gives 42X = 47r® = surface area of asphere.
The difference quotient W is the volume between two spheres divided by the change in radius. Further-

more, when h is very small, the difference between volumes, V (r + h) — V(r), is like a coating of paint of depth h
applied to the surface of the sphere. The volume of the paint is about h - (Surface Area) for small h: dividing by h gives
back the surface area.

Thinking about the derivative as the rate of change of the function for a small change in the variable gives another
way of seeing the result. If you increase the radius of a sphere a small amount, the volume increases by a very thin layer
whose volume is the surface area at that radius multiplied by that small amount.

62. (a)
d(z™! . (z+h)rP—zt 1T 1 1
(dx)_}lffb( )h :}lfi‘%ﬁ{z+h_i]
:nml[ix_(“ﬁm]:nml[ —h ]
hs0h | x(x+h) h=0h | x(x + h)
-1 -1 _
= == =1z

lim ————— =
K0 z(x+h)
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diz™?) . (x4+h)2 —2®
dz h—0 h
= lim 1 -# 1
ko h | (z+h)? B
1 [2*=(x+hn)?
=lim - | ——————
h—oh | x3(x +h)3
— lim 1 [z — (2® 4 3ha® + 3h°z + h®)
T hooh I x3(z + h)3
.1 [—3ha® —3zh> — h®
= lim —
h=oh | z3(x + h)3
i —3z% — 3xh — I’
T hso a3(z 4+ h)3
—31’2 —4
=% = =3z .

(b) For clarity, let n = —k, where k is a positive integer. So z™ = z~*.

Solutions for Section 3.2

.12k —z* — kha® ! —K*

lim —

h—0 h zk(z + h)k

—ka* ! -k —(k+1) k-1
= (@)F =5 kx kx

113

Exercises

1. f'(z) = 2e* + 2z.

2.y =10t + 4e’.

3. ¢y = (In5)5".

4. f'(z) = (In2)2" + 2(In 3)3".

5. ¢y =10z + (In2)2".

6. f'(z) =12e* + (In11)11%.
dy T 2

7. — =4(In10)10" — .
2 — 4 10)10° - 30
dy @

. — =3-2(In4)4".
8 e 3—2(In4)

o B _ %(ms)s” B,

dx
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10. f'(z) = ex® !
11. f(z) = '™ =e' - e”. Then, since e’ isjust a constant,
f'(x) =e-e® =e't®.
12. f(t) = e - e*. Then, sincee” isjust aconstant, () = & (efe”) = e* Le! = e’e’ = €' t?
13 y=elet Y = die(ege*l) = 671%60 =ele =1,
14. 2 = (In4)e”.
15. 2/ = (In4)%4".
16. f'(t) = (In(ln 3))(1In3)".
17. f'(x) =32 +3"In3
18. % —5.5'ln5+46-6'In6
dx
19. % =7"Inw

20. W' (z) = (In(In 2))(In 2)>.
21 f'(z) = (In7)r®

22. Thisisthe sum of an exponential function and a power function, o f'(z) = In(x)n® 4+ 7z™ 1.

23. /() =a"lna + azx® L

24, f'(x) = w2 D 4 (x2)" In(x?)

25. f'(2) = (2 In3)z + (In4)e®

26. g'(z) = ( —x71/3+3m—e):2+ +3"In3.

323
27. y' =2z + (In2)2".

28. ¢ = %xié —In3(3)" =55

(3)".
29. We can take the derivative of the sum z? + 2%, but not the product.

30. Once again, thisis a product of two functions, 2” and <, each of which we can take the derivative of; but we don’t know
how to take the derivative of the product.

31. Sincey = e%e®, 3y = e%e® = 5.

32. y=¢e"" = (%)%, 50y’ =1In(e’) - (*)* = 5e5®.

33. The exponent isz2, and we haven't learned what to do about that yet.

34. f'(2) = (InvA)(VA)* = (In2)2".

35. We can't use our rulesif the exponent isv/6.

Problems

36.

C;—It) = 35,000 - (In 0.98)(0.98").
Att = 23, thisis 35,000(In 0.98)(0.98%%) ~ —444.3%;‘9. (Note: the negative sign indicates that the population is
decreasing.)

37. Since P =1-(1.05)", 22 = In(1.05)1.05°. When t = 10,

dP

— =(n 1.05)(1.05)"° ~ $0.07947/year ~ 7.95¢/year.

38. Wehave f(t) = 5.3(1.018)" so f'(t) = 5.3(In 1.018)(1.018)" = 0.095(1.018)". Therefore
£(0) = 5.3 billion people

and
f'(0) = 0.095 billion people per year.
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In 1990, the population of the world was 5.3 billion people and was increasing at a rate of 0.095 billion people per year.
We also have
£(30) = 5.3(1.018)*° = 9.1 hillion people,
and
1'(30) = 0.095(1.018)*° = 0.16 hillion people per year.
In the year 2020, this model predicts that the population of the world will be 9.1 billion people and will be increasing at
arate of 0.16 billion people per year.

39. % =75(1.35)" In 1.35 =~ 22.5(1.35)".

40. (a) V(4) = 25(0.85)* = 25(0.522) = 13,050. Thus the value of the car after 4 yearsis $13,050.

(b) We have afunction of the form f(t) = Ca’. Weknow that such functions have a derivative of theform (C'In a) - a’.
Thus, V' (t) = 25(0.85)"-In 0.85 = —4.063(0.85)". The unitswould be the change in val ue (in thousands of dollars)
with respect to time (in years), or thousands of dollars/year.

(©) V'(4) = —4.063(0.85)* = —4.063(0.522) = —2.121. This means that at the end of the fourth year, the value of
the car is decreasing by $2121 per year.

(d) V(¢) is a positive decreasing function, so that the value of the automobile is positive and decreasing. V' (¢) is a
negative function whose magnitude is decreasing, meaning the value of the automobile is always dropping, but the
yearly loss of valueis less as time goes on. The graphs of V(¢) and V' () confirm that the value of the car decreases
with time. What they do not take into account are the costs associated with owning the vehicle. At some time, ¢, it
islikely that the costs of owning the vehicle will outweigh its value. At that time, it may no longer be worthwhile to

keep the car.
41. (a) Therate of change of the population is P'(t). If P’(t) is proportional to P(t), we have
P'(t) = kP(t).
(b) If P(t) = Ae*t, then P'(t) = kAe*t = kP(t).
42. (@) f(z) =1 — e” crosses the z-axiswhere 0 = 1 — e*, which happens when e* = 1, s0 z = 0. Since f'(z) = —e”,
f1(0) = —e® = —1.
(b) y=—x

(c) The negative of the reciprocal of —1 is 1, so the equation of the normal lineisy = x.

43. Sincey = 2%, y' = (In2)2". At (0,1), thetangent line has slope In 2 so itsequation isy = (In2)x + 1. Atc, y = 0, S0
0= (In2)c+1,thusc = —=

T2’

44,
g(x) = ax® + bz +c flx)=¢€"
g'(z) = 2ax +b fl(x) =e"
9" (z) = 2a F'(z) =e"

So, using g" (0) = f"(0), etc., wehave2a = 1,b=1,and c = 1, and thus g(z) = 1z” + = + 1, asshown in the
figure below.

%m2+x+1

T

The two functions do look very much alike near = 0. They both increase for large values of x, but ” increases
much more quickly. For very negative values of z, the quadratic goesto co whereas the exponential goesto 0. By choosing
a function whose first few derivatives agreed with the exponential when z = 0, we got a function which looks like the
exponential for z-values near 0.
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45. The derivative of e” is =L (e”) = e”. Thusthe tangent lineat = = 0, hasslope ¢® = 1, and thetangent lineisy = = + 1.
A function which is always concave up will always stay above any of its tangent lines. Thuse® > x + 1 for al z, as
shown in the figure below.

x

Yy=e
. y=x+1

46. The equation 2° = 2z has solutionsx = 1 and z = 2. (Check this by substituting these values into the equation). The
graph below suggests that these are the only solutions, but how can we be sure?

Let'slook at the dope of the curve f(x) = 2%, whichis f'(z) = (In2)2” =~ (0.693)2", and the slope of the line
g(x) = 2z whichis2. Atz = 1, the dope of f(z) islessthan 2; at z = 2, the lope of f(z) is more than 2. Since the
slope of f(z) isawaysincreasing, there can be no other point of intersection. (If there were another point of intersection,
the graph f would have to “turn around”.)

Here's another way of seeing this. Suppose g(x) represents the position of a car going a steady 2 mph, while f(x)
represents a car which starts ahead of g (because the graph of f isabove g) and isinitially going slower than g. The car f
isfirst overtaken by g. All the while, however, f is speeding up until eventually it overtakes g again. Notice that the two
cars will only meet twice (corresponding to the two intersections of the curve): once when g overtakes f and once when
f overtakes g.

y =27
y =2z
(2,4)

(1,2)

47. Forz =0,wehavey =a® = 1andy = 1 + 0 = 1, so both curves go through the point (0, 1) for all values of a.
Differentiating gives

d(a”) =a"lnal,_, =a’lna=1Ina
dx 0
d(l + z)
d =1.
z x=0
The graphs aretangent at x = 0 if
Ina=1 so a=ce

Solutions for Section 3.3

Exercises

1. By the product rule, f'(z) = 2x(z® + 5) + 22(3z%) = 2z* + 3z* + 10z = 52* + 10z. Alternatively, f'(z) =
(x° 4 5z%) = 5z* 4 102. The two answers should, and do, match.

2. Using the product rule,
f'(z) = (In2)2"3" + (In3)2"3" = (In2 + In 3)(2° - 3”) = In(2- 3)(2- 3)" = (In 6)6”
or,since2” - 3° = (2-3)" =6,
f'(x) = (6") = (n6)(6").
The two answers should, and do, match.
3 fl(zr)=x-e"+e"-1=c"(z+1).
4,y =2" +z(In2)2* =2°(1 + zln2).
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5 9y = 2\1/52m + vz (In 2)2°.
6. f(z)=(a— x%) -3%(In 3) + 3” (2a: — 1afé) =3" |(In3)(z® — a:%) + | 2z — L
' 2 2V )|’
7. ltiseasier to do this by multiplying it out first, rather than using the product rulefirst: z = s* —s, 2’ =4s> — 1.
8. % =2te’ + (t° + 3)e’ = e'(t° + 2t + 3).
9.y = (3t7 — 14t)e! + (3 — 7t2 + 1)e! = (£ — 4t% — 14t + 1)e’.
et l—g-e® e"(l-—z) 11—z
10. f (1‘)— (6’”)2 - (ez)Q T er
Tz _ 2z _ 2
11. g'(m) _ 50xe 2251‘ e’ _ 50x — 256z .
esr e’
2.2/ rwy _ 3.2\rw 2.2 3.2
12. g'(w) = 3.2w* (5 )5zgn5)(w )5 _ 32w 5:1) (ln5).
3(br +2)—3r(5) 15r+6 — 157 6
13. ¢'(r) = = =
7(r) (5r + 2)? Gr+2?2  (r+2)?
ron . E+4)—(t—4) 8
WoW=""00r =~ gy
dz 3(5t+2)—(3t+1)5 15t+6—15t—5 1
15. —_— = = = .
dt (5t + 2)2 (5t + 2)? (5t +2)2
;2 +5)(t+3)— (2 +5t+2) > +6t+13
16. z = - = -
(t+3)2 (t+3)2
. . o dz (2t +3)(t+1) — (P +3t+1) dz _t?+2t+2
17. Using the quotient ruleglvesa = G+1)? or i W
18. Divide and then differentiate 5
flz) =2+ p
3
!
fix)y=1- ol
19 w=y>—6y+7. w =2y—6,yF#0.
1 2
' (t2 + 1)2
d (241 d,6 s 1 31 1 _3 /2 s
21, — = — 2 2) = —z2 — — 2 = Y _ — )
dz( 7 > dz(z +2772) 5% 5% 2(3 z77)
1 . -2
22. §'(t) = —4(3+ V)2 (—t*l/z) =—°
g0 =-1B+VD " (5 NCEERVIE
2 9,2
23. '(r) = d r _ (2r)(2r +1) —2r _ 2r(r + 1‘).
dr \ 2r +1 (2r+1)2 (2r +1)2
24. Notice that you can cancel a z out of the numerator and denominator to get
3z
Then
1o (524T7)3 —32(5)
f(z) = (52 +7)2
_ 152421 — 152
T (5z 4+ T)2
21
=— 0.
Gt 7

[If you used the quotient rule correctly without canceling the z out first, your answer should simplify to this one, but
itisusually agood ideato simplify as much as possible before differentiating.]
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_ 17e”(2%) — (In2)(17e")2" _ 17e*(2%)(1 —In2) _ 17¢”(1 —1n2)

!
2. 1(p) = 2p(3+2p”) —dp(L+p®) _6p+4p° —dp—4p® _ 2
PP (3 + 2p?)2 (3 +2p?)? (3+2p?)
27.
243z 4+42%)(1) — (1 4+ 2)(3+ 8z
o) = ¢ )(1) — (1 +2)( )

(2 + 3z + 422)?
_ 2+3z +42° —3— 11z — 82”
(2 + 3z + 422)?
—4z® — 8z — 1
(2 4 3z + 4x2)2°

28. We use the quotient rule. We have

f(z) = (cx +k)(a) — (ax +b)(c) _ acx + ak —acx —bc ak — be
- (cx + k)2 N (cx + k)2 " (cx+ k)2

29. w' = (3t +5)(t* — 7t +2) + (t3 + 5t)(2t — 7).

Problems

30.
f'(x) =32z — 5) + 23z +8) =12z + 1
' (x) =12.

31. Using the product rule, we have
fl(x)y=e " —xe™ "
fl@)=—e"—e " +ae™" = "(z—2).
Sincee™ > 0, for al z, wehave f"(z) < 0if x — 2 < 0, thatis, z < 2.
32. Using the quotient rule, we have

, 0—1(22) —2z

N

—2(x? 4+ 1)% + 2z(42® + 4a)
(22 + 1)*

—2(z”> +1)> + 82°(2* + 1)
(z2 + 1)4

—2(z® 4+ 1) + 822

(zZ + 1)°
2(32% — 1)
(z2+1)3

Since (22 +1)% > 0 for al =, wehave g (z) < 0if (32 — 1) < 0, or when

3z < 1
1 1
—— <z < ——.

V3 V3
33. Since f(0) = —5/1 = —5, the tangent line passes through the point (0, —5), so its vertical intercept is —5. To find the
slope of the tangent line, we find the derivative of f(z) using the quotient rule:

(x+1)-2—(2x-5)-1 7
(z +1)2 T (x4 1)

Atz = 0, the lope of the tangent lineism = f'(0) = 7. The equation of the tangent lineisy = 7z — 5.

fi(z) =
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34.
1
Ft) ==
L.o—ef-1
() = €
£ =05
_Zl_ -
ot
35. f(x) =€e"-€”
f'(z) =e® - e® +e” - e” = 2>
36.
f(l‘) — eze2z

f’(x) — 6z(62z)l + (61)162z
= 2e%e”” + e”e>” (from Problem 35)

37. Since e = 2¢>* and L e®” = 3¢, we might guessthat L e*” = 4e**.

119

38. (a) Although the answer you would get by using the quotient rule is equivalent, the answer looks simpler in this case if

you just use the product rule:

xr xr

| e e
et )= -
T x T

e’ © e 3e”
G-z () -5-%
d e” e” ne®
b e = o
30.
d(z?) d d(z?) d ,
dx —%(m z) dzr _E( z)
_ d(z)  d(z) _ od(z) | d(z?)
R R =T T
= 2zx.
_ 2d(z) d(z) , d(z)
=z dr +z a:dx +$dm
_ 2d(x) | pd(x) | pd(x)
=7 dx o dzr T dx
= 32°.
40. Since
2172 x1/2:m,
we differentiate to obtain y d
@ 1/2y 172 /2 @ 1/2y _
dm(x Y-z T+ dx(m )=1

Now solve for d(z'/?)/dz:

dx
ﬂ(x )= 2x1/2"
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41.

42.

45.

46.
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(@) Wehaveh'(2) = f'(2) +¢'(2) =5 -2 =3.
(b) Wehaveh/(2) = f'(2)g(2) + f(2)g'(2) = 5(4) + 3(=2) = 14.
1oy — £1(2)9(2) — f(2)g'(2) _ 5(4) —3(=2) _ 26 _ 13
(c) Wehaveh'(2) = OE = P 6= 35
(@) C'(2) = F/(:)H(z) + H'()F(2),
G'(3)=F'(3)H(3) + H'(3)F(3) =4-1+3-5 = 10.
1oy Flw)H(w) — H'(w)F(w) ray - 41) =30) _
(b) G'(w) = )l ,0G'(3) = B =—11.
f'(z) = 102%® 4+ z'%” isof theform g'h + h'g, where

g(z) =", g'(x) = 102°

and
h(z) =", h'(z) = e".
Therefore, using the product rule, let f = g - h, with g(z) = z'° and h(z) = e®. Thus

fzx) =z'0".

(a) f(140) = 15,000 saysthat 15,000 skateboards are sold when the cost is $140 per board.
f'(140) = —100 means that if the price is increased from $140, roughly speaking, every dollar of increase will
decrease the total sales by 100 boards.

(m%=%@m=%@ﬂm=mwmwy
So,
dR ,
ar = £(140) + 140f' (140)
dp p=140

= 15,000 + 140(—100) = 1000.

(c) From (b) we see that R = 1000 > 0. This means that the revenue will increase by about $1000 if the price

p=140

israised by $1.
We want dR/dr:. Solving for R:

1_1 i:TNLTI,Whichgiv&sR: nrz
R ri rira 2+ 71
So, thinking of r» asaconstant and using the quotient rule,
dR _ ra(ra+r1) —mira(1) 3
dry (ro +r1)? (r1 +r2)?

