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CHAPTER FOUR

Solutions for Section 4.1

Exercises

1. We sketch agraph which is horizontal at the two critical points. One possibility is shown in Figure 4.1.

Critical point
Not local max or min

Local minimum

Figure 4.1

2. There are many possible answers. One possible graph is shown in Figure 4.2.

Critical point

Inflection point

local max.

Figure 4.2

local max.

/

|
local min.

4. The critical points of f are zeros of f'. Just to the left of the first critical point f/ > 0, so f isincreasing. Immediately
to the right of the first critical point f' < 0, so f is decreasing. Thus, the first point must be a maximum. To the left of
the second critical point, f < 0, and toitsright, f' > 0; hence it isaminimum. On either side of the last critical point,
f > 0, soitisneither amaximum nor a minimum. See the figure below.

t

local max.

f'(@)

local min.

t

neither max.
nor min.
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5. (a) A graphof f(z) = e~ isshown in Figure 4.3. It appears to have one critical point, at z = 0, and two inflection
points, one between 0 and 1 and the other between 0 and —1.

Crit@cal
1 point .
Inflection
point

Inflection
point

Figure 4.3

(b) To find the critical points, we set f'(x) = 0. Since f'(z) = —9ze~*" = 0, there is one solution, z = 0. The only
critical pointisat « = 0.
To find the inflection points, we first use the product rule to find £’ (). We have

2

F(@) = (=22)(e ™ (=22)) + (=2)(e ™) = 4a%e ™ —2¢"".
We set "' (x) = 0 and solve for = by factoring:

4g%e™ — 27" =0

(42> — 2)e™™ = 0.
Sincee~*" isnever zero, we have
422 — 2 =

2
xr =

r=+1/V2.
There are exactly two inflection points, at 2 = 1/v/2 ~ 0.707 and z = —1/v/2 =~ —0.707.
6. We use the product ruleto find f'(z):
f(z) = (10.22°) (e~ 2" (—=0.4)) + (20.4z) (e~ ") = —4.082"e ™" + 20.40e™ """,
To find the critical points, we set f'(z) = 0 and solve for z by factoring:
—4.082% ™% 4 20.42e7%* =0
x(—4.08z + 20.4)e™ """ = 0.

Since e~%-** is never zero, the only two solutions to this equation arez = 0 and « = 20.4/4.08 = 5. There are exactly
two critical points, at z = 0 and at = = 5. You can sketch agraph of f(x) to check your results.

7. We have

N =

g@)=e " —2e " =(1—x)e".
Hence z = 1 isthe only critical point. We see that g’ changes from positive to negative at z = 1 sincee™ * is dways
positive, so by the first-derivative test g has alocal maximum at = = 1. If we wish to use the second-derivative test, we
compute
g'(@)=(z—2)e"
andthus g (1) = (—1)e™* < 0, so again = = 1 gives alocal maximum.

8. Forh(z) =xz+ l,wecalculate
T

and so the critical pointsof h areat z = +1. Now

soh'(1) =2 > 0 and z = 1 givesaloca minimum. On the other hand, A’ (—1) = -2 < 0 sox = —1 givesalocal
maximum.

9. (a) A critical point occurs when f'(z) = 0. Since f'(x) changes sign between z = 2 and z = 3, between z = 6 and
x =7, and between z = 9 and z = 10, we expect critical points at around x = 2.5, x = 6.5, and x = 9.5.
(b) Since f'(x) goes from positive to negative at z ~ 2.5, alocal maximum should occur there. Similarly, = ~ 6.5 isa
local minimum and z ~ 9.5 aloca maximum.
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10. To find inflection points of the function f we must find points where f’ changes sign. However, because f is the
derivative of f', any point where f" changes sign will be alocal maximum or minimum on the graph of £'.
z-values of

these points give
inflection points of f

11.

inflection points of f

/\

The inflection points of f are the points where f' changes sign.

12. From the graph of f(z) in the figure below, we see that the function must have two inflection points. We calculate
f'(z) = 42> + 32® — 62, and " () = 122> + 62 — 6. Solving " (x) = 0 we find that:

1
r1 = —1 and .’E2=§.

Since f"'(z) > 0forz < x1, f'(z) < 0forz1 < x < z2,and f”(z) > 0 for z» < z, it follows that both points are
inflection points.

4,,

2 Inflection point
9 /, p
| |

13. (—1.4,6.6)

[N

6714, ~4.6)

The graph of f above appears to be increasing for x < —1.4, decreasing for —1.4 < z < 1.4, and increasing
for x > 1.4. Thereis alocal maximum near x = —1.4 and local minimum near x = 1.4. The derivative of f is
f'(z) = 3z% — 6. Thus f'(x) = 0 when z? = 2, thatisz = ++/2. Thisexplains the critical points near & = +1.4. Since
f'(z) changes from positive to negative at = —/2, and from negative to positive at z = /2, thereisalocal maximum
atz = —/2 and aloca minimum at z = /2.

14, flz) =2+ 62+ 1

The graph of f in above appearsto beincreasing for all z, with no critical points. Since f'(z) = 32> +6 and 2> > 0
for al =, we have f'(x) > 0 for all z. That explainswhy f isincreasing for al z.
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15.

16.

17.

18.
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(1-2)

The graph of f above appearsto be increasing for z < —1, decreasing for —1 < x < 1 adthoughitisflat at x = 0,
and increasing for z > 1. There are critical pointsat x = —1 and z = 1, and apparently also at z = 0.
Since f'(z) = 152* — 152% = 152%(2® — 1), we have f'(z) = 0 at = = 0, —1, 1. Notice that although f'(0) = 0,
making z = 0 acritical point, there is no change in sign of f'(z) a = = 0; the only sign changes are at x = +1. Thus
the graph of f must alternate increasing/decreasing for z < —1, -1 < x < 1,z > 1, just as we described.

(8.4,10.1)
f(z) =z +2sinz
(2.1,3.8) (10.5,8.7)

x

(4.2:2.5)

The graph of f above looks like a climbing sine curve, aternately increasing and decreasing, with more time spent
increasing than decreasing. Here f'(z) = 1 + 2cos z, S0 f'(z) = 0 when cos z = —1/2; this occurs when
27 87 |, 10m | 14w | 167

r=+x—, :I:— +— +t—tt— F—...
3’77373 3 3 3

Since f'(z) changes sign at each of these values, the graph of f must alternate increasing/decreasing. However, the
distance between values of = for critical points alternates between (27)/3 and (47)/3, with f'(z) > 0 on the intervals
of length (47)/3. For example, f'(x) > 0 ontheinterval (47)/3 < = < (8m)/3. Asaresult, f isincreasing on the
intervals of length (47/3) and decreasing on the intervals of length (27/3).

w / f(z) = e® — 10z

(2.3,-13.0)

The graph of f above appears to be decreasing for x < 2.3 (almost like a straight line for z < 0), and increasing
sharply for z > 2.3. Here f'(z) = e* — 10, s0 f'(z) = 0 when e® = 10, that isz = In 10 = 2.302... Thisisthe only
place where f'(z) changes sign, and it isaminimum of f. Notice that e* issmall for z < 0 so f'(z) ~ —10 for z < 0,
which means the graph looks like a straight line of slope —10 for z < 0. However, ¢ gets large quickly for z > 0, so
f'(x) getslarge quickly for z > In 10, meaning the graph increases sharply there.

The graph of f above looks likesin z for z < 0 and e” for z > 0. In particular, there are no waves for x > 0. We
have f'(z) = cos = + €, and so the critical points of f occur at those values of x for which cosz = —e®. Sincee” > 1
for al > 0, we know immediately that there are no critical points at positive values of . The specific locations of the
critical pointsat x < 0 must be determined numerically; thefirst few arex ~ —1.7, —4.7, =7.9. For z < 0, the quantity
e” issmall so that the graph looks like the graph of sin z. For z > 0, we have f'(z) > 0 since —1 < cosz and e® > 1.
Thus, the graph isincreasing for all z > 0 and there are no such waves.
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(0.71,0.43)

(—0.71,—0.43)

The graph of f above appears to be asymptotic to the z-axis from below for large negative z, decreasing to a global
minimum at about z = —0.71, increasing to a global maximum at about z = 0.71 (passing through the origin along the
way), and then decreasing asymptotically to the z-axis from above.