(a) If the museum sells the painting and invests the proceeds P(t) at time ¢, then ¢ years have elapsed since 2000, and
the time span up to 2020 is 20 — ¢. Thisis how long the proceeds P(t) are earning interest in the bank. Each year the
money isin the bank it earns 5% interest, which means the amount in the bank is multiplied by a factor of 1.05. So,
at theend of (20 — t) years, the balance is given by

B(t) = P(t)(1 4 0.05)*°7" = P()(1.05)*°~".
(b)

20 P(t)
(1.05)¢°

B(t) = P(t)(1.05)*°(1.05) ™" = (1.05)

(c) By thequotient rule,
P'()(1.05)" — P(¢)(1.05)" In 1.05

B'(t) = (1.05)* 1052
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20 | 5000(1.05)*° — 150,000(1.05)'° In 1.05

B'(10) = (1.05)

(1.05)2°
= (1.05)'° (5000 — 150,000 1n 1.05)
~ —3776.63.
47. Notefirstthat f(v) isin B2 and v isin K2
a) g(v) = +=. (Thisisin 2 ) Differentiating gives
f(lv) Thisisi llfglejr Diff iati i
g'(v) = —f'(v)
(f(v))?
So, .
80) = —— =202,
g( ) 0.05 liter
g'(80) = % = —%lli‘ggr for each 152 increase in speed.
v) = v - f(v). (Thisisin . liters _ liters 3 nyjfferentiating gives
b) Thisisin . . ites — e ) Differentiating g
W (v) = f(v) +v- f(v),
S0

h(80) = 80(0.05) = 41iters,
R’ (80) = 0.05 + 80(0.0005) = 0.091e= for each 15 increase in speed.
(c) Part (a) tellsus that at 80 km/hr, the car can go 20 km on 1 liter. Since the first derivative evaluated at this velocity
is negative, thisimplies that as velocity increases, fuel efficiency decreases, i.e., at higher velocities the car will not

go asfar on 1 liter of gas. Part (b) tells us that at 80 km/hr, the car uses 4 liters in an hour. Since the first derivative
evaluated at this velocity is positive, this means that at higher velocities, the car will use more gas per hour.

48. Assumefor g(z) # f(z), ¢'(x) = g(x) and g(0) = 1. Then for

49.

W () g'(@)e” —g(@)e” _ e*(g'(x) — g(x)) _ g'(x) —g(a)

(e)2 - (e)2 - et
But, since g(z) = ¢'(z), h'(z) = 0, so h(z) is constant. Thus, theratio of g(z) to e” is constant. Since &g) = % =1,
e
9(@) must equal 1 for al z. Thus g(z) = e® = f(z) for al z, so f and g are the same function.
6E

@ f(z)=(z—2)+(z-1).
(b) Think of f asthe product of two factors, with thefirst as (z — 1) (xz — 2). (Thereason for thisis that we have aready
differentiated (z — 1)(z — 2)).
f) =[xz - 1)z - 2)](z - 3).
Now f'(z) = [(z — 1)(z = 2)I'(z = 3) + [(z — 1)(z — 2)](z — 3)’
Using the result of a):

fl@)=le=2)+ (@ -1z -3) +[(z—-1)(z—2)] 1
=@x-2)(z—-3)+(x—1)(z—3)+ (z—1)(xz —2).
(c) Becausewe have aready differentiated (z — 1)(z — 2)(z — 3), rewrite f asthe product of two factors, the first being
(z —1)(z —2)(z — 3):
fl@)=[z-1)(z-2)(z-3)(z - 4)
Now f'(z) = [(z — 1)(z — 2)(z — 3)]' (z — 4) + [(z — 1)(& — 2)(z — 3)](x — 4)".
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fl@) =[x =2)(x = 3) + (= 1)(z = 3) + (z — 1)(z — 2)](z — 4)
+[(z - 1)(xz—2)(x—3)]-1
=(z-2)(x—-3)(z—4)+ (z —1)(z —3)(x — 4)
+(x—-1)(x—2)(x —4) + (z — 1)(z — 2)(x — 3).
From the solutions above, we can observe that when f isaproduct, its derivative is obtained by differentiating each
factor in turn (leaving the other factors alone), and adding the results.
50. From the answer to Problem 49, we find that

flle)= (e —r)(@—=r2)(x—rn-1) - 1
+(@—ri)(z—r2)---(x —rp_2)-1-(x—1y)
+(@—ri)(z—r2)--(x—rn_sz)-1-(x —rp_1)(x —1T5)
4+ 41l (z—r2)(x—r3)--- (T —1ry)

= @) ()

rT—Tr1 T —T2 T—Try

51. (a) We can approximate % [F(z)G(x)H (x)] using the large rectangular solids by which our original cube isincreased:
Volume of whole — volume of original solid = change in volume.

F(z + h)G(z + h)H(z + h) — F(z)G(z)H (x) = change in volume.

The volume of thisslab is F' (z)G () H (z)h

As in the book, we will ignore the smaller regions which are added (the long, thin rectangular boxes and the
small cube in the corner.) This can be justified by recognizing that as h — 0, these volumes will shrink much faster



(b)

©

52. (a)

(b)

Solutions for Section 3.4
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than the volumes of the big slabs and will therefore be insignificant. (Note that these smaller regions have an k2 or
h3 in the formulas of their volumes.) Then we can approximate the change in volume above by:
F(z 4+ h)G(x + h)H(z + h) — F(z)G(z)H(z) = F'(z)G(z)H(z)h (top dab)
+ F(z)G'(z)H(z)h (front dab)
+ F(z)G(z)H'(z)h (other sab).

Dividing by h gives
F(z+ h)G(z + h)H(z + h) — F(z)G(z)H ()
h
~ F'(z)G(x)H(z) + F(2)G (z)H (z) + F(z)G(x)H' ().
Lettingh — 0
(FGH) =F'GH+ FG'H + FGH'.
Verifying,

%[(F(:v) -G(2)) - H(z)] = (F - G)'(H) + (F - G)(H)’
=[F'G+FG'|H + FGH'
=F'GH+ FG'H+ FGH'

as before.
From the answer to (b), we observe that the derivative of a product is obtained by differentiating each factor in turn

(leaving the other factors alone), and adding the results. So, in generadl,
(fr-fo-fa-ooiofu) =fifofs-fo+ fifofa-fot-+fro faoifn

Since z = a isadouble zero of apolynomia P(x), we can write P(z) = (z — a)?Q(x), s0 P(a) = 0. Using the
product rule, we have
P'(z) = 2(z — a)Q(2) + (z — a)*Q' ().
Substitutingin z = a, we see P'(a) = 0 aso.
Since P(a) = 0, weknow z = a isazero of P, sothat x — a isafactor of P and we can write

P(z) = (z — a)Q(),

where @) is some polynomial. Differentiating this expression for P using the product rule, we get
P'(z) = Q(z) + (z — a)Q'(2).
Since we aretold that P’ (a) = 0, we have
P'(a) = Q(a) + (a = a)Q'(a) = 0

and so Q(a) = 0. Therefore z = a isazero of @, S0 again we can write

Q(z) = (z —a)R(x),
where R is some other polynomial. As aresult,

P(z) = (z —a)Q(z) = (z — a)*R(z),

so that x = a isadouble zero of P.

Exercises
1 f'(2) =99z +1)% -1 =99(x +1)%.
2 f'(e) = 5(1—a*) " (~20) = \/;—f_

3. w' =100(t* +1)%°(2t) = 200t(t* + 1)°.
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© N g &

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.
20.

21.
22.

23.

24,

25.
26.

27.

28.

29.

30.

31.

32.

33.
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w' = 100(¢t* +1)%°(3¢%) = 300> (t* + 1)*°
w _100(\f+199( ) Z(VE+1)%.

F'(t) = (€)(3) = 3¢™
B (w) = 5(w* — 2w)* (4w —2)
We can writew(r) = (r* + 1)'/2, s0

R Ciyzay 200
W) = 30"+ )7t = S E
g(x) = we™
F@) =21 =(3)"0f(0)=(nz)2"

"= (lnm)x®+?

Y
g (z) = 2(In 3)3(2=+7),
K (x) = 4(z® + e™)3(32% + 7).
f'(x) = 2 [2% 4+ 57 + 2" [22 + (In 5)5°] = €222 + 2z + (In 5 + 2)57].
Using the product rule gives v/ (t) = 2te™ " — ce™“'t? = (2t — ct?)e™*".
p(t) = 4e*t2,
%e(l“’“z = (14307 %(1 +3t)% = (T30 L 9(1 4 3t) - 3 = 6(1 + 3t)e1+3°
2 (2) = (In2)2° .
33/(2° +5)?
2/ =5-In2-2°%.
W = 3\ 5 20(5%) + (In5)(2®)(57)] = g:ﬁ’ 555 (2 + o In 5).

2

Yy = %6%10.
y = —de .

;o 3s?
Y~

r_ 1 Vs
w = 2\/56 .
y =1 e +te™t (—2t)

1
f'(z) = me F—ze ®
We can writethisas f(z) = v/ze *, in which case it is the same as problem 26. So f'(z) = #e’z —Vze *.
z

;- (VAmDE) 1 _2.mo
y = 22z - 2z+1\/; )
fl{t) =157 4 te572(=2) = e572H(1 — 2¢).

, z2+2 2x 4
yz?( :»T)(?)‘@ (e"+2)
We can write h(z) = < +;> , SO

_1 *T2x(z +3) — (@2 +9) 1 [z+3 [22 4629
2 (z +3)2 o2V 2249 | (x+3)? |-
@_%h(x +1) —e’"(2z) 2" (2> +1—12)
dr (z2 +1)2 - (z2 +1)2

, —(3e** 4 2z)
y = (e3z+x2)2




35.
36.

37.

38.
39.

41.

42.

&

48.

3.4 SOLUTIONS 125

v —8b'z
h(z) = (a + 22)>
B (z) = (In2)(3¢%)2°"" = 3¢322°°" In2.

! _ ez -3, ez — —2¢”
f(z)=-2(e+1) (er +1)%°

-0

’ _ e~ 2=V (—1) = € )

f(O)=-11+e") 7 (e7")(~1) Trene

() = 6(e*®)(5) + (7" )(—2z) = 30 — 2ze™"".

F(w) = () (10w) + (5w’ + 3)(e*”) (2w)
= 2we*’ (5 + 5w’ + 3)
= 2we”’ (5w® + 8).

= (2t +3)(1 =) + (2 +3)(2e7).
fly) = [10(5_3’)]; —103"3v
f'(y) = (In10) ( 103" %’"’) —%) = —%(lmo)(m%—%y).

fl@)y=e @D (=2)(x—1).
7wy = @) 2g)] = 2l 0,
F1(8) = 2(e727 ) (—2e*)2 = —8(e 27 H20),

. Since a and b are constants, we have f'(t) = aeb (b) = abe®’.
. Sincea and b are constants, we have ' (z) = 3(az® + b)?(2az) = 6az(az® + b)>.
. We use the product rule. We have

F () = (az)(e7"(=b)) + (a)(e™"") = —abze™"" + ae™"”.

f'(z) = 6z(e® — 4) + (322 + m)e” = bxe” — 24x + 3ze” + me”.

Problems

49.

50.

Wehave f(2) = (2 —1)® = 1,0 (2, 1) isapoint on the tangent line. Since f'(x) = 3(z — 1)?, the Sope of the tangent
lineis
m=f(2)=32-1)°=3.
The equation of thelineis
y—1=3(x—-2) or y=3z—5.

5 _ 2
0e’® — 2ze™ ®

0e® —2(1)e™"

e te ™ f(x) =3
e’ et fl(y=3
y—y1=m(z — 1)

5, -1y _ 5 -1
— (6’ +e ") =(30e” —2¢ ")(z—1)
—(6® + e ") = (30e” — 2¢ )z — (30e” —2¢71)
y = (30e” — 2 ")z —30e° +2¢ " +6e” + e~
=~ 4451.66x — 3560.81.

1
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51. Thegraph is concave down when " (z) < 0.

f'(e) = 7" (—2z)
'@ = [ (-20)] (~20) + 7 (-2)
_ 472 B l
The graph is concave down when 4z < 2. Thisoccurs when z® < 1, or —5 <r< s
52,
(@) = [10Q2z + 1)?())[3z — 1)7] + [(2x + 1)"°)[7(3z — 1)°(3)]
= (2¢ +1)°(3z — 1)°[20(3z — 1) + 21(2z + 1)]
= [(2z + 1)°(3z — 1)°](102z + 1)
f(x) = 92z +1)%(2)(3z — 1)° + (22 + 1)°(6)(3z — 1)°(3)](102z + 1)
+(2z +1)°(3z — 1)%(102).
53. (@) H(z)=F(G(z))
H(4)=F(G4)=F(2) =1
(b) H(z) = F(G(x))
H'(z) = F'(G(z)) - G'(x)
H'(4) = F'(G(4))-G'(4) = F'(2) -6 =5-6 = 30
(©) H(z) = G(F(x))
H(4) = G(F(4) = G(3) =4
(d) H(z) = G(F(x))
H'(z) = G'(F(z)) F'(z)
H'(4) =G (F(4) - F'(4)=G'(3)-7=8-7=156
@ H(z) =3
H'(z) = G(z)-F’([ré)(;igrc)-G'(z)
H'(4) = G(4)-F’E4G)@§2(4)-G’(4) — 2786 _ Mo18 _ ot _

54. (a) Differentiating g(z) = 1/f(z) = (f(z))*/?, we have

'm:l N2 () = f'(z)
g () = 5(f(2)) fi(z) i)

R
h,(l):f,(ﬁ).ﬁ:fél):g

55. (a) Sinceh'(z) = f'(g9(z)) - ¢'(x), we have
K(2)=f(9(2)-9@2) =f5)-9'2) =7V2.
(b) Sinceh'(z) = g'(f(x)) - f'(x), we have
h(2)=g'(f(2)) f(2)=¢'(5) f(2) =Te.
(©) Wehaveh'(z) = f'(f(z)) - f'(z),0
h'(2) = f(£(2)- f(2) =) f(2)=me.
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56. (a) If
p(z) = k(2z),
then
p'(x) =k (2z) - 2.
When z = %,
P (%) =K (2%) (2)=2-2=4
(b) If
q(x) = k(x + 1),
then
d (@) =k(z+1)-1.
Whenz = 0,
70)=K@O0+1)(1)=2-1=2
© If 1
r(z) =k (Za:) ,
then . .
r@=F (5¢)
When z = 4,

57.

58.

59.

60.

'(4) = & l)__ L1
r(4)—k(44 1=271=3

Yes. To see why, simply plug = = /2t + 5 into the expression 3z Cfl—: and evaluate it. To do this, first we calculate

By the chain rule,
de _ d
dt — dt
Butsincez = (2t + 5)% , we have (by substitution)

W=

(2t+5)% _ (2t+5)’% = %[(2t+5) ]72.

[V

It follows that 3z2d—x = 327 (zm”) =2,
dt 3

We see that m'(z) isnearly of theform f'(g(z)) - ¢’ (z) where
flg)=e’ and g(z)=a"
but ¢’ () is off by amultiple of 6. Therefore, using the chain rule, let

_ flga) _ e«

127

dz
dt’

We can find the rate the bal ance changes by differentiating B with respect to time: B’ (t) = 5000e°-°%¢.0.08 = 400e°-%8¢,
Calculating B' attimet = 5, wehave B'(5) = $596.73/yr. In 5 years, the account is generating $597 per year of interest.

The concentration of the drug in the body after 4 hoursis
f(4) = 27¢ %™ = 15 4 ng/ml.
The rate of change of the concentration is the derivative
£ () =27e7 %1 (=0.14) = —3.78¢ "1,
At t = 4, the concentration is changing at arate of

F(4) = —3.78¢7 %" = _2.16 ng/ml per hour.
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61. We have £(0) = 6 and f(10) = 6¢°-°13(10) = 6.833. The derivative of f(t) is
f(t) = 6% . 0.013 = 0.078¢°°"3¢,

and so f'(0) = 0.078 and £'(10) = 0.089.

These valuestell usthat in 1999 (at ¢ = 0), the population of the world was 6 billion people and the population was
growing at arate of 0.078 billion people per year. In the year 2009 (at ¢ = 10), this model predicts that the population of
the world will be 6.833 billion people and growing at arate of 0.089 billion people per year.

62. (a)

aQ _ ie—o.ooomlt

dt — dt
—0.000121¢ 0000121

(b) | L
60000
—0.00002
—0.00004
= 70.0001218*0.00012”
t

—0.00006

—0.00008

—0.0001

—0.000121

63. (a)

ddI: 6Z(40+30 Y = 30(=2)e % = —60e” .
(o) Sincee 2 isaways positive, Cil_il < 0; this makes sense because the temperature of the soda is decreasing.
(c) The magnitude of % is

‘_|—0*”|—60 2t<60—‘dtt .

sincee ™ < 1fordlt >0 and e® = 1. Thisisjust saying that at the moment that the can of soda is put in the
refrigerator (at ¢ = 0), the temperature difference between the soda and the inside of the refrigerator is the greatest,
so the temperature of the soda is dropping the quickest.

dB r . dB . .
64. (a) e P (1 + W) In (1 + W) . The expression g tells us how fast the amount of money in the bank is

changing with respect to time for fixed initial investment P and interest rate r.

t—1
(b) Ccll—B = Pt (1 + ﬁ) ﬁ The expression Ccll—B indicates how fast the amount of money changes with respect

to theinterest rate r , assuming fixed initial investment P and time ¢.
65. Theripple'sareaand radius are related by A(t) = w[r(¢)]?. Taking derivatives and using the chain rule gives
A _ o dr
dt dt’
We know that dr /dt = 10 cm/sec, so when r» = 20 cm we have

% =7-2-20-10cm?/sec = 400mcm® /sec.
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66. (a)

(b) C;—TZ represents the rate of change of mass with respect to the speed v.

67. (a) Fort <0,I = % =0.
_d4Q _ Qo -iyre
Fort> 0,1 = i RCe .
(b) Fort >0,t — 0 (thatis, ast — 0™),
Qo —t/RC Qo
I=-—=2 _=0
RC® ~ "RC
Sincel = 0 justtotheleftof t = 0 and I = —Qo/RC just to the right of ¢ = 0, it is not possible to define I at

t=0.
(c) @ isnot differentiable at t = 0 because thereisno tangent lineat t = 0.

68. Thetime constant for Q isthetime, T, suchthat @ = Qo/e. Thus, T satisfies
Qo _ Qoe~ T@/EC,
&

Canceling Qo and taking natural logs gives

o—To/Re _ 1 _ 1
e
—T
=2 -
RC
T, = RC.

Tofind I = dQ/dt, differentiate Q:
;- 1Q _ —Qo__i/rc

~ dt ~ RC
Since the exponent of e is unchanged, so isthe time constant. We know that the initial current is
_QO
Iy = .
T RC

If T isthe time constant for I, we know

1 (—QO) _ =@ o~TI/RC
e \ RC RC
Canceling —Qo/RC gives
1 _1/rC
— =€ .
e
This isthe same equation as the one we solved for T, SO

T = RC.
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69.

70.

71.
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Recall that v = dz/dt. We want to find the acceleration, dv/dt, when z = 2. Differentiating the expression for v with
respect to ¢ using the chain rule and substituting for v gives

dv d 2 dx 2

7 dx( +3z—2) 7 (2z +3)v = 2z + 3)(z” + 3z — 2)
Subgtituting x = 2 gives

Accdleration = 2 =(2(2) +3)(2° +3-2 — 2) = 56 cm/sec’.

dt =2

(&) Thepopulation isincreasing if dP/dt > 0, that is, if
kP(L — P) > 0.

SinceP > 0and k, L > 0, wemust have P > 0 and L— P > 0 for thisto be true. Thus, the population isincreasing
if0 < P < L.
The population is decreasing if dP/dt < 0, that is, if P > L.
The population remains constant if dP/dt =0,so P =0or P = L.
(b) Differentiating with respect to ¢ using the chain rule gives
P d dP

d 2
5 = 7 (kP(L = P)) = =5 (kLP — kP?) - = = (kL — 2kP)(kP(L — P))

=k’P(L —2P)(L — P).
Let f have azero of multiplicity m at z = a so that
f(x) = (z—a)"h(z), h(a)#0.
Differentiating this expression gives
f'(@) = (& —a)™h (&) + m(z — a) " Vh(z)
and both termsin the sum are zero when x = a S0 f'(a) = 0. Taking another derivative gives
'(2) = (& — a)™h" (@) + 2m(z — o) ™"V (z) + m(m — 1)(z — a) ™D h(z).

Again, each term in the sum contains a factor of (x — a) to some positive power, so a z = a this will evaluate to 0.
Differentiating repeatedly, all derivatives will have positive integer powers of (z — a) until the m®" and will therefore
vanish. However,

£ (a) = m!h(a) # 0.

Exercises

1

Table 3.1
T cos & Difference Quotient —sinz
0 1.0 —0.0005 0.0
0.1 0.995 —0.10033 —0.099833
0.2 [ 0.98007 —0.19916 —0.19867
0.3 | 0.95534 —0.296 —0.29552
0.4 | 0.92106 —0.38988 —0.38942
0.5 [ 0.87758 —0.47986 —0.47943
0.6 | 0.82534 —0.56506 —0.56464
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2. () = cos @ —sin 6.
3. s'(f) = —sinfsinh + cos O cos § = cos? § — sin? § = cos 26.
4. 2/ = —4sin(40).
5. f'(z) = cos(3z) - 3 = 3cos(3x).
d . d
6. T sin(2 — 3z) = cos(2 — 31‘)%(2 —3z) = —3cos(2 — 3z).
7. Using the chain rule gives R (x) = 3 sin(7x).
8. g'(0) = 2sin(20) cos(20) - 2 — m = 45sin(20) cos(20) — m
9. f'(z) = (2z)(cos ) + £*(—sinz) = 2z cosx — x? sin z.
10. w' = e cos(e’).
11. f'(z) = (e°**%)(—sinz) = — sin x5,
12. f'(y) = (cosy)e ™V,
13. 2 = 6cos€ _ Q(Sin (9)6'3050.
14. Using the chain rule gives R’ (§) = 3 cos(36)e5m(9),
tan 6)
15, ¢(6) = S(tan0)
g.(9) cos2 6
2z
16. w' = ——
w(@) cos?(x?)
17. .
f(z) = (1 —cosz)?
f'(z) = %(1 — cos m)fé (—(—sinz))
. sinx
21 —cosz’
18. f'(z) = [~ sin(sin z)](cos x).
19, () — __COST
9 fi@) cos2(sinz)
20. k'(z) = £/sin(2z)(2cos(2z)) = 3 cos(2z)/sin(2z).
21. f'(z) =2 [sin(3z)] + 2z[cos(3z)] - 3 = 2sin(3z) + 6 cos(3x)
22. y' = €% sin(26) + 2¢° cos(26).
23. f'(z) = (e *)(=2)(sinz) + (e~ **)(cosz) = —2sinz(e **) + (e **)(cosz) = e *"[cos & — 2sinx].
t
24, o = X0
2y/sint
25. ' = 5sin* fcosh.
26. d'(2) = L.
6. 9(2) cos?(e?)
—3e~3¢
27. = —————.
i cos2(e—3%)
28. w' = (—cosf)e” *in?,
29. B'(t) =1- (cost) +t(—sint) + —l5; = cost —tsint + .
30. f'(a) = —sina+ 3cosa
31. k' (a) = (5sin? avcos ) cos® a + sin® (3 cos? a(—sin av)) = 5sin? avcos? o — 3sin® a cos®
o« . _ .9 2
32 ¢(0) = SmQSmQ . cosfcost _ _ (sin 9.+2cos 0) __ .12 _
sin” 0 sin” 6 sin” @
33. Using the power and quotient rules gives

1

r@=5(

1 —cosx

l—sinﬂ:)’l/2 [—cosx(l —cosz) — (1 —sinz)sinx

131
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_ 1 J/1—cosz |—cosz(l —cosz)— (1 —sinz)sinz
"2V 1—sinz (1 — cos z)2

_ 1 Jl1—cosz |1—cosz—sinz

"2V 1—sinz (1 —cosz)? |’

. ) 2 si x4+ 1)+ 2si in”x+1
34. The quotient rule gives G/ (z) = ——— cos z(cos a;(z_osg :+ Sll)r;$COS$(Sln e+l

or, using sin? z + cos® z = 1,
6sinx cosx

G ()= ————=.

(2) (cos?z + 1)?
d y _cosy+a—y(—siny) cosy+a-+ysiny
dy \cosy+a ) (cosy +a)? = (cosy+a)?
36. 1/(z) = (In2)25"2 cos z.
37. w' = (In2)(225"*+")(2cos z + €?).

35.

38. f'(z) = 2 cos(2z)sin(3z) + 3sin(2z) cos(3x).

39. () = 20sinf + 6 cos§ + 2 cos @ — 20 sin § — 2 cos § = 62 cos 6.

40. f'(x) = cos(cosx + sinx)(cosz — sin x)

41, f'(w) = —2cos wsinw — sin(w?)(2w) = —2(cos w sin w + w sin(w?))
Problems

42. The pattern in the table below allows us to generalize and say that the (4n)t> derivative of cos z iscos z, i.e,

d4 dS d4n
_y:—y:: y:COSm.
dz*  dxz8 dxAn
Thus we can say that d*®y/dz*® = cos . From there we differentiate twice more to obtain d*°y /dz™® = — cos z.
n 1 2 3 4 -] 48 49 50
nth derivative | —sinz | —cosz | sinz | cosz cosz | —sinx | —cosx

43. We seethat ¢’ (x) isof the form
9(z) f'(z) = f(=)- g (=)

(9(x))? ’
with f(z) = e® and g(z) = sin z. Therefore, using the quotient rule, let
flz) _ e

q(z) = ——= =

g(z) sinz’

44. Since F'(z) is of the form sin «, we can make an initial guess that
F(z) = cos(4x),

then
F'(z) = —4sin(4z)

so we're off by afactor of —4. To fix this problem, we modify our guess by afactor of —4, so the next try is
F(z) = —(1/4) cos(4x),

which has
F'(z) = sin(4x).



45.

46.

47.

49.

50.
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We begin by taking the derivative of y = sin(z*) and evaluating at = = 10:

Z—z = cos(z") - 42®.

Evaluating cos(10,000) on acalculator (in radians) we see cos(10,000) < 0, so we know that dy/dz < 0, and therefore
the function is decreasing.

Next, we take the second derivative and evaluate it at © = 10;

- = Eos(a:4) : (12x22+ilx3 (= sin(a;4))(4a;3l.

negative positive, but much
larger in magnitude

From this we can see that d*y/dz> > 0, thus the graph is concave up.
_dy _d . .
@ v(t) = e dt(15 + sin(27t)) = 27 cos(2nt).
(b) Y
16
15

14

27

y = 15 + sin 27t v = 27 cos 2t

/ | | » \/1\/2\/3

—27

(a) Differentiating gives

A (7).
The derivative represents the rate of change of the depth of the water in feet/hour.

(b) The derivative, dy/dt, is zero where the tangent line to the curve y is horizontal. This occurs when dy/dt =
sin(Zt) = 0,0ratt = 6, 12, 18 and 24 (6 am, noon, 6 pm, and midnight). When dy/dt = 0, the depth of the
water is no longer changing. Therefore, it has either just finished rising or just finished falling, and we know that the
harbor’s level isat a maximum or a minimum.

(a) Differentiating, we find

Rate of change of voltage  dV/

£ = _1207 - 156 sin(12
with time dt 07 - 156 sin(120mt)

= —18720 sin(1207t) volts per second.

(b) Therate of change of voltage with time is zero when sin(1207t) = 0. This occurs when 120+t equals any multiple
of . For example, sin(1207t) = 0 when 1207t = =, or at ¢t = 1/120 seconds. Since there are an infinite number of
multiples of 7, there are many times when the rate of change dV'/dt is zero.

(¢) The maximum value of the rate of changeis 18720 = 58810.6 volts/sec.

(& When / %t = 3 the spring is farthest from the equilibrium position. Thisoccursat timet = 7,/
v=A\/Z cos (\/%t), so the maximum velocity occurs when ¢ = 0
a=—-Aktsin («/%t) , S0 the maximum acceleration occurswhen y/ £¢ = 3% whichisattimet = 2%, /2
() T=-—22_ =27 /&

VEk/m k
© ﬂ_ﬁ.lm*%—_w
dm  E 2 VEm
Since ;l—T > 0, an increase in the mass causes the period to increase.
m

The tangent linesto f(z) = sin z have slope - (sinz) = cos . Thetangent lineat z = 0 hasslope f'(0) = cos 0 = 1
and goes through the point (0, 0). Consequently, its equation isy = g(x) = z. The approximate value of sin % given by
thisequation isthen g(£) = % ~ 0.524.
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Similarly, the tangent line at z =
sequently, its equation isy = h(z) =
h(Z) = ©3=7 ~ 0.604.

The actual value of sin Z is 3, so the approximation from 0 is better than that from Z. This is because the slope of

the function changes less between = 0 and 2 = % than it does between x = % and z = %. Thisisillustrated below.

has slope f'(5) = cos 7 = 3 and goes through the point (5 ‘/5). Con-

312
3vV3—

3
%x + =¥===. The approximate value of sin F given by this equation is then

y
o y=g(z)
1+ /// y =sinz
Yy h(:L‘) - | | T
5 3
. —z _— dy dy
51. If the graphs of y = sinx and y = ke™ " are tangent, then the y-values and the derivatives, Jp = o8¢ and T =
—ke™ ", areequal at that point, so
sinz = ke ” and cosx = —ke ”
Thussin z = — cos z SO0 tan z = —1. The smallest z-valueisz = 3x/4, which leads to the smallest k value
_sin(3w/4)

37 3T 1 L. 37 1
Whenz = —, wehavey = sin (—) = — sothepointis | —, — |.
1 v 1)~ g omer (4 \/§>

52. Differentiating with respect to ¢ using the chain rule and substituting for dz /dt gives

A’z d (dx d . dx . )
( ) = —(zsinz) - — = (sinz + zcosz)rsinz.

a? ~dat \dt) T dw dt
53. (a) If f(z) =sinz, then
. sin(z+h) —sinz
) = 1 sin(z
fie) = lim ="

. (sinzcosh+sinhcosz) —sinz

= lim
h—0 h
. sinz(cosh —1) +sinhcosz

= lim
h—0 h
. . cosh—1 . sinh

=sinz lim —— + cosz lim ——.

h—0 h h—0

(b) c=h=L 5 0and S2k — 1, ash — 0. Thus, f'(z) =sinz -0+ cosz -1 = cosz.
(c) Similarly,

/ . cos(x+h) —cosz
= l B ————
o) =i z
(coszcosh —sinxsinh) — cosz

= lim

h—0 h
i S8 z(cosh —1) —sinzsinh
= lim
h—0 h
. cosh—1 . . sinh
=cosx lim ———— —sinz lim
h—0 h h—0

= —sinz.



54.

Solutions for Section 3.6
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(@) Sector OAQ is a sector of a circle with radius ﬁ and angle Af. Thus its area is the left side of the inequality.
Similarly, the area of Sector OBR is the right side of the equality. The area of the triangle OQR is %A tan 6 since it
isatriangle with base A tan 6 (the segment QR) and height 1 (if you turn it sideways, it is easier to see this). Thus,
using the given fact about areas (which isalso clear from looking at the picture), we have

Af 1\2 1 Af 1 ’
27, <z <=2 i ).
o (cosﬁ) -2 Altan6) < o <cos(9+ AG))

(b) Dividing the inequality through by % and canceling the w's gives:

9 2
( 1 ) < Atané < 1
cosf/ — AO — \ cos(6+ AB)

Then as A8 — 0, the right and left sides both tend towards (ﬁ)2 while the middle (which is the difference
quotient for tangent) tends to (tan @)’. Thus, the derivative of tangent is “squeezed” between two values heading
towards the same thing and must, itself, also tend to that value. Therefore, (tan ) = (L )2.

cos 0

(c) Take the identity sin” § + cos® § = 1 and divide through by cos® 6 to get (tan #)* 4+ 1 = (= )?. Differentiating

cos @
with respect to 6 yields:
2(tan9)~(tan0)':2( ! )( ! )

cos f

2 ((S:;I;Z) . (c0150)2 =2 (colsﬁ) (=) (c0159)2 (COSQ)I

sin 6 1 ,
(—1)2m (COS 9)

!

cos3 6
—sinf = (cosf)

(d)

diﬁ (sin2 6 + cos’ 9) = diG(l)
2sinf - (sinf) + 2cosf - (cosh) =0
2sinf - (sinf) + 2cosf - (—sinf) =0
(sinf) —cosf =0

(sinf) = cosf.

Exercises

L f'(t) = #

2. fl(x) == = 4.

3. Sinceln(e?”) = 2, the derivative ' (x) = 2.
22 . .

4. Since (=™ ) = ¢20%+3 the derivative f'(z) = dze?® 3,

5. f'(2) = _1(1112)72 ’ % = z(l;lz)2'

6. f'(0) = =222 = —tan§.

7. f(z) =12 -—e "(-1) = %

8. f'(a) = s -cosa = =2,

9. f'(z) = 821“ -e”.
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10.

11.

12.
13.

14.

15.

16.
17.

18.
10.

20.

21.

22.
23.

24,
25.

26.

27.

28.

29.

30.

31.

32.
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@:lnx—f-m(l) —1=Inx
dx T

ax

./ _ ae

J (x) - (Ba’z—f‘b)

Using the product and chain rules gives /' (w) = 3w? In(10w) + w3% = 3w’ In(10w) + w®.
w

fllo)= - (™)7=1.

(Note also that In(e™) = 7 implies f'(z) = 7.)
Notethat f(z) = e'*® - e! =z -e = ex. So f'(z) = e. (Remember, e isjust a constant.) You might also use the chain
ruleto get:

f’(l‘) — 6(lnm)#»l . l

[Are the two answers the same? Of course they are, since

1 1 1
e(lnx)%—l (_) — elnz e (_) = e (_) — 6.]
T T T

f(w) = ﬁ[— sin(w — 1)] = — tan(w — 1).
[This could be done easily using the answer from Problem 6 and the chain rule]

f(t) = Int (becauseIn e” = z or because ™’ =t), 0 f'(t) = *.

roN 2y

fly) = T

' 3
90 =T
g(a) =a,0¢'(a) = 1.

1 2 6t
’ t) = arctan(3t2) ) = arctan(3t<) ( )
gt =e Ty ) =¢ 1+ 9t

() == sint(ln t).
B'(z) = (In2)z" 27D,

B (w) = arcsin w + S
VI—w?
Notethat f(z) = kz so, f'(z) = k.

. . . 2
Using the chain rule givesr' (t) = —.
9 givesr'(t) Vi
j'(x) = —sin (sin71 x) - L =2
V1—u1x? V1— 22
PN 1 _ —3sin(arctan 3z)
f'(xz) = — sin(arctan 3x) <1 T (3$)2> 3) = 11 922 .
Note that g(x) = arcsin(sin 7z) = 7x.
Thus, ¢'(z) = .
Using the quotient rule gives

l+lnz—=z(d)

! p—
Fa) = (1+Inz)?
. Inz
T (1+1nz)?’
dy 1
T 2(lnz +In2) 4+ 2z (—) —2=2(Inz +1n2) =2In(2z)
T T

Using the chain rule gives f'(z) = ——v —S1%

1 1 1

! = — e - =
f(t)_lnt t  tlot

sinxz + cosz’
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33. Using the chain rule gives

1 —
' () = 1 i {( +u) Zu}
() LA
(L) 1
T Q4w 4u? | (1 +u)?
_ 1
1+ 2u + 202
— 4 —
34. Sinceln (ﬂ) :4ln[(ﬂ)]weha\/e
1+ cost 14 cost
/ 1+ cost\ |sint(l +cost)+sint(l — cost)
a(t):4( ) :
1—cost (1 + cost)?
_ [1+cost] 8sint
" L1 —costl | (14 cost)?
_ 8sint
"1 —cos?t
8
" sint’

—(z+1)

1
\/1— (z +1)2 )= VI-(z+1)2

35. f'(z) = —sin(arcsin(z + 1))

Problems

36. Differentiating

()= ﬁ “2z = 2x(2” +1)7
@) =2"+1)"" = 22> +1)7% 2z
2 4 uP+2 4’
T @) @41 @+ (@ +1)
_ (1—1‘2)
- ( 2 4 1)2
Since (2 +1)% > 0 for al =, weseethat f(0) > 0for1 —z2? > 0 or 2> < 1. Thatis, In(z? + 1) is concave up on the

interva -1 <z < 1.

37. Let
g(z) = arcsinx
SO
sinfg(z)] = =.
Differentiating,
coslg(@)] - ¢'(w) = 1
J @)= —

cos[g(z)]
Using the fact that sin® 6 + cos® 6 = 1, and cos[g(z)] > 0, since —% < g(z) < %, weget

coslg(x)] = /1 — (sin[g(x)])2.
Therefore,

Sincesin[g(z)] = z, we have

137
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38. Let
g(z) =logx.
Then
109 = g.
Differentiating,

(In10)[109™)g'(z) = 1
, 1
9@ = Ti0)fi0]
, 1
g(@) = (In10)x"

39. (@) From thesecond figurein the problem, weseethat § ~ 3.3 when ¢ = 2. The coordinates of P aregivenby x = cos 6,
y = sin . When ¢ = 2, the coordinates of P are

(z,y) =~ (cos 3.3,sin 3.3) = (—0.99, —0.16).

(b) Using the chain rule, the velocity in the z-direction is given by

= G _dv db g dO
CTdt T d9 dt dt’
From Figure 3.5, we estimate that when ¢t = 2,
o)
dt t=2 -
= d
X
= — ~ —(—0.16) - (2) = 0.32.
v 7 (=0.16) - (2) = 0.3
Similarly, the velocity in the y-direction is given by
dy dy df do
T T de a - N
Whent = 2
vy =W~ (20.99) - (2) = —1.98
v =g N . = —1.98.
0
/
3.3 L1 g
/
/|
t
2
Figure 3.5

40. (a) Thedefinition of the derivativeof In(1 4+ z) atz = 0is
In(1 + h) 1 _1

. In(14+h)—Inl .
lim ——————————— = lim e —
h—0 h h—0 h 1+z w0

(b) Therulesof logarithms give

. In(14+h) . 1 . 1/h _
}IL%T_Ilgrtﬁln(l—l—h)—}lL%ln(l%-h) =1



41.

42.
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Thus, taking e to both sides and using the fact that ¢! 4 = A, we have
elimh_,gln(lJrh)l/h = lim eln(lJrh)l/h — !
h—0
lim (1+ h)" =e.
h—0
Thislimit is sometimes used as the definition of e.
(©) Letn =1/h.Thenash — 0", wehaven — oc. Since
lim (1+h)"" =lim(1+h)"" =,
h—0+ h—0
we have I\n
lim (1 + —) =e.
n— 0o n
Thislimit is also sometimes used as the definition of e.
pH = 2 = —log x meanslog x = —2 s0 z = 10~ 2. Rate of change of pH with hydrogen ion concentration is

d

d 1 1
%pH = —%(loga:) =

- = _ = —434
In 10) (10-2)In 10 3

139

The closer you look at the function, the more it beginsto look like aline with slope equal to the derivative of the function

at x = 0. Hence, functions whose derivatives at = = 0 are equal will look the same there.

The following functions look liketheliney = = since, inall cases, v/ = 1 atz = 0.
/

y =sinz y =cosz
y =tanz y, = Coslzz
Y= ln(l’ + 1) y, = m~1{»1

The following functions look like theliney = 0 since, inall cases, 3 = 0 at z = 0.

y =’ y =2z

y =zsinx y =zcosz+sinx
y=l’3 y’=31'2
y=1ln(z"+1) y'=2a:-%-z++1:ﬁ
y=1—coszx y =sinz

The following functions look like the line 2 = 0 since, in all cases, asz — 0T, thedope y’ — oo.

y=Vz v =5

_ _ (z+1)— 1 1 _ 1 F1
Y=V V=% e V| 2@V =
— /72 ) - 29 1. 1 — l—z
y v r y ( $)2 \/Qx—zz \/27:—x2
@
1 1 1
f’(x) — + . (__2)

14 22 1—%9%2 x

1 1
- 1+x2+(_9c2+1)
1 1

T 1422 1422
=0

(b) f isaconstant function. Checking at afew values of z,

Table 3.2
x| arctanx | arctanz ! f(z) = arctan z 4 arctan x !
1| 0.785392 | 0.7853982 1.5707963
2 | 1.1071487 | 0.4636476 1.5707963
3 | 1.2490458 | 0.3217506 1.5707963
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4. (@) y=Inz,y =L f'(1) =

Lo
y—y1 =m(r—z1),y—0=1(x —1);
(b) g1.1)=11-1=01;9(2)=2-1=1

gz) =z —1.

(©) f(1.1) and f(2) are below g(z) = = — 1. £(0.9) and f(0.5) are also below g(x). This would be true for any
approximation of this function by a tangent line since £ is concave down (f”(z) =

x) = —z% < 0 foral x # 0). See
figure below. Thus, for a given z-value, the y-value given by the function is always below the value given by the
tangent line.
glx)=x -1

f(z) =Inz

-2 246896
4l

4

45. (a) Let g(x) = ax® + bz + ¢ be our quadratic and f(xz) = lnz. For the best approximation, we want to find a
quadratic with the same value asIn z at x = 1 and the same first and second derivativesaslnz at x = 1. ¢ ()
2ax +b,9" (x) = 2a, f'(z) = %, ()= -2

2"

9(1) =a(1)* +b(1) +¢ f(1) =
) !

g(1)=2a(1)+b f(1)=
g'1)=2a f'(1) =
Thus, we obtain the equations
a+b+c=0
2a+b=1
2a = —1

Wefinda = —1,b =2 and c = —2. Thus our approximation is:

1 2 3

= —— 2 _ =

g(z) 5% + 2z 5

(b) From the graph below, we noticethat around x = 1, thevalue of f(x)
are very close.

= Inz andthevalueof g(z) = —S2°+2z—2

Y f(z) =lnz

.

e

g(z) = —%xQ + 2z — %

(© g(1.1) =0.095 g¢(2) =0.5
Compare with f(1.1) = 0.0953, f(2) = 0.693.
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46. We differentiate F' = k /> with respect to ¢ using the chain rule to give

aF _ 2k dr

dat —  r®odt’
We know that & = 10*° newton - km? and that the rocket is moving at 0.2 km/sec when r = 10* km. In other words,
dr/dt = 0.2 km/sec when r = 10*. Substituting gives

dF 210"

Fri SUBE - 0.2 = —4 newtons/sec.

47. (a) Assumingthat T'(1) = 98.6 — 2 = 96.6, we get

96.6 = 68 + 30.6¢ *'!
28.6 = 30.6e "

0.935 = e *.

So
k = —1n(0.935) ~ 0.067.
(b) We're looking for avalue of ¢ which givesT'(t) = —1. First wefind T (t):
T(t) = 68 + 30.6e "
T'(t) = (30.6)(—0.067)e %7 x~ —2¢~ 007",
Setting this equal to —1°F per hour gives
_1 = _9p0-067¢

1n(0.5) = —0.067¢
_ _In(0.5)
T 0.067

=~ 10.3.

Thus, when ¢ &~ 10.3 hours, we have T' (t) ~ —1°F per hour.
(c) The coroner’s rule of thumb predicts that in 24 hours the body temperature will decrease 25°F, to about 73.6°F. The
formula predicts a temperature of

T(24) = 68 + 30.6e "7 ~ 74.1°F.

48. (a) Since P =1 whenV = 20, we have
E=1-(20"") =66.29.
Thus, we have
P =66.29V "%

Differentiating gives

;l—‘lj = 66.29(—1.4V ~2*) = —92.8V ~2"* atmospheres/cm®.

(b) Weare given that dV/dt = 2 cm®/min when V' = 30 cm®. Using the chain rule, we have

dP dP dV o4 atm) cm?®
e _ b a4y _ (g9 =) (22—
dt dV dt ( 92.8V cm?3 min
—92.8 (307 2*) 220

min

= —0.0529 atmospheres/min

Thus, the pressure is decreasing at 0.0529 atmospheres per minute.
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49.

50.

51.

52.
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If V isthe volume of the balloon and r isitsradius, then

V= %m“?’.
We want to know the rate at which air is being blown into the balloon, which isthe rate at which the volume isincreasing,
dV/dt. We are told that
% =2cm/sec when r=10cm.

Using the chain rule, we have

v _dv dr _,  edr

dt ~ dr dt dt’
Substituting gives

% = 47(10)2 = 8007 = 2513.3 cm®/sec.

We are given that the volume is increasing at a constant rate ‘fi—‘t’ = 400. Theradius r is related to the volume by the
formulaV = §7r7~3. By implicit differentiation, we have
d_V _ 4 7'2 dT' _ T2 d'l"
a 3" T
Plugging in £ = 400 and r = 10, we have .
r

400 = 4007 %
Tt

s0 98 =1 ~ 0.32um/day.
Let r be the radius of the raindrop. Thenitsvolume V' = 2ar® cm® and its surface areais S = 47r” cm”. It isgiven that

av

_ _ 2
i 25 = 8nr”.
Furthermore,
ﬂ = dnr?
dr ’
so from the chain rule,
dV dV dr dr dv/dt
-— = . = d th — = =2
it~ dr @ M % T wviar

Sincedr/dt isaconstant, dr/dt = 2, theradiusisincreasing at a constant rate of 2 cm/sec.
The volume, V, of acone of height / and radiusr is

1 .
V= 371'7“2]7,.

Since the angle of the coneis /6, s0r = htan(n/6) = h/\/3
2
! h 1 3
V—37T<\/§> h—971'h.

Differentiating gives

dV _ 1 2

% = 37Th .
To find dh/dt, use the chain rule to obtain

v _ v dh

dt — dh dt’

So,

dh _ dV/dt _ 0.1metershour _ 0.3 metershour
dt  dV/dh ~  7mh2/3 ~ wh? ’

Sincer = htan(w/6) = h/\/3, we have

dr = @L = LE meters/hour.

dt — dt \/3 \/3wh?
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53. (a) Using Pythagoras' theorem, we see

22 =0.5% + 27
so
z=1/0.25 + 2.
(b) Wewant to calculate dz/dt. Using the chain rule, we have
dz dz dx 2x dzr

dt ~do dt  20.25 + a2 dt’

Because the trainismoving at 0.8 km/hr, we know that

dz = 0.8 km/hr.
dt
At the moment we are interested in z = 1 km so
12=0.25+2°
giving
z = V0.75 = 0.866 km.
Therefore

dz _ 2(0.866)
dt ~— 2,/0.25+0.75

(c) Wewant to know df/dt, where 6 is as shown in Figure 3.6. Since

0.8 =0.866 - 0.8 = 0.693 km/min.

0% = tanf
we know
A = arctan (i)
05/’
SO
df 1 1 dx

dt ~ 1+ (z/05)2 05 dt’
We know that dz/d¢ = 0.8 km/min and, at the moment we are interested in, x = +/0.75. Substituting gives

do 1 1 ) .
—=—————— . —.0.8 = 0.4radiangmin.
dt 1+40.75/0.25 0.5
0 x km Train
0.5  m
0
, Camera
Figure 3.6

54. Using thetriangle OSL in Figure 3.7, we |abel the distance x.

L
0

0 ¢

O T
Figure 3.7
We want to calculate dz /df. First we must find z as a function of 6. From the triangle, we see
g =tanf SO x =2tané.

Thus,
dx 2

dd ~ cos28’

143
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55. (a) Since the elevator is descending at 30 ft/sec, its height from the ground is given by h(t) = 300 — 30¢, for 0 <
t < 10.
(b) Fromthetrianglein thefigure,

tanf — h(t) — 100 _ 300 — 30t — 100 _ 200 — 30t.

150 150 150
Therefore
6 = arctan (M)
a 150
and

do 1 -30\ 1 150°

14 (%)2 ' (150) © 5 \ 1502 + (200 — 30¢)2 ) °
Notice that % is always negative, which is reasonable since 6 decreases as the elevator descends.

(c) If wewant to know when # changes (decreases) the fastest, we want to find out when df /dt has the largest magnitude.
This will occur when the denominator, 150% + (200 — 30t)2, in the expression for df/dt is the smallest, or when
200 — 30t = 0. This occurs when ¢ = 2% seconds, and so h(22) = 100 feet, i.e., when the elevator is at the level
of the observer.

Solutions for Section 3.7

Exercises

1. We differentiate implicitly both sides of the equation with respect to x.
dy _
de
@ _ _2x oz

dz — 2y y

2x + 2y 0,

2. We differentiate implicitly both sides of the equation with respect to x.

dy 2dy 2 dy
2 =) - -2 = 2y) -2
$+(y+xdm) 3y or =Y + z( y)dm,
dy 2 dy dy 2
Tir 3y dzx Wae =Y 7Y T

dy _ y’—y-—2z

dr = —3y%—2zy’

3. We differentiate implicitly both sides of the equation with respect to x.

22 = 5y1/2

T2 dx

s LT L
de — 2y-1/2 5Vaz 25

We can also obtain thisanswer by realizing that the original equation represents part of thelinex = 25y which hasslope1/25.

%x—l/Q . éy—l/Q@

4. We differentiate implicitly both sides of the equation with respect to x.

1 1

xr2 +y2 :25,
1 1 1 _1dy
— 2 — 2 — =
3¢ Ty T =0
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5. We differentiate implicity with respect to x.

dy 3dy
bt A T e A
y+xdm dx 0
dy
3 =L —1—
(z—=3)7~ y
dy _l-y
dr -3
6.
12x+8yd—y:0
dzr
d_y_—l?x_—?)a:
dr 8y 2y
7.
2aa:—2by@:0
dx
@_—Qaa:_aa:

dr ~ —2by _w

8. We differentiate implicitly both sides of the equation with respect to z.

Inz +1In(y®) = 3

1 1 dy
E + E(Zy)% =0
dy _—1l/x y

de — 2y/y® 2z

9. We differentiate implicitly both sides of the equation with respect to x.

e’ +lny=0
1
2ze” + ldy _ 0
y dzx
Z—z = —2myem2

10. We differentiate implicitly both sides of the equation with respect to z.

arctan(z’y) = zy?

1 2 dy 2 dy
- (2 29y = 2y =2
1+a:4y2( Tyt da:) vt ie
2xy + w2;l—z =[1+2"y’|ly* + Za:y;l—Z]
dy

E[:’:Q — (1 +2'y?)2zy)]) = 1+ 2'y?)y® — 2y

@ _ y? +ztyt — 2y
dr ~— x2? — 2xy — 2x5y3’

11. We differentiate implicitly both sides of the equation with respect to x.

1d od 1
lny+a:——y+3y2—y = -
ydx de =«

145
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x dy 2 dy 1
~2J 2 2
yda:+3y de « ny

dy <£+3y2> _ 1—zlny
dr \y x

dy <$+3y3> _1—zlny

dx y x
dy (1—=zlny) y
dr T (z + 3y?)

12. We differentiate implicitly both sides of the equation with respect to x.

dy)
) — o
cos(zy) (y + v

y cos(zy) + x cos(zy) dy _ 2

dx
dy _ 2 —ycos(zy)
dr ~  xcos(ry)
—-1/3 1/3
13 2$—1/3+2y—1/3.@:0’@:_$ _ v
3 3 dz dz y~1/3 xl/3
14. We differentiate implicitly both sides of the equation with respect to z.
. 1 d
€Y (—sin y)j—z = 3¢” arctan y + z° 55 ﬁ
3
Z_z <_ecosy sin Yy — I f_ y2> = 31’2 arctany
dy _ 322 arctan y

dz =~ —esvginy — x3(1 +y2)- 1’
15. Using the relation cos® y + sin? y = 1, the equation becomes:
dy
1= 2 or y = —1. Hence, —= = 0.
Y+ Yy dr
16. Differentiating 2 + 3> = 1 with respect to z gives
2z + 2yy' =0

so that

At the point (0, 1) the slope is 0.
17. Differentiating sin(zy) = = with respect to z gives

(y + zy') cos(zy) = 1

or
zy cos(zy) = 1 — ycos(zy)
so that
. y cos(zy)
zcos(zy)

Aswe move along the curve to the point (1, %), thevalue of dy/dxz — oo, which tellsusthe tangent to the curve at (1, %)
has infinite slope; the tangent isthe vertical linexz = 1.
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19.

20.

21.

22.
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The slope is given by dy/dz, which we find using implicit differentiation. Notice that the product rule is needed for the
second term. We differentiate to obtain:

2 > dy dy _ ,dy
= +1 dy—= =4~
3z + bz dx+ Ozy + yda: dr
(52 + 4 SN Y B
z” +4y )da:_ 3z Ozy

dy —3z>— 10y

dr  ba?+dy—4
At the point (1,2), we have dy/dz = (—3 — 20)/(5 + 8 — 4) = —23/9. The slope of this curve at the point (1, 2) is
—23/9.
Differentiating with respect to x gives ‘
3z + 22y’ + 2y +2yy’ =0

o that )
;o _3a:2 + 2y
2r + 2y
At thepoint (1,1) theslopeis —2.
First, we must find the slope of the tangent, i.e. % . Differentiating implicitly, we have:
T
(1,-1)
2 dy
2y)— =0
y +a2y)5 =0,
dy _ y° y

de ~ 2wy 2z

Lo -1
Substitution yields d—z =
(1,=1)

tangent lineisy +1=3(z —1)ory = 1z — 3.

= % Using the point-slope formulafor aline, we have that the equation for the

First we must find the slope of the tangent, Z—z at (1, e?). Differentiating implicitly, we have:

L (a:d—y +y) =2
xy \ dx

@ _2zy—y
dz x
Evaluating dy/dx at (1,e?) yields (2(1)e® — e?)/1 = . Using the point-slope formula for the equation of the line, we
have: ‘
y—e 262(1'—1),

or
2
y=ex.
First, we must find the slope of the tangent, dy . Implicit differentiation yields:
(4,2)
dy 2z (zy — 4) — 2 (1‘% + y)
dr — (xy — 4)?
Given the complexity of the above equation, we first want to substitute 4 for « and 2 for y (the coordinates of the point
where we are constructing our tangent line), then solve for Z—y Substitution yields:
X
5 9y _ (2-4)(4-2-4)—47 (494 +2)  8(4) —16(4% +2) 1y
dr ~ (4-2—4)2 N 16 T dx’
Ay _ _ydy

de ~  Tdz’
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Solving for @ we have:
dx i
Y
Te 0.
The tangent isa horizontal line through (4, 2), hence its equation isy = 2.
23. First, we must find the slope of the tangent, dy . We differentiate implicitly, obtaining:
(a,0)

Subsiitutionyields, 22| =
dx

(a,0)

= 0. The tangent is a horizontal line through (a, 0), hence its equation isy = 0.

SIS

Problems

24. (a) By implicit differentiation, we have:

dy dy
2 2u— —44+7-—==0
T yda: + dx
d
(2y+7)d—l;:4—29[,=
@_4—21‘
de = 2y+7°

(b) The curve has ahorizontal tangent line when dy/dx = 0, which occurswhen 4 — 2z = 0 or z = 2. The curve hasa
horizontal tangent line at all points where z = 2.

The curve has a vertical tangent line when dy/dx is undefined, which occurswhen 2y + 7 = 0 or wheny = —7/2.
The curve has avertical tangent line at al pointswhere y = —7/2.
25. (a) Taking derivatives implicitly, we get
2 2 dy
3BT oYy =0
d_y 9z
dz ~ 25y

(b) The slopeis not defined anywhere along the line y = 0. This ellipse intersects that line in two places, (—5,0) and
(5,0). (These are, of course, the “ends” of the ellipse where the tangent is vertical.)

26. (a) If z = 4then16 + y® = 25, s0y = +3. Wefind Z—y implicitly:
X

2x+2y;l—Z:0
dy «z

dx y
Sotheslopeat (4,3) is—3 and at (4, —3) is 3. Thetangent lines are:

(y-3)=-3@ -4 ad (y+3)=56-1)

(b) The normal lines have slopes that are the negative of the reciprocal of the slopes of the tangent lines. Thus,
3 3
(y—-3)=5@—4 0 y=1a

and 3
(y+3)=-4@@-4) s y=-yu
are the normal lines.

(c) Theselines meet at the origin, which isthe center of the circle.
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27. (a) Solving for j—z by implicit differentiation yields

. o d ; d
3$2+3y2—y—y2—2a:y Y 0

dx dz
dy _ y* =32’
dz ~ 3y? —2zy’

(2?-3(1)*  _

(b) We can approximate the curvenear z = 1, y = 2 by itstangent line. The tangent line will haveslopem =

1 . oo
z = 0.125. Thusitsequation is

y = 0.125z + 1.875
Using the y-values of the tangent line to approximate the y-values of the curve, we get:

T 0.96 0.98 1 1.02 1.04
approximatey | 1.995 | 1.9975 | 2.000 | 2.0025 | 2.005

() When z = 0.96, we get the equation 0.96% + y> — 0.96y> = 5, whose solution by numerical methods is 1.9945,
which is close to the one above.
(d) Thetangentlineishorizontal when j—g iszero and vertical when j—g isundefined. Thesewill occur when the numerator
is zero and when the denominator is zero, respectively.
Thus, we know that the tangent is horizontal when 3> — 322 = 0 = y = ++/3z. Tofind the points that satisfy
this condition, we substitute back into the original equation for the curve:

2 +y’—xy’ =5
23 +3V3z° —32% =5
5
3 _

T 43v/3-2
Sox ~ 1.1609 or = ~ —0.8857.

Substituting,
y=+V3z 0 y~ 20107 or y~ 1.5341.

Thus, the tangent lineis horizontal at (1.1609, 2.0107) and (—0.8857, 1.5341).

Also, we know that the tangent is vertical whenever 3y” —2zy = 0, that is, wheny = 2z or y = 0. Substituting
into the original equation for the curve givesus z® + (2z)* — (£)*z® = 5. Thismeans z* ~ 5.8696, S0 z = 1.8039,
y = 1.2026. The other vertical tangentisat y = 0, z = ¥/5.

28. Theslopeof thetangent tothecurvey = > at 2 = 1 is2 so the equation of such atangent will be of theformy = 2z +c.
As the tangent must pass through (1, 1), ¢ = —1 and so the required tangent isy = 2z — 1.
Any circle centered at (8, 0) will be of the form

(x —8)> +y°> =R’
The slope of thiscurve at (z, y) isgiven by implicit differentiation:
2(z —8) +2yy' =0

or

For the tangent to the parabola to be tangential to the circle we need

8§ —x
Yy

=2

so that at the point of contact of the circle and the line the coordinates are given by (z, y) wheny = 4 — z /2. Substituting
into the equation of the tangent line gives z = 2 and y = 3. From this we conclude that R*> = 45 so that the equation of
thecircleis

(x —8)% 4+ y* = 45.
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29. Let the point of intersection of the tangent line with the smaller circle be (z1, y1) and the point of intersection with the
larger be (x2,2). Let the tangent line be y = max + ¢. Then at (z1, 1) and (z2,ys) the dopes of 22 + y? = 1 and
y>+(x—3)? = 4 aredsom. Thedopeof 2”4 y? = 1 isfound by implicit differentiation: 22 +2yy’ = 0s0y’ = —x/y.
Similarly, the slope of y? + (z — 3)> = 4isy’ = —(x — 3)/y. Thus,

- ) —3
mo Y2y o (22-3)

r2 —T1 Y1 Y2

wherey; = 4/1 —z2 and y» = 4/4 — (z2 — 3)2. The positive values for y; and y- follow from Figure 3.8 and from
our choice of m > 0. We obtain

I

z1 T2 —3
\/1—1‘% \/4—(x2—3)2
z? _ (z2 —3)?
1—2?2 4—(x2—3)2
2if4 — (22 = 3)") = (1 —7) (22 — 3)”
4z — (21)(w2 — 3)* = (22 — 3)" — & (22 - 3)°
4z7 = (22 — 3)°

2|1‘1| = |1’2 —_ 3|

From the picture z; < 0 and z» < 3. Thisgiveszs = 2x1 + 3 and y» = 2y:. From

Y=y _ T
Ty — 21 Y’
substituting y1 = /1 — x%, y2 = 2y1 and x> = 2z1 + 3 gives
1
T =—7.
T3

From zo = 221 + 3 we get x» = 7/3. In addition, y1 = /1 — z? givesy1 = 2v/2/3, and finaly y» = 2y gives
Y2 24\/5/3

-2 -+

Figure 3.8

m
n

30. y = z™ . Taking '™ powers of both sides of this expression yields (y)" = (z
d d

' ory™ =x™.

E(y )= E(W )
nyn—l;l_z — ml_m 1
@ B Exm—l
dez =~ n yn-1

m—1
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Solutions for Section 3.8

Exercises

1. Betweentimest = 0 and ¢ = 1, = goes at a constant rate from 0 to 1 and y goes at a constant rate from 1 to 0. So the
particle moves in a straight line from (0, 1) to (1, 0). Similarly, between timest = 1 and ¢t = 2, it goes in a straight line
to (0, —1), thento (—1,0), then back to (0, 1). So it traces out the diamond shown in Figure 3.9.

Figure 3.9

2. Thisislike Example 2, except that the z-coordinate goes all the way to 2 and back. So the particle traces out the rectangle
shown in Figure 3.10.

A

i

Figure 3.10

3. Betweentimest = 0 and ¢ = 1, x goesfrom —1 to 1, while y staysfixed at 1. So the particle goes in a straight line from
(—=1,1) to (1,1). Then both the z- and y-coordinates decrease at a constant rate from 1 to —1. So the particle goesin a
straight line from (1, 1) to (—1, —1). Then it moves across to (1, —1), then back diagonally to (—1, 1). See Figure 3.11.

y
t=0
t=4% > pt=1
f — x
-1 1
t=2¢ > (=3
-1

Figure 3.11
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4. Asthe z-coordinate goes at a constant rate from 2 to 0, the y-coordinate goes from 0 to 1, then down to —1, then back

©

10.

11.
12.
13.
14.

N

to 0. So the particle zigs and zags from (2, 0) to (1.5, 1) to (1,0) to (.5, —1) to (0, 0). Then it zigs and zags back again,
forming the shape in Figure 3.12.

Figure 3.12

. The particle moves clockwise: For 0 < ¢t < 7, wehavex = cost decreasing and y = — sin ¢ decreasing. Similarly, for
thetimeintervals § <t < 7,7 <t < 317”, and %” <t < 27, we see that the particle moves clockwise.

. For0 <t < 5,wehavez = sint increasing and y = cost decreasing, so the motion is clockwise for 0 < ¢ < 7.
Similarly, we see that the motion is clockwise for thetimeintervals 7 <t < m, 7 <t < 37’* and 37’* <t<2m.

. Let f(t) = t. The particle is moving clockwise when £ () is decreasing, that is, when f'(¢) = 2t < 0, sowhent < 0.
The particle is moving counterclockwise when f'(¢) = 2¢ > 0, sowhent > 0.

. Let f(t) = t* — t. The particle is moving clockwise when £(t) is decreasing, that is, when f'(t) = 3t> — 1 < 0,
and counterclockwise when f'(¢) = 3t2 — 1 > 0. That is, it moves clockwise when —\/g <t < % between
(cos((—/3)® + /1),sin((—=/5)® + /1)) and (cos((1/3)® — /%),sin((/1)? — /1), and counterclockwise
whent < —/Zort> /1.

. Let f(t) = Int. Then f'(t) = 1. The particle is moving counterclockwise when f'(¢) > 0, that is, when ¢ > 0. Any
other time, when ¢ < 0, the position is not defined.

Let f(t) = cost. Then f'(t) = — sin t. The particle is moving clockwise when f'(¢) < 0, or —sint < 0, that is, when
2kr <t < (2k + 1),
where k is an integer. The particle is otherwise moving counterclockwise, that is, when
(2k — )7 < t < 2km,
where k is an integer. Actually, the particle does not fully trace out acircle. The range of f(t) is[—1, 1] so the particle
oscillates between the points (cos(—1),sin(—1)) and (cos 1,sin 1).
One possible answer isz = 3cost,y = —3sint, 0 < t < 2.
Onepossible answer isz = -2,y = ¢.
One possible answerisz =2 4+ 5cost,y =1+ 5sint,0 <t < 27.
The parameterization x = 2 cost, y = 2sint, 0 < ¢t < 27, isacircle of radius 2 traced out counterclockwise starting at
the point (2, 0). To start at (—2, 0), put anegative in front of the first coordinate
xr = —2cost y =2sint, 0<t<2m.

Now we must check whether this parameterization traces out the circle clockwise or counterclockwise. Since when ¢
increases from 0, sin ¢ is positive, the point (z,y) movesfrom (—2, 0) into the second quadrant. Thus, the circleistraced
out clockwise and so this is one possible parameterization.
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The slope of thelineis
_3-(-1)
To1-2
The equation of the line with slope —4 through the point (2, —1) isy — (—1) = (—4)(x — 2), so one possible parame-
terizationisz =tandy = -4t +8 -1 = —4t + 7.
Thedlipse 22 /25 + y? /49 = 1 can be parameterized by 2 = 5cost, y = 7sint, 0 < t < 27.
The parameterization x = —3cost, y = 7sint, 0 < t < 2, starts at the right point but sweeps out the ellipse
in the wrong direction (the y-coordinate becomes positive as ¢ increases). Thus, a possible parameterization is x =
—3cos(—t) = —3cost,y = 7sin(—t) = —7sint, 0 < t < 2.
We have

= —4.

dy _ dy/dt _ 2

dr ~ dz/dt ~ 32 -1
Thuswhen ¢ = 2, the slope of the tangent lineis4/11. Alsowhen ¢ = 2, we have

r=2-2=6, y=2"=4.

Therefore the equation of the tangent lineis

(y—4) = 72 (z—6).

We have

dy dy/dt _ 4cos(4t)
de  dz/dt  3cos(3t)
Thuswhen ¢ = 7, the slope of the tangent lineis —4/3. Sincez = 0 and y = 0 when ¢t = , the equation of the tangent
lineisy = —(4/3)x.

We have

dy dy/dt  2t+2

de  dz/dt  2t—2
When t = 1, the denominator is zero and the numerator is nonzero, so the tangent lineis vertical. Since x = —1 when
t = 1, the equation of the tangent lineisxz = —1.

We have dz /dt = 2t and dy/dt = 3t*. Therefore, the speed of the particleis

v (fl—f)Q + (%)2 = @+ BPR) = |t]- /T o8).
The particle comes to a complete stop when its speed is 0, that is, if tv/4 + 9¢2 = 0, and sowhen ¢ = 0.
We have dx/dt = —2t sin(t?) and dy/dt = 2t cos(t®). Therefore, the speed of the particle is given by
v = \/(=2tsin(t2))? + (2t cos(t2))?
= /412 (sin(£2))? + 4t2(cos(t2))?
= 2Jt|\/sin?(£2) + cos?(¢?)

= 2¢|.
The particle comes to a complete stop when speed is 0, that is, if 2|¢| = 0,and sowhent = 0.
We have d p
_x P — 1 —y =
T 2sin 2t, 7t cost.
The speed is

v = 1/4sin*(2t) + cos? t.

Thus, v = 0 whensin(2t) = cost = 0, and so the particle stopswhent = £7/2,+37/2,... ort = (2n+1)%, for any
integer n.
We have

The speed is given by:

v=1/(2t — 2)% + (3> — 3)2.
The particle stops when 2t — 2 = 0 and 3t> — 3 = 0. Since these are both satisfied only by ¢ = 1, thisis the only time
that the particle stops.
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25. Att = 2, theposition is (2%, 2*) = (4, 8), the velocity in the z-direction is 2 - 2 = 4, and the velocity in the y-direction
is3 - 22 = 12. So we want the line going through the point (4, 8) at thetimet = 2, with the given z- and y-velocities:

r=4+4(t—-2), y=8+12(t—2).

Problems

26. (a) Eliminating ¢ between
gives

Y- 4= 3(1' - 2)7
y =3z —2.
Eliminating ¢ between
r=1-2t, y=1-—6t
gives

Yy - 1= 3(1' - 1)7
y =3z —2.
Since both parametric equations give rise to the same equation in = and y, they both parameterize the same line.
(b) Slope=3, y-intercept= —2.
27. (a) We get the part of thelinewithz < 10 and y < 0.
(b) We get the part of the line between the points (10, 0) and (11, 2).

28. (a) Ift > 0,wehavex > 2,y > 4, so we get the part of the line to the right of and above the point (2, 4

(b) Whent =0, (z,y) = (2,4). Whent = —1, (z,y) = (—1, —3). Restricting ¢ to the interval —1 <
part of the line between these two points.

() Ifz<0,0iving2+3t <0ort < —2/3. Thust < —2/3 gives the points on the line to the | eft of the y-axis.

29. (@) Thecurveisaspira asshownin Figure 3.13.

).
t < 0 givesthe

—

\_/ /)

Figure 3.13: The spiral
x=tcost,y =tsintfor0 <t <d4rx

(b) Att = 2,thepositionis(2 cos 2, 2sin 2) = (—0.8323,1.8186), andatt = 2.01 thepositionis(2.01 cos 2.01, 2.01 sin 2.01) =
(—0.8546, 1.8192). The distance between these pointsis

V/(—0.8546 — (—0.8323))2 + (1.8192 — 1.8186)2 = 0.022.

Thus the speed is approximately 0.022/0.01 =~ 2.2.
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32.

33.

34.

35.
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Figure 3.14: The spiral z = t cost, y = tsin ¢ and three velocity vectors

(c) Evauating the exact formula

v= \/(cost —tsint)? + (sint + tcost)?2

gives:

v(2) = 1/(—2.235)2 4 (0.077)2 = 2.2363.

(8@ Inorder for the particle to stop, its velocity both dz/dt and dy/dt must be zero,

I g2 53— 1)(t+1) =0,
dt

dy

W _gt—92=20t-1)=0.

It (t-1)=0

Thevaluet = 1 isthe only solution. Therefore, the particle stopswhen ¢ = 1 at the point (¢* — 3¢, t* — 2t)|,=1 =
(—2,-1).

(b) In order for the particle to be traveling straight up or down, the velocity in the x-direction must be 0. Thus, we
solve dz /dt = 3t2 —3 = 0 and obtain t = +1. However, a ¢t = 1 the particle has no vertical motion, as we
saw in part (a). Thus, the particle is moving straight up or down only when ¢ = —1. The position at that time is
(83 = 3t, t* — 28)|1=—1 = (2,3).

(c) For horizontal motion we need dy/dt = 0. That happenswhen dy /dt = 2t — 2 = 0, and so ¢t = 1. But from part (a)
we aso have dz/dt = 0 also at t = 1, so the particleis not moving at al when ¢ = 1. Thus, there is no time when
the motion is horizontal.

Inall three cases, y = 2, so that the motion takes place on the parabolay = 2.

In case (), the z-coordinate always increases at a constant rate of one unit distance per unit time, so the equations
describe a particle moving to the right on the parabola at constant horizontal speed.

In case (b), the z-coordinate is never negative, so the particle is confined to the right half of the parabola. Ast moves
from —oo to +o0, 2 = t* goes from oo to 0 to co. Thus the particle first comes down the right half of the parabola,
reaching the origin (0, 0) at timet = 0, where it reverses direction and goes back up the right half of the parabola.

In case (c), asin case (a), the particle traces out the entire parabolay = = from left to right. The difference is that
the horizontal speed is not constant. This is because a unit change in ¢ causes larger and larger changesin = = #* ast
approaches —oo or co. The horizontal motion of the particleis faster when it is farther from the origin.

(I) has a positive slope and so must be l; or I>. Since its y-intercept is negative, these equations must describe l». (I7)
has a negative slope and positive z-intercept, so these equations must describe I3.

(a) Ci hascenter at the origin and radius5,s0a = b =0,k = 5 or —5.

(b) C> hascenter at (0,5) and radius5,s0a = 0,b =5,k =5 or —5.

(c) Cs has center at (10, —10), so a = 10,b = —10. Theradius of C3 is /102 + (—10)? = /200, S0 k = /200 or
k = —+/200.

It is a straight line through the point (3, 5) with slope —1. A linear parameterization of the same lineisz = 3 + ¢,

y=2>5—t.

(a) To find the equations of the moon’s motion relative to the star, you must first calculate the equation of the planet’s
motion relative to the star, and then the moon’s motion relative to the planet, and then add the two together.
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The distance from the planet to the star is R, and the time to make one revolution is one unit, so the parametric
equations for the planet relativeto the star arex = Rcost, y = Rsint.
The distance from the moon to the planet is 1, and the time to make one revolution istwelve units, therefore, the
parametric equations for the moon relative to the planet are z = cos 12¢, y = sin 12¢.
Adding these together, we get:
x = Rcost + cos12t,

y = Rsint + sin 12¢.
(b) For the moon to stop completely at time ¢, the velocity of the moon must be equal to zero. Therefore,

9 _  pint— 12sin12t = 0,
dt
d_?t/ = Rcost + 12cos 12t = 0.

There are many possible values to choose for R and ¢ that make both of these equations equal to zero. We choose
t=m and R =12.
(c) Thegraph with R = 12 is shown below.

%

Yl
N
T
X

36. For0<t<2r

37. For0 <t <2r

= ?ﬁ
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38 For0<t<2rm

39. This curve never closesonitself. The plot for 0 < ¢ < 8= isin Figure 3.15.

il

Figure 3.15

40. (@) Sincex =t> 4+t andy = t*, we have
_dy _ dy/dt 2t

WS T dejdt T 3241

Differentiating w with respect to ¢, we get
dw (3t +1)2 — (2t)(6t)  —6t> +2

dt (32 +1)2 (3t2 +1)2°
d’y _ dw _ dw/dt _ —6t* +2
de? ~ dx  dx/dt — (3t2+1)3°

Whent = 1, we have d*y/dxz* = —1/16 < 0, so the curve is concave down.
(b) Wehave

_dy _ dy/dt

YT dr T dejdt

To find dw/dt, we use the quotient rule:

dw _ (do/dt)(dy/de*) — (dy/dt)(d/de*)

dt (dz/dt)?

We then divide this by dz/dt again to get the required formula, since
d’y  dw _ dw/dt

dz? ~ dz  dz/dt’

157
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Solutions for Section 3.9

Exercises

1. With f(z) = /1 + z, thechain rule gives f'(z) = 1/(2v/1 + z), S0 f(0) = 1 and f'(0) = 1/2. Therefore the tangent
line approximation of f near x = 0,

f(x) = £(0) + £/ (0)(z — 0),

\/l—l—le—l—g.

Thismeansthat, near x = 0, thefunction /1 + 2 can be approximated by itstangent liney = 1 + z/2. (See Figure 3.16.)

becomes

y y=1+42x/2

Figure 3.16

2. With f(z) = e*, the tangent line approximation to f near = 0 is f(z) ~ f(0) + f(0)(z — 0) which becomes
e ~ e’ +e’c =141z =1+ 2. Thus, our local linearization of e® near z = 0 ise® ~ 1 + z.
3. With f(z) = 1/z, we see that the tangent line approximation to f near z = 1 is

flz) = f(1) + f(1)(z - 1),
which becomes 1
— 1+ () (z—1).
Since f'(x) = —1/z>, f'(1) = —1. Thus our formula reduces to

1

- rRl-(z—-1)=2-—=x.

Sml-(@-1)=2-¢
Thisisthelocal linearization of 1/« near x = 1.

4. With f(z) = 1/(/1 + ), we see that the tangent line approximation to f near x = 0 is
f(@) = f(0) + £ (0)(z - 0),

which becomes

1 /
=1+ f(0)x.
Vigs oL e
Since f'(x) = (—=1/2)(1 + z) /2, #/(0) = —1/2. Thus our formulareduces to
1
~1—x/2.
14z @/
Thisisthelocd linearization of near x = 0.

+x
5. Let f(z) =e . Then f'(z) = —e *. S0 f(0) = 1, f'(0) = —e® = —1. Therefore, e ® = f(0) + f'(0)z =1 — z.
6. With f(z) = e™’ we get a tangent line approximation of f(x) ~ f(1) + £ (1)(z — 1) which becomes e ~e+

(Zme’”z) (x —1) = e+ 2e(x — 1) = 2ex — e. Thus, our local linearization of e nearz =1ise® ~ 2z —e.

=1
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Problems

7.

10.

. (@) Let f(z) =1/(1+z). Thenf(

(@) Let f(z) = (1+z)" Then f'(x) = k(1 + z)*~*. Since
f(x) = £(0) + £'(0)(z — 0)
is the tangent line approximation, and £(0) = 1, f'(0) = k, for small = we get
f(z) =1+ kxz.

(b) Since /1.1 = (14 0.1)'/? &~ 1 4 (1/2)0.1 = 1.05 by the above method, this estimate is about right.
(¢) Thereal answer islessthan 1.05. Since (1.05)? = (14 0.05)% = 14 2(1)(0.05) + (0.05)% = 1.1+ (0.05)? > 1.1,
we have (1.05)* > 1.1 Therefore
V1.1 < 1.05.

Graphically, this because the graph of v/1 + x is concave down, so it bends below itstangent line. Therefore the true
value (v/1.1) which ison the curve is below the approximate value (1.05) which is on the tangent line.

Thelocal linearization of e® near x = 0is1 + 1z SO
e ~1+x.

Squaring thisyields, for small z,
e ="’ r(1+x)° =142c+2°
Local linearization of 2 directly yields
2z
e 142z
for small z. The two approximations are consistent because they agree: the tangent line approximation to 1 + 2z + a° is
just 1+ 2z.

The first approximation is more accurate. One can see this numerically or by noting that the approximation for e2*
given by 1 + 2z isrealy the same as approximating ¥ at y = 2x. Since the other approximation approximates ¥ at
y = z, which istwice as close to 0 and therefore a better general estimate, it’s more likely to be correct.

—1/(1 +z)? by thechain rule. So £(0) = 1, and f'(0) = —1. Therefore, for
1—=x.

xr =
~1—y. Lety =z when z issmdl, soisy = z?. Hence, for small z,

) =

znear 0,1/(1+z) =~ f(0) + £(0)

(b) We know that for small y, 1/(1 + y)
/0 +2%) =~ 1—2°

(¢) Sincethelinearization of 1/(1 + x?) istheliney = 1, and this line has a slope of 0, the derivative of 1/(1 + 2?) is
zeroatx = 0.

Thelocal linearizations of f(x) = ¢” and g(z) = sinz near x = 0 are
flz)=e"=1+z

and
g(z) =sinz = z.
Thus, the local linearization of e” sin x isthe local linearization of the product:

e“sinex (l+z)r=z+a’ =z

We therefore know that the derivative of e” sin  at z = 0 must be 1. Similarly, using the local linearization of 1/(1 + z)
nearz =0,1/(1+2) =~ 1— z, wehave

e: L () (sina) (H%) ~(+2)@)0 1) =z —2°
so the local linearization of the triple product £ Tazr=0 issimply . And therefore the derivative of e sinz
z=0is1.
11. (a) Suppose
9=t =5
Then
7 ="2M
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So
fr+Ar) = f(r) -
Since f(r + Ar) — f(r) = Ag, and g = GM/r?, we have

(b) The negative sign tells us that the acceleration due to gravity decreases as the distance from the center of the earth
increases.
(c) Thefractional changein g isgiven by

So, since Ar = 4.315 km and r = 6400 km, we have

Ag (4.315

= —0.00135 = —0.135%.
S 6400) 0.00135 = —0.135%

12. (a) Suppose g isaconstant and

l
T_f(l)_27r\/;.
Then o 1
"1 ™ lfl/z:L
f="%3 Nt
Thus, local linearity tells us that
I+ A~ f() + —=A
fa+AD = f(I)+ \/—

Now T' = f(I) and AT = f(I + Al) — f(I),s0

T I 1Al TAl

(b) Knowing that the length of the pendulum increases by 2% tells us that
Al

Thus,

T

AT ~ 5(0.02) = 0.01T.

S0 AT

Ea =~ 0.01.
Thus, T increases by 1%.

13. (a) Considering as aconstant, we have
l
T= =2my/ —.
f(9) p

Then,
Thus, local linearity gives

SinceT = f(g) and AT = f(g + Ag) — f(g). we have

T~ —my / Ag = 27 Ag _2T%.

2 g
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(b) If g increases by 1%, we know
A9 _ 1.
g

Thus,

AT  1Ag 1
—_—~ = —— . 1 = —U.
3 5(0.01) = —0.005,

So, T decreases by 0.5%.

14. Since f has a positive second derivative, its graph is concave up, asin Figure 3.17 or 3.18. This means that the graph of
f(z) isaboveitstangent line. We see that in both cases

f+Az) > f(1) + f'(1)Az.

(The diagrams show Az positive, but the result isalso true if Az isnegative.)

Yy
71+ A)
fQ) + (DA
f(1)
£(1) . ()
F) + f(1)Ax Tangent line
Slope = f/(1)
T
1+ Ax

Figure 3.17 Figure 3.18

15. (a) Since f' isdecreasing, f'(5) islarger.
(b) Since f' isdecreasing, its derivative, ", isnegative. Thus, f''(5) is negative, so 0 islarger.
(c) Since f"(z) is negative for al x, the graph of f is concave down. Thus the graph of f(x) is below its tangent line.
From Figure 3.19, we seethat f(5 + Ax) isbelow £(5) + f'(5)Ax. Thus, £(5) + f'(5)Ax islarger.

j—— 5 Tangentline
Slope = f'(5)

5 5+ Az

Figure 3.19

16. Note that

F@)g@)] = lim L@ M@ +h) = f@)g()

h—0 h
We use the hint: For small h, f(z + h) = f(z) + f'(x)h, and g(z + h) = g(z) + ¢’ (z)h. Therefore

fl@+ Mgz +h) — f(@)g(w) = [f(z) + hf' (@)]lg(z) + hg' ()] — f(x)g(x)
= f(z)g(z) + hf'(x)g(x) + hf(2)g'(x)
+h* f'(2)g' () — f(2)g(x)
= hf'(2)g(z) + hf(2)g (z) + B’ ' (2)g (x).
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Therefore

1o F@ g +h) = f@)g(0) _ . Bf @)g(x) + hf(@)g (v) + h*f (2)g' ()
h—0 h h—0

) +hf'(z)g'(x))

= lim
h—0

= lim (f'(2)g(z) + f(2)g'(z) + hf (2)g (z))

h—0
= f'(z)g(x) + f(2)g (z).

A more complete derivation can be given using the error term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that section to this problem, we write

h
h(f'(x)g(x) + f(=)g'(
h

fl@+h)=f(z)+ f(@)h+Ef(h) ad  g(z+h)=g(z)+g ()h+ Eg(h),

. Efh) ..  E4h) _ L . g _
where }lbl_r% —_ = }l}_rﬂ) = 0. (Thisimplies that }Lgno Ef(h) = }l}_rﬂ) E4(h)=0.)
We have
fl@+h)gx+h) - flx)g(x) _ flx)g(x) Ey(h) E;(h)

= BT fa)g' @)+ @)g(@) + F0) =5 + g(0) L

/@) @+ (@) By () + g ()25 () + LB J@)(@)

h

The terms f(z)g(x)/h and —f(x)g(x)/h cancel out. All the remaining terms on the right, with the exception of the
second and third terms, go to zero as h — 0. Thus, we have

[f(z)g(z)] = lim f(z +h)g(z + h) — f(z)g(x)

h—0 h

= f()g'(z) + f'(z)g(2).

Note that

[£(9(@))] = lim L@@ 1) = fl9(@))

h—0 h
Using the locd linearizations of f and g, we get that

flg(e +h) = f(g(x)) = f (9(z) + ¢ (2)h) — f(g(2))

(9(@)) + f'(9())g (@)h = f(g(x))

[
-~ =

Therefore,

[f(9(x))] = lim

h—0 h

= l.
hlg}) h

= lim f'(g(2))g'(z) = '(9(x))g' (x).
—0
A more complete derivation can be given using the error term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that section to this problem, we write

flz+k) =f(2) +f()k+ Es(k) and g(z+h)=g(z)+g (2)h+ Eg(h),

where lim Eg—(h) = lim Ef—(k) =0.
h—0 h k—0 k‘

Now welet z = g(z) and k = g(z + h) — g(z). Thenwehave k = ¢’ (z)h + E4(h). Thus,
flglz+h) - flg(@)) _ f(z+Fk) = f(2)

h h
f() + f(2k+ Es(k) = f(z) _ f'(2)k + E¢(k)

h N h
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_ SOOI OB | B (k)
h k h
- P+ LOBO) | B [g @+ Eg(h>]

PN "()Ef(k) | E4(h)- Ef(k
Now, if h — 0 then & — 0 aswell, and all the terms on the right except the first go to zero, leaving us with the term
f'(2)g' (z). Substituting g(z) for z, we obtain
! . +h - ! !
[Fla@)] = im JOCERIZ TG _ g1y )

h—0 h

18. We want to show that
o f@ = @) _
r—a r—a

Substituting for f(z) we have

L f@) —f@) L f(@)+ L —a) + By (2) ~ f(a)
T—a r—a r—a r—a
= lim <L+EL—(x)> =L+ lim EL—(x) =L.
Tz—a - z—=0 T —a

Thus, we have shown that f isdifferentiable at z = a and that its derivative is L, that is, f'(a) = L.

Solutions for Section 3.10

Exercises

1. Since f'(a) > 0 and ¢’ (a) < 0, I'Hopital’s rule tells us that
’
o f@) @

— = < 0.
e=a g(x)  g'(a)
2. Since f'(a) < 0 and g’'(a) < 0, I'Hopital’srule tells us that
tim L@ _ @)

v—a g(z)  g'(a)

3. Here f(a) = g(a) = f'(a) = g’'(a) = 0,and f"(a) > 0 and g"(a) < 0.

"(
f@) _ . f@) _ f(a)

lim —< = lim = <0
e—a g(z) z—ag'(z)  g"(a)

4. Note that £(0) = g(0) = 0 and f'(0) = ¢'(0). Sincexz = 0 looks like a point of inflection for each curve, f/(0) =
g''(0) = 0. Therefore, applying I'Hopital's rule successively gives us
o F@ @) @) )

=0 g(x) ~ zo0 g'(x)  =o0 g’ (x)  z—0 g (x)’

Now notice how the concavity of f changes: for x < 0, itisconcave up, so f(x) > 0, and for z > 0 it is concave
down, so f”(x) < 0. Thus f"(z) is adecreasing function at 0 and so "/ (0) is negative. Similarly, for z < 0, wesee g
is concave down and for z > 0 it is concave up, so g () isincreasing at 0 and so g"'’(0) is positive. Consequently,

o 1@ _ L )

z—0 g(x) - zig) g”’(O)

< 0.
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The denominator approaches zero as x goes to zero and the numerator goes to zero even faster, so you should expect that
thelimit to be 0. You can check this by substituting several values of = close to zero. Alternatively, using I’ Hopital’s rule,
we have
. x> . 2x
lim — = lim =
r—0 SINT z—0 COST

The numerator goes to zero faster than the denominator, so you should expect the limit to be zero. Using I' Hopital's rule,
we have
. sin’z . 2sinzcosz
lim =lim — =0.
z—0 X z—0 1

The denominator goes to zero more slowly than x does, so the numerator goes to zero faster than the denominator, so you
should expect the limit to be zero. With I' Hopital'srule,
lim 222 = fim —2% = Jim 3¢%3 cosz = 0.

r—0 1’1/3 r—0 %x*2/3 r—0

The denominator goes to zero more slowly than z. Therefore, you should expect that the limit to be 0. Using I’ Hopita’s
rule,
. x . 1 . 3(sinz)?/3
lim ———— = lim = lim
@—0 (sinz)/3  2—0 (sinz)~2/3cosz «—0 cosw

:07

sincesin0 =0 andcos0 = 1.

The larger power dominates. Using I’ Hopital'srule
. ° . 5¢* . 202°
omr00 0127 asoo 0.72°  aosoo 4,220
. 60z> 1200 .. 120
= lim = lim = lim =0

oo 21Tt T 200 8473 T a—oo 25212

50 0.12" dominates.
We apply I’ Hopital’s rule twice to the ratio 5022 /0.01z>:

502> . 100z ) 100

e 0.012% 20 00322 4o 0.067

Sincethe limit is 0, we see that 0.01z2 is much larger than 502> asz — co.

11. The power function dominates. Using I’ Hopital’srule
1
. In(@+3) .. @ . 0-8
lim ———— = lim —(———— = lim ————.
ehos 202 o300 022708 550 0.2(z + 3)
Using I’ Hopital’s rule again gives
xO.S 0 8$_0'2
lim —— = lim ———— =0,
s0 2%-% dominates.
12. The exponential dominates. After 10 applications of I’ Hopita’s rule
lm o 0 g 10
z—o00 9.1z - r—r 00 0.160'11" - - r—r 00 (0.1)1060'1£ -
s0 %' dominates.
Problems
13. Let f(z) =lnz andg(z) = 1/z 0 f'(z) = 1/z and ¢’ (z) = —1/2* and
m BT lz z o

z—0t 1/1‘ z—0t _1/1'2 z—o0+ —1
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(&) Since f'(z) = 3 cos(3z), we have f'(0) = 3.
(b) Sinceg'(x) = 5, we have g'(0) = 5.
(c) Since f(x) =sin3z and g(z) = 5z areboth 0 at = = 0, we apply I"Hopital’s rule to obtain

sin(3z) _ f'(0) 3

—~ ~

an0 5z g(0) 5
Let f(x) = sin(2x) and g(x) = x. Observe that f(1) = sin2 # 0 and g(1) = 1 # 0. Therefore I"Hopital’s rule does

not apply. However,

lim S22 _ 5”112 = 0.909297.

z—1 xr

Let f(z) = cosz and g(z) = x. Observe that since f(0) = 1, I"Hopital’s rule does not apply. But since g(0) = 0,
lim CoS ™

z—0 T

does not exist.

Let f(z) = e™® and g(z) = sin z. Observe that as = increases, f(z) approaches 0 but g(z) oscillates between —1 and
1. Since g(z) does not approach 0 in the limit, I’Hopital’s rule does not apply. Because g(z) is in the denominator and
oscillates through 0 forever, the limit does not exist.

Wewant tofind lim f(z), which we do by three applications of I’Hopital’srule:
Tr— 00
22% + 52 . 6z% + 10z . 12z +10 .12
1 lim —— =

li —_—_— = B e = —_— = -
e 325 =1 abee 922 eros 187 18 3

Sotheliney = 2/3 isthe horizontal asymptote.
Observe that both f(4) and g(4) are zero. Also, f/(4) = 1.4 and g’ (4) = —0.7, so by I'Hopital’srule,

Exercises

= (et~ L) caet paret 4 L
@)= 7 <2te \/Z> = 2e +2te” + YEVER

dw  (=3)(5+ 32) — (5 — 32)(3)

dz (54 3z)2
 15-92—-15+492 _ —30
(5 +32)2  (5+32)2
d N 11, 3
ay ) @) 277~ yn(y)
L3 x3(3)_2 o a2 s
fi(z) = 9(3lnm 1)—}-9 p =z"lnzx 3+3—xlnx
’ d k T k-1 T
g(x):%(aﬁ +k)=k:1: + k" Ink.
%:3Sin29c050

f'(t) = 2cos(3t +5) - (—sin(3t + 5))3
= —6cos(3t + 5) - sin(3t + 5)
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1
! _ . .
M'(a) = 2tan(2 + 3a) 0?2 1 30) 3
tan(2 + 3a)

" cos?(2 + 3a)

9. 5'(9) = 4 sin”(30 — m) = 6 cos(30 — 7) sin(30 — 7).

de
1 -t
10. K'(t) = pe—— (—e7t=1).
11.
d (sin(5—6) _ cos(5 —6)(—=1)8* —sin(5 — 6)(26)
do 02 - 04
fcos(5 —0) + 2sin(5 — )
= — 93 .
1 20 cos 0
12. w'(9) = —— —
w(6) sin®f  sin®@
13. ¢'(z) = % (x% +z ! +x7%) = %xf% —z 2= gaf%
14. §'(z) = 4 (arctan(2 — z)) = _
' T dr T14+(2-1)2

d eg+579 eg+379 0 —0
15. r'(@):@(e( ))ze( )(e —e )
16. Using the chain rule, we get:
m'(n) = cos(e”™) - (e")
17. Using the chain rule we get:

n(sin . n(sin 1
k,(a) = 6ta s a)(tan(sm O[))I = 6ta (sina) | m - COS (.

18. Here we use the product rule, and then the chain rule, and then the product rule.
g (¢) = cos(Vte') + t(cos Vie!) = cos(Vite!) + t(—sin(Vie') - (Vie))

= cos(Vte') — tsin(Vie) - (\/Zet + %ﬂet>

19. f'(r) = e(tan 2 + tan r)eil(tan2 +tanr) = e(tan2 + tan T)e—l ( 1 )

cos2r
20. y' =0
d tanx tanx tanx 1
21, — = .
I Te e + ze o
22. % = 2> sin®(3x) + ¢*(2sin(3z) cos(3x)3) = 2¢* sin(3x)(sin(3z) + 3 cos(3z))
23, g'(x) _ 6x 6x

1+ (322 41)? = 92" + 627 + 2
d ( 1 )__2w1n2+ew

24. ¢ = — .
g (w) dw \ 2w + ew (Zw + ew)2

25. dy _ (In2)2%"" cos z - cos z + 29" (—sinz) = 25" ((ln 2) cos® z — sin m)

dx
26. h(z) =ax -lne = ax, 0 h'(z) = a.
27. K'(z) =a
28. f'() = ke"®
29. Using the product rule and factoring gives ' (t) = e~ ***(cost — 4ksint).



30.
31

32.

33.

35.

36.

37.

38.

39.
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Using the chain rule gives f'(z) = 51n(a)a®®.
Using the quotient rule gives

! p—
f (1-) - (a2+1‘2)2
. —4a’x
T (a4 22)?
Using the quotient rule gives
vy 2ar(b+1%) — 3r*(ar®)
wir) = (b+1r°)
_ 2abr — ar’
b+
Using the quotient rule gives
p p s 2 2
fo) —2sva? + s — \/m(a —5%)

(a? + s?)
_ —2s(a® + 5%) — s(a® — 57)
(a2 + s2)3/2
_ —2a%s — 25 —a’s+ §°
(a® + 52)3/2
3

_ —3a’s — s
- (a2 + 52)3/2'

Using the product rule gives

H'(t) = 2ate™ " — c(at® + b)e™"
= (—cat® + 2at — be)e™ .

° a? —sin” @ = ;‘(—ZSiHQCOSQ) = _M_
do 2v/a? —sin? 9 a2 —sin’#

dy 1 (—_2)_ —2
dx_1+(2)2 2] x?+4

t
Using the chain rule gives ' (¢) = COS(’:) (l) ]
sin(¢) \k
aeau
g'(u) = pray
Since g(w) = 5(a2 - 1112)72 "(w) = —10(a2 _ w2)*3(_2w) — 20w
g 9 (a2 — w?)3

dy _(e"+e )" +eT") — (e —eT")(e" —e™")

de (e® +e~7)2
. (6z+6—m)2 _ (eac _e—z)Q . (6290 +2+6—2m)_(62z _2+e—2z)
= (6I _+_€—x)2 - (ex + e—x)Z
4

(e* + )2

167
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41. Using the quotient and chain rules, we have

dy _ (aeaz +ae—aac)(eaz + e—az) _ (eaz _ e—a:c)(aeaz _ae—am)
E - (eaz + e—az)Z
a(ea:c _+_efaz)2 _ a(eaz _ efa:c)2
(earc _+_efarc)2
a[(62az + 24+ 6—2az) _ (eZam —24+ e—2am)]
(e + e—an)2

4a
(eaz + e—az)Z

42.
9~ 2 (cos(56))™* (—sin(50) - 5) + 25in(66) cos(66) - 6
-5 7sin(59) sin cos
= —5 o 12 (69) cox(69)

43. v'(9) = diH sin[(30 — m)?] = cos[(30 — 7)*] - 2(30 — 7) - 3 = 6(36 — ) cos[(30 — )°].

=3(z” +5)%(22)(3z° — 2)*> + (z° + 5)*[2(32® — 2)(9z”)]
= 3(2z)(z” + 5)*(3z° — 2)[(3z® — 2) + (z* + 5)(3z)]
= 6z(z” 4 5)*(32® — 2)[6z° + 152 — 2]

45. Since tan(arctan(k6)) = k6, because tan and arctan are inverse functions, we have N' () = k.
46. Using the product rule gives ' (t) = ke*t(sin at + cos bt) + e**(a cos at — bsin bt).

47. f'(z) = di(z — 4z — 32%)(62° — 31) = (—4 — 62)(62° — 31) + (2 — 4z — 3z°)(6ez™").
48. f'(t) = 4(sin(2 )— cos(3t))3[2 cos(2t) + 3 sin(3t)]
49. Sincecos’y +sin’y = 1, wehave s(y) = ¥/1 + 3 = V4. Thus s’ (y) =
50.
f'(z) = (—2z + 62)(6 — 4z + ") + (4 — 2 + 22°)(—4 + 72®)
= (=122 + 442” — 242° — 22° + 62°) + (=16 + 42° — 82° + 282° — 72° + 142°)
= —16 — 12z + 48z° — 322> + 282° — 92° + 202°
51.
12 3 11 )
W (z) = (_P + —3) (22° + 4) + (— - —2) (622)
=—2r+4+4-— +%+6m—6
T

=4z —2—4z > +8z °

52. Note: f(z) = (52)'/2 + 5212 + 52712 — /52712 4 /5,0 f'(2) = g( 52) /2 4 gz71/2 — 2273/2 + §273/2.

53. Wewish to find the slope m = dy/dx. To do this, we can implicitly differentiate the given formulain terms of x:

2 +3y° =7

dy d
2 _— = — =

x + Gyda: da:(7) 0
dy _ “2¢ _ =z
dz =~ 6y ~ 3y’

Thus, at (2, —1), m = —(2)/3(—1) = 2/3.



54. Taking derivatives implicitly, wefind

@ +cosyd—y+2x =

SOLUTIONS to Review Problems for Chapter Three

—2zy
(@® - 2)

dy
ﬂ_o

dx dzr
dy
dzr
So, at thepoint z = 3,y = 0,
dy _ (=2)3) _
dx 1+ cos0
B5.
2 dy dy
2 222 _9Zd =
wyte dzr dx
2 dy
_9nZd
(" =2)—~
dy
dx
56.
3z” + 3y2d—y — 8xy — 4x
dx
(3y” — 4z%)

57. Differentiating implicitly on both sides with respect to z,

a cos(ay) ;l_z — bsin(br)
dy
(acos(ay) — x)%
dy _
dx

58. First, we differentiate with respect to x:

d
=y+x—y

d .
% = 89101/—391:2
dy 8zy — 3z°

dr — 3y? — 42>

dx

=y + bsin(bx)

y + bsin(bx)
acos(ay) —x

dy dy
el 14 2y=Z =
xdx—ky +ydx 0

dy
etz 2) = —
dx(w'+ y) Y

dy _ -y
dr  =+2y
Atz = 3, we have
3y+y’ =4

Yy +3y—4=0
(y—D(y+4)=0.

Our two points, then, are (3,1) and (3, —4).

dy -1

ALBL, g, = 3+2(1) 5

dy _ (=4 _ 4
MG G =3~ F

- _1 Tangent line: (y — 1) = —é(l‘ - 3).

Tangent line: (y + 4) = —%(x —3).

169
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Problems

59. Since I isproportional to r*, we have W = kr*® for some constant k. Thus, dW/dr = k(3r?) = 3kr?

60.

61.

62.

63.

is proportional to 2.
Taking thevalues of £, f, g, and g’ from the table we get:

(@ h(4) = flg(4) =f(3) = 1.
(b) B'(4) = f'(9(4))g'(4) = f(3)-1=2.

(©) h(4) =g(f(4) =g(4) = 3.
@) h'(4) =g'(f(4)f' (4) =g'(4)-3=3.
@ W (4) = (f(4)g'(4) — g(4)f'(4)) / f*(4) = —5/16
() h'(4) =f(D)g'(4) +g(4)f'(4) =13.
@ H'(2)=1"(2)s(2) +r(2)s'(2)=-1-1+4-3=11
gy =@ _ -t 1
©) 7 =3 2) 2v/42 4
(c) H'(2) =7r'(s(2))s'(2) =7'(1) - 3, but we don’t know r'(1).
d) H'(2) =s'(r(2)r'(2) = s'(4)r'(2) = -3.
@ f(x) =2"—4g(z
f'(@) = 22 — 49/ (2)
F(2) =2(2) —4(—4) =4+ 16 = 20
(b) f(z) = 5%
o) = M
) = g = ot =y
© f(z)=12g(x)
f'(x) = 2zg(z) + 2%’ (x)
f(2) =2(2)(3) + (2)*(—4) =12 — 16 = —4
@ f(z) = (9(x))?
f'(x) =2g(x) - g'(x)
1'(2) = 2(3)(—4) = —24
(€) f(x) =zsin(g(z))
f'(x) = sin(g(x)) + z cos(g(x)) - ¢'(x)
f'(2) =sin(g(2)) + 2cos(9(2)) - 4'(2)
=sin3 + 2cos(3) - (—4)
=sin3d — 8cos 3
() f(z) = 2% In(g(x)) ,
f'(2) = 2eIn(g(2)) + 2*(£2))
f'(2) =2(2)In3 + (2)*(5)
=4In3 —1&
@ f(z)=2"—4g(z)
(2) =4-4(3)=-8
(2= 20
Thus, we have apoint (2, —8) and slope m = 20. This gives
—8 =2(20) + b
b=-48, <0
y = 20x — 48.
(b) f(z) g(—x)
f(2) = 3
r@ =%
Thus, we have point (2, 2) and siopem = 4. Thisgives

= ()@ +b

I @I

. Thus, dW/dr



65.
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2 22 -16

b=3-9=%5 %
11 16
© f(x)=a’g(x)
F(2) =4-g(2) =4(3) = 12
£'@)=-4
Thus, we have point (2, 12) and slope m = —4. Thisgives
12 =2(—4)+b
b=20, <o
y = —4x + 20.
@ f@) =(9()®
F(2)=(9(2))*=(3)*=9
£(2) = —24
Thus, we have point (2, 9) and Slope m = —24. Thisgives
9 =2(—24) +b
b=57, =0
y = —24x + 57.
() f(z) ==zsin(g(z))

fz
f(2) = 2sin(g(2)) = 2sin3
f'(2) =sin3 — 8cos 3

We will use adecimal approximation for £(2) and f'(2), so the point (2, 2 sin 3) ~ (2, 0.28) and m ~ 8.06. Thus,

0.28 = 2(8.06) +b
b=-15.84, =0
y = 8.06z — 15.84.

(f) f(z) =2”Ing(x)
f(2) =4Ilng(2) =4In3 ~ 4.39
f'(2) =4In3 — ? ~ —0.94.
Thus, we have point (2,4.39) and slope m = —0.94. Thisgives

4.39 = 2(—0.94) +b
b=16.27, <0
y = —0.94x 4 6.27.

When we zoom in on the origin, we find that two functions are not defined there. The other functions all look like straight
lines through the origin. The only way we can tell them apart istheir slope.

The followi ng functions all have slope 0 and are therefore indistinguishable:
sinz — tanx, -5,z —sinz, and ICOC%

These functl ons al have slope 1 at the orlgm and are thus indistinguishable:
arcsin z, %,arctanx,e -1, Hl,and m2+1'

Now, Si‘; £ — 1 and —z In z both are undefined at the origin, so they are distinguishable from the other functions. In
addition, while 822 _ 1 has a slope that approaches zero near the origin, —z In 2 becomes vertical near the origin, so
they are dlstlngmshable from each other.

Findly, z'° + Y/ isthe only function defined at the origin and with avertical tangent there, so it is distinguishable

from the others.

It makes sense to define the angle between two curves to be the angle between their tangent lines. (The tangent lines are
the best linear approximations to the curves). See Figure 3.20. The functions sin = and cos  areequal at x = 7.

For fi(xz) = sinz, fl( ) = cos(%) = g
For f2(x) = cosz, fé(%) = —sin(g) = —g,
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Using the point (Z, @) for each tangent linewe get y = @aﬁt Z(1-Z)andy = —¥2p @(1 + Z), respectively.

Y Y
x x ) Ed
2 (1+3) =Gt (1 9) 2 (1 4) 3
N e ~
SN 7 R N RN
o _Z y =sinx 87r N
N Z ~
B8 i %o\t\l\ e
a n_____ 2% i
s P
// \\ 4//// AN
7, N
// \\ //
V2 _ - ~ :7ﬁ V2 1 E e
2 (1 4) y:cosx\ R (+4) 2 (1= g
! T 2 4
I
Figure 3.20 Figure 3.21

There are two possibilities of how to define the angle between the tangent lines, indicated by « and 3 above. The
choice is arbitrary, so we will solve for both. To find the angle, «, we consider the triangle formed by these two lines and
the y-axis. See Figure 3.21.

tan (la) = \/571-/8 = ﬁ
2] w/4 2
%a = 0.61548 radians
o = 1.231 radians, or 70.5°.

Now let us solve for 3, the other possible measure of the angle between the two tangent lines. Since o and 3 are
supplementary, 8 = = — 1.231 = 1.909 radians, or 109.4°.
66. Thecurvesmeetwhen1 +z — 2> =1 — z + 2%, thatiswhen 2z(1 —z) = 0 sothatz = 1 or z = 0. Let

2

y(x)=1+z—2> and yo(z)=1—z+ 2>

Then
y'=1-2z and ' =-1+2z.
Atz =0,y =1,y = —1sothaty,’ - y»’ = —1 and the curves are perpendicular. Atz = 1,11’ = —1,52' =1
sothat y1’ - y2' = —1 and the curves are perpendicular.

67. The curves meet when 1 — 2®/3 = ¢ — 1, that iswhen 2 + 3z — 6 = 0. So the roots of this equation give us the x-
coordinates of the intersection point. By numerical methods, we see there is one solution near z = 1.3. See Figure 3.22.

Let s
yi(e)=1-— and y(z)=z—1
So we have
yl' =22 and yg' =1.
However, v/ (z) = +1, soif the curves are to be perpendicular when they cross, then " must be —1. Sincey,” = —22,
y1’ = —1only at x = £1 which is not the point of intersection. The curves are therefore not perpendicular when they
Cross.

Figure 3.22
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68. Differentiating gives Z—y =lnz+1-0.
X
To find the point at which the graph crosses the z-axis, set y = 0 and solve for z:

0=2xzlnx —bx

0 =z(lnz —b).
Sincex > 0, we have
Inz—b=0
b
r =e€.

At the point (e, 0), the opeis
dy
dz
Thus the equation of the tangent lineis

=ln(")+1-b=b+1-b=1.

y—0=1(x—¢")

b
y=zc—e.

dg d ( 1 ) d -2 -3 2GM
69. —=GM—|=)=GCM— =GM(-2 =— .
@ Ellr ¢ dr \r? ¢ dr (T ) GM(=2)r r3
(b) d—i isthe rate of change of acceleration due to the pull of gravity. The further away from the center of the earth, the

weaker the pull of gravity is. So g is decreasing and therefore its derivative, Z—g is negative.

(©) By part (a), '

dg _2GM

2(6.67 x 1072%)(6 x 10**)
dr 3

~ —3. 10°°.
(6400) 3.05 x 10

r=6400 r=6400
(d) Itisreasonable to assume that g isaconstant near the surface of the earth.

70. The population of Mexico is given by the formula
M = 84(1 4 0.026)" = 84(1.026)" million

and that of the US by
U = 250(1 + 0.007)% = 250(1.007)" million,

where t ismeasured in years (t = 0 corresponds to the year 1990). So,

ar) 84i(1.026)t = 84(1.026)" In(1.026)| = 2.156
dt dt
= t=0 t=0
and Cﬁl—U = 250di(1.007)t =250(1.007)" In(1.007)| =~ 1.744
¢ t=0 ¢ t=0 t=0
: dU . . . .
Since s > T , the population of Mexico was growing faster in 1990.
0 t=0
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71. (a) If thedistance s(t) = 202, then the velocity, v(t), isgiven by

o(t) = s'(t) = (2065)' = (%) (2065) = 10e%.

(b) Observing the differentiation in (a), we note that

Substituting s(¢) for 20, we obtain s’ (t) = 1s(t).
72. (a) P
30

P — 30e—3-23x10"°h

h
(b) P
-5
= 30e " H23X 1077 (_3 93 % 1077)
SO
) —30(3.23 x 107°) = —9.69 x 10~ *
dh |, _,

Hence, at h = 0, the slope of the tangent lineis —9.69 x 10, so the equation of the tangent lineis

y —30 = (—9.69 x 10~*)(h — 0)
y = (—9.69 x 10~ *)h + 30.

(c) Therule of thumb says
Dropinpressurefrom \  h
sealevel toheight h ) ~ 1000

But since the pressure at sea level is 30 inches of mercury, thisdrop in pressureisalso (30 — P), so

h

30— P = 1500

giving
P =30 —0.001h.

(d) The equationsin (b) and (c) are ailmost the same: both have P intercepts of 30, and the slopes are almost the same
(9.69 x 10* = 0.001). The rule of thumb calculates values of P which are very close to the tangent lines, and
therefore yields values very close to the curve.

(e) The tangent line is dlightly below the curve, and the rule of thumb line, having a slightly more negative slope, is
dlightly below the tangent line (for h > 0). Thus, the rule of thumb values are slightly smaller.

73.
% = —7.5(0.507) sin(0.507¢) = —3.80 sin(0.507¢)
(& Whent =6, % = —3.805sin(0.507 - 6) = —0.38 meters’hour. So thetide isfaling at 0.38 meters’hour.
(b) Whent =9, ‘i—‘;{ = —3.805sin(0.507 - 9) = 3.76 meters’hour. So thetide isrising at 3.76 meters/hour.
d

() Whent =12, 9 = —3.80sin(0.507 - 12) = 0.75 meters/hour. So the tideisrising at 0.75 meters’hour.
(d) Whent = 18, % = —3.805sin(0.507 - 18) = —1.12 meters/hour. So thetideisfalling at 1.12 meters/hour.
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74. Sincewe're given that the instantaneous rate of change of T" at ¢ = 30 is 2, wewant to choose a and b so that the derivative
of T agrees with this value. Differentiating, 7" (t) = ab - e~*¢. Then we have

_ _ 2
2=T'(30) = abe ** ore *” = =

(30) = abe e 7
We aso know that at ¢ = 30, 7 = 120, sO

80
a

120 = T'(30) = 200 — ae=30 or ¢=300 _

Thus 30 = ¢ =300 — ib 0b= 4 =0.025 and a = 169.36.
a a

75. (a) Differentiating, we see

dy _

v=o = —27wyo sin(2rwt)
a = % = —47r2w2y0 cos(2mwt).
(b) We have
y = yo cos(2mwt)
v = —2mwyo sin(2nwt)
a = —47r2w2y0 cos(2mwt).
So

Amplitude of y is |yo|,
Amplitude of v is |2rwyo| = 27w|yo|,
Amplitude of a is [47°w’yo| = 4w’ |yo.

The amplitudes are different (provided 27w # 1). The periods of the three functions are all the same, namely 1/w.
(c) Looking at the answer to part (a), we see

d2y 2 2
g 0= —47r"w” (yo cos(2mwt))
= —47r2w2y.
So we see that
dzy 2 2
1000000

. . —0.1¢ . f
76. (@) Since lim e = 0, we see that tli)l?Q 17 50000 01¢ — 1000000. Thus, in the long run, close to 1,000,000

t—o00
people will have had the disease. This can be seen in the figure below.

1,000,000

(b) Therate at which people fall sick is given by the first derivative N’ (¢).

N'(t) =~ X, where At = 1 day.

N'(8) = 500,000,000 3 500,000,000
T e01H(1 + 5000e—01)2 0.1t + 25 000,000 01t + 10
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77.

78.

79.
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Graphing this we see that the maximum value of N'(t) is approximately 25,000. Therefore the maximum
number of people to fall sick on any given day is 25,000.

N'(t)

50 100 150 200

Let r be the radius of the balloon. Thenitsvolume, V, is

V= 571'1“3.

We need to find the rate of change of V' with respect to time, that isdV/dt. SinceV = V (r),

av 9
ba—
dr ™
so that by the chain rule,
av _dvidr _ 2
at  drdt T

Whenr = 5, dV/dt = 100w cm®/sec.
Theradius r isrelated to the volume by the formulaV = §Tr7~3. By implicit differentiation, we have

v = érr?;ﬁﬁ = 47rr2ﬁ

dat 3 dt dt’

The surface area of a sphereis 47r?, so we have

av dr
a Car
. dVv 1 .
but since i gs was given, we have
dr 1
dt 3

(a) Since df/dt represents the rate of change of 8 with time, d6/dt represents the angular velocity of the disk.
(b) Suppose P isthe point on the rim shown in Figure 3.23.

Figure 3.23
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Any other point on therim is moving at the same speed, though in a different direction. We know that since 8 is

in radians,
s = ab.
Since a is a constant, we know
ds _ b
dt — T dt’
But ds/dt = v, the speed of the point on therim, so
v = 0,ﬁ
T dt

80. Using Pythagoras' theorem, we seethat the distance = between the aircraft’s current position and the point 2 miles directly
above the ground station are related to s by theformulaz = (s*> — 22)'/2. See Figure 3.24. The speed along the aircraft’s

constant atitude flight path is
dz _ (1Y 2 g1 (é)_iﬁ
at (2)(8 DTN G) T aw

dr 4.6 210

it J(46)? — 4
966

Vv21.16 — 4

966 .
=1~ 233.2 miles/hour.

When s = 4.6 and ds/dt = 210,

T A (Aircraft)

G (Ground station)

Figure 3.24

81. Wewant tofind dP/dV . Solving PV = k for P gives

P=k/V
0,

aw __k

awv v

82. (a) SinceV = k/P, the volume decreases.
(b) Since PV = kand P = 2whenV = 10, we have k = 20, so

20
We think of both P and V' as functions of time, so by the chain rule
v _ v P
dt ~ dP dt’
v _ _20dP
dt ~  Pzdt’

We know that dP/dt = 0.05 atm/min when P = 2 am, so

Cil_‘t/ — _;_8 -(0.05) = —0.25 cm®/min.
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83. (@ If y =Inz,then

, 1
Yy =~
T
II__L
y - $2
mneo_
Tl
mro__ 3.2
Yy =T

and so
Y™ = (—1)"* (1l
(b) If y = ze®, then
y =ze” +€°
y' = ze” + 2"
y”l — me.’l} + 361)
so that
y™ = ze” + ne”.
(©) If y =e®cosz, then

= e”(cosz — sin x)

J
y' = —2e"sinx

y" =e"(—2cosz — 2sin 1)
y™ = —4e® cosz

y®) = e®(—4cosz + 4sinz)
y® = 8¢”sinz.

Combining these results we get

y™ = (=4)"~V/4e® (cos x —sinx), n=4m+1, m=0,1,2,3,...
y(n) = —2(—4)(”_2)/4e’” Sinil?, ’n:4m+27 m:07172737"'
y(n) = —2(—4)(n_3)/46z(COS£B+Sin$)7 n:4m+37 m = 07172737"'
Y = (=)D ¥ cos ) n = 4m, m=1,23,....

84. (a) We multiply through by h = f - g and cancel asfollows:

fl gl_hl

Pty
LA P
<f+g> fg 3 fg
I g oM
ffg+gfg hh

flog+d - f=H,
which isthe product rule.
(b) We start with the product rule, multiply through by 1/(fg¢) and cancel as follows:

flog+g-f=n

AN UV |

RN SNV S S Y

(f -9 fg+(g f) 7T
e
fog A

which isthe additive rule shown in part (a).
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85. This problem can be solved by using either the quotient rule or the fact that

f_d g _d

We use the second method. The relative rate of change of f/gis(f/g)' /(f/g),so

(f/l9)' _ d fy_d _d d _fr g
o _%ln<§>_%(lnf—lng)_%(lnf)—%(lng)_T—;.

Thus, the relative rate of change of f/g isthe difference between the relative rates of change of f and of g.

CAS Challenge Problems
86. (a) Answersfrom different computer algebra systems may be in different forms. One formis:

5—$(m 1) = 2@ +1)" 4 (@ +1)" In(z + 1)

i(sin z)” = zcosx(sinz)” ' + (sinz)” In(sin z)

dx
(b) Both the answersin part (a) follow the general rule:

%f(a:)”” = af'(2) (f(2))"" + (£(2))" In(f(2)).

(c) Applying thisruleto g(z), we get
%(ln )" =z(1/z)(Inz)* " + (Inz)* In(lnz) = (Inz)* " + (Inz)” In(In z).
This agrees with the answer given by the computer algebra system.
(d) We canwrite f(z) = (/@) 5o
(f(z)® = (eln(f(z)))JJ = 2 n(f (@)

Therefore, using the chain rule and the product rule,

L (@) = L @)U = (n(f@) + o (@) ) eI

)
(ln(f(m» + x’}’fj}) (@) =In(f @) (@) +af @) (F@)™

= af'(2) (f(2))""" + (f(2))" In(f(x)).

87. (@) A CASgives f'(z) = 1.
(b) By thechainrule,

’ . 1
Ir) = coslarcsinx) - .
f/ (@) = cos(aresinz) - ——;
Now cost = £4/1 — sin? t. Furthermore, if —7/2 < t < m/2 then cost > 0, so we take the positive square root
and get cost = /1 — sin? t. Since —7/2 < arcsin x < /2 for al z in the domain of arcsin, we have

cos(arcsinz) = \/1 — (sin(arcsinz))? = \/1 — 22,

so
d . . - 1
s sin(arcsin(z)) = /1 — z2 - Vig =1
(c) Sincesin(arcsin(z)) = z, itsderivativeis 1.
88. (a) A CASgivesg'(r) =0.
(b) Using the product rule,
’ _ d —2r r —2rd Ty _ _ =27 47 —2r r
g(r)=-(277) 4"+ 277 - (4) = =2In2- 27747 + 27 In4 -4

=—In4-277"4" +In4-2774" = (—In4+1n4)27>"4" =0-277"4" = 0.

(c) By thelaws of exponents, 4" = (2%)" = 2%",50272"4" = 27272%" = 20 = 1, Therefore, its derivative is zero.
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89. (@) A CASgivesh'(t)=0
(b) By thechainrule
d (1_1 d (_t_ TS B .
h’(t) — dt ( t) + dt (Lt—l) — tt_Zl + t—1 ;_1)2
t—1 t t—1
1 t-1)—¢t 1 —1

Tei T et Te—ite=i T

0.

(c) The expression inside the first logarithmis1 — (1/t) = (¢ — 1)/t. Using the property log A + log B = log(AB),
we get
1 t t—1 t
i (1-7) +m (52g) = () +m (525)

Thus h(t) = 0,50 A'(t) = 0 aso.
CHECK YOUR UNDERSTANDING

1. True. Sinced(z™)/dx = nz™ "', the derivative of a power function isapower function, so the derivative of a polynomial
isapolynomial.
2. False, since

d (1) i (Trxd) = _2rz ° = —27r.

de \z2) ~ dz 3
3. True, since cos 6 and therefore cos® 6 are periodic, and
d 1
— (tan ) = ——.
d0( an 6) cos? 6
4. False. Since ,
d 2 1 2 d 2 d (2) 2
— 1 = — . 2r=— — 1 = ([Z)=_=
dzx n(e?) 2 T and dxz? n(z”) dr \x x2’

we see that the second derivative of In(z?) is negative for z > 0. Thus, the graph is concave down.

5. True. Since f'(z) isthe limit
o) =t TEHW) 1)

h—0 h ’

the function f must be defined for all x.
6. True. Theslopeof f(z) + g(z) a = = 2 isthe sum of the derivatives, f'(2) + ¢'(2) = 3.1 + 7.3 = 10.4.
7. Fase. The product rule gives

(f9)' =fd +f'g.
Differentiating this and using the product rule again, we get
(f9)" =19 +fg"+fgd+1'g=71d"+2fg +f'g

Thus, the right hand sideisnot equal to fg” + f” g in general.

8. True. If f(z) isperiodic with period ¢, then f(z + ¢) = f(x) for al z. By the definition of the derivative, we have
/ T f(l‘—f-h)—f(l’)
fz) = lim h
and
f@t+et+h) —fz+o)

! 1
f(x—l—c)—]llgt N .

Since f isperiodic, for any h # 0, we have

flx+h)— f(x) _ flx+c+h)— f(z+c)

h h
Taking thelimit ash — 0, we get that f'(z) = f'(z + ¢), so f' is periodic with the same period as f(z).
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10.
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13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
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True; differentiating the equation with respect to =, we get

dy dy
2y—= — =0.
Yar +y+xdm 0
Solving for dy/dx, we get that
dy _ _—y
dr  2y+z’

Thus dy/dx exists where 2y + = # 0. Now if 2y + x = 0, then z = —2y. Substituting for x in the original equation,
y? +zy —1=0,weget
y’—2y° —1=0.
This simplifiesto 4> + 1 = 0, which has no solutions. Thus dy/dx exists everywhere.
False. The slopeis given by
dy dy/dt  2tcos(t’) _ cos(t?)

de — do/dt — —2tsin(t2)  sin(¢2)

Fase. If f(z) = |z|, then f(z) isnot differentiableat z = 0 and f'(x) does not exist at z = 0.

Fase. If f(z) = Inz, then f'(x) = 1/z, which is decreasing for z > 0.

Fal se; the fourth derivative of cos t+C, where C isany constant, isindeed cos ¢t. But any function of theform cos t+p(t),
where p(t) isapolynomial of degree lessthan or equal to 3, also hasits fourth derivative equal to cos . So cost + > will
work.

False; For example, the inverse function of f(z) = «® isz'/?, and the derivative of z'/2 is (1/3)z~2/2, which is not
1/f'(x) = 1/(32%).

False; for example, if both f(x) and g(z) are constant functions, such as f(z) = 6, g(x) = 10, then (fg)' (z) = 0, and
f'(z)y=0andg'(z) = 0.

True; looking at the statement from the other direction, if both f(z) and g(x) are differentiable at x = 1, then so istheir

quotient, f(x)/g(z), aslong as it is defined there, which requires that g(1) # 0. So the only way in which f(z)/g(z)
can be defined but not differentiable at z = 1 isif either f(z) or g(x), or both, is not differentiable there.

False; for example, if both f and g are constant functions, then the derivative of f(g(z)) is zero, as is the derivative of

f(z). Another exampleis f(x) = 5z + 7 and g(x) = = + 2.

True. Since " (z) > 0 and g’ (z) > 0 for dl =, we have " (z) + ¢" (x) > 0 for al x, which meansthat f(z) + g(z) is

concave up.

False Let f(x) = =% and g(z) = 2 — 1. Let h(z) = f(x)g(z). Then h”(z) = 122? — 2. Since "' (0) < 0, clearly h

is not concave up for all x.

False Let f(x) = 22% and g(x) = z>. Then f(z) — g(x) = =2, which is concave up for all z.

Fase Let f(z) = e ® and g(z) = 22 Let h(z) = f(g(z)) = e *". Then h'(z) = —2ze~ " and B (z) = (=2 +

4m2)e"”2. Since " (0) < 0, clearly h is not concave up for al z.

(a) False. Onlyif k = f'(a) is L theloca linearization of f.

(b) False Since f(a) = L(a) for any k, we have lim,_,,(f(z) — L(z)) = f(a) — L(a) = 0, but only if k = f'(a) is
L thelocal linearization of f.

(a) Thisis not a counterexample. Although the product rule says that (fg) = f'g + fg', that does not rule out the
possibility that also (fg)' = f'g'. Infact, if f and g are both constant functions, then both f'g + fg¢' and f'g’ are
zero, so they are equal to each other.

(b) Thisisnot a counterexample. In fact, it agrees with the product rule:

L (et @) = (@) $@) + 02 (@) = f&) +of (@) = 2f' @) + (@),
(c) Thisisnot acounterexample. Although the product rule says that

9 (1@ = Lp@)- ) = £ @F@) + @)f (@) = 2 @) f (@),

it could be true that f'(x) = 1, so that the derivative isalso just 2f(z). In fact, f(z) = z isan example where this
happens.
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(d) Thiswould be a counterexample. If f'(a) = ¢'(a) = 0, then

—~
~
—~
—
Q
—~
8
-
=
Il

f'(a)g(a) + f(a)g'(a) = 0.

—(f(=
dzr r=a

So fg cannot have positive slope at =z = a. Of course such a counterexample could not exist, since the product rule
istrue.

PROJECTS FOR CHAPTER THREE

1. Letr =4/100. (For exampleif i = 5%, r = 0.05.) Then the balance, $ B, after ¢ yearsis given by
B =P(1+r)t,

where $ P isthe original deposit. If we are doubling our money, then B = 2P, so wewish to solvefor ¢ in the
equation 2P = P(1 + r)t. Thisisequivalent to

2= (1+47).
Taking natural logarithms of both sides and solving for ¢ yields

In2 =tln(1+r),
In2
In(1+7)°

We now approximateIn(1 + r) near r = 0. Let f(r) = ln(1+ r). Then f'(r) = 1/(1 +r). Thus, f(0) =0
and f'(0) =1, s0

t=

f(r) = f(0)+ f'(O)r
becomes
In(14+7r) ~r.

Therefore,

_ In2 N1n2_1001n2N70

T In(l4r) " o i i
as claimed. We expect this approximation to hold for small values of 4; it turns out that values of 7 up to 10
give good enough answers for most everyday purposes.

2. (@) (i) Setf(z) =sinz,s0 f'(z) = cosz. Guesszy = 3. Then

o =3 3 51495
COSs
o = 11 — 0T 31415926533,

COoS 1

which is correct to one billionth!

(i) Newton's method uses the tangent lineat z = 3,i.e. y —sin3 = cos(3)(z — 3). Around z = 3,
however, sin z is almost linear, since the second derivativesin” () = 0. Thus using the tangent line
to get an approximate value for the root gives us a very good approximation.

f(z) =sinx

tangent line
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(iii) For f(z) = sinx, we have

£(3) = 0.14112
F(4) = —0.7568,

so thereisaroot in [3, 4]. We now continue bisecting:

[3,3.5] : £(3.5) = —0.35078 (bisection 1)

[3,3.25] : £(3.25) = —0.10819 (bisection 2)
[3.125,3.25] : £(3.125) = 0.01659 (bisection 3)
[3.125,3.1875] : £(3.1875) = —0.04584 (bisection 4)

We continuethis process; after 11 bisections, we know theroot lies between 3.1411 and 3.1416, which
till is not as good an approximation as what we get from Newton’s method in just two steps.
(b) (i) Wehave f(z) =sinz — 2z and f'(z) = cosz — 2.
Using zo = 0.904,
sin(0.904) — 2(0.904)

=0.904 — 3
o c0s(0.904) — =

~ 4.704,

5in(4.704) — 2(4.704)
s = 4.704 — - L423
cos(4.704) — 2

sin(—1.423) — 2(—1. 423)

r3 = —1.433 — ~ —1.501,
cos(—1.423) — 2
in(— —2(_
o4 = —1.499 — sin(—1.501) 3( 1.501) ~ —1.496,
cos(—1.501) — 2
sin(—1.496) — 2(—1. 496)
x5 = —1.496 — ~ —1.496.
cos(—1.496) — 2
Using o = 0.905,
in(0.905) — 2(0.905
£ = 0.905 — Sn(0.995) = 5(0.90) 45
cos(0.905) — 2

sin(4.643) — 2(4.643)
To = 4.643 — —— ~ —0.918,
cos(4.643) — 3

sin(—0.918) — 2(—0.918)

23 = —0.918 — ~ —3.996,
cos(—0.918) — =
in(—3.996) — 2(—3.996
21 = —3.996 — S )~ 5 ) 1413,
cos(—3.996) — =
in(—1.413) — 2(—1.413
s = —1.413 - Sn )5l )~ 1502,
cos(—1.413) — =
in(—1.502) — 2(—1.502
g = —1502 — S ) — 5l ) _1.49.
cos(—1.502) — 2
Now using zo = 0.906,
in(0.906) — 2(0.906
21 = 0.906 — S00-906) — 5(0906) ) o

cos(0.906) — =
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sin(4.584) — 2(4.584)

— 4584 — 3 ~ —0.509
w2 cos(4.584) — 2 ’
in(—0.509) — 2(—0.509
25 = —0.510 — S ) —5(0509) o,
cos(—0.509) — 3
in(.207) — 2(.207
24 = —1300 — 0207 — 5 - ) 0,009,
cos(.207) — £
in(—0.009) — 2(—0.009
25 = — 1543 — S0 )~ 5 ) %0

cos(—0.009) — 2 -

(ii) Starting with 0.904 and 0.905 yields the same value, but the two paths to get to the root are very
different. Starting with 0.906 leads to a different root. Our starting points were near the maximum
value of f. Consequently, asmall changein z, makesalarge changein z;.