We have f'(z) = e + xe_g”z(—2x) = e‘g”z(l — 2z%). Since e=*" > 0 for dl z, the sign of f'(x) isthe
same as the sign of (1 — 2z%). Thus f'(z) changes sign at + = +1/v/2 ~ =+0.71, going from negative to positive
to negative, which explains the critical points and increasing/decreasing behavior described. Note that ze ™ = gc/e’”2
clearly approaches 0 asz — +oo, since ¢ ismuch larger than = when |z| islarge. Thus the graph is asymptotic to the
z-axisasz — =+oo. Note also that the sign of f(z) = ze~®" isthe same as z, O f(z) < 0forz < 0and f(z) >0
for 2 > 0. Since the graph increases from 2 = 0to z = 0.71 and then decreases, = 1/+/2 is the maximum point
for z > 0. Since f(z) < 0 forz < 0,z = 1/+/2 isaglobal maximum. The global minimum at = = —1/+/2 can be
explained similarly.
f(z)=zlnz

x

(0.37,—0.37)

The graph of f above appears to be decreasing for 0 < = < 0.37, and then increasing for « > 0.37. We have
f'(z) =lnz+x(l/r) =lnz+1,% f'(r) = 0whenlnz = —1,thatis, z = e~ ' ~ 0.37. Thisisthe only place where
f' changes sign and f'(1) = 1 > 0, so the graph must decreasefor 0 < = < e~ * and increase for = > e~ *. Thus, there
isalocal minimumat z = e L.

(13) Thegraphof f(z) = = — 62 + 1 appears to be concave up for z > 0 and concave down for z < 0, with a point of

inflection at z = 0. Thisisbecause "' (x) = 6z is negative for z < 0 and positive for z > 0.

(14) Same answer as number 13.
(15) There appear to be three points of inflection at about z = £0.7 and = 0. Thisis because f’(z) = 60z — 30z =

30 (22> — 1), which changes signat « = 0 and x = +1/+/2.

(16) There appear to be points of inflection equally spaced about 3 units apart. Thisis because f’(z) = —2sin z, which
changessignat z = 0, 7, +27, .. ..

(17) The graph appears to be concave up for al . Thisisbecause ' (z) = e* > 0 for al x.

(18) The graph appears to be concave up for al > 0, and has amost periodic changes in concavity for x < 0. Thisis
because for z > 0, f"(z) = e” —sinz > 0, and for z < 0, sincee” issmall, f(z) changes sign at approximately

the same values of z assin x.

(19) There appears to be a point of inflection for some xz < —0.71, for z = 0, and for some z > 0.71. Thisis because

Fl(z) =e " (1 - 222) s0
Fl(x) = e (—4z) + (1 — 22%)e " (=22)
= (42° — 6z).
Sincee"" > 0, this means f” () has the same sign as (4a® — 6z) = 22(2z2 — 3). Thus f” () changes sign at
r=0andzx ==£,/3/2 =~ £1.22.

(20) The graph appears to be concave up for al x. Thisis because f'(z) = 1 + Inz, so f"'(x) = 1/x, which is greater
than 0 for al =z > 0.
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Problems

22.

23.

24,

25.

26.

A function may have any number of critical points or none at all. (See Figures 4.4-4.6.)

Critical points

T
VAR

Critical point
x
Figure 4.4: A quadratic: One Figure4.5: f(z) = «* + & + 1: Figure 4.6: f(z) = sin
critical point No critical points Infinitely many critical points

(a) It appears that this function has a local maximum at about z = 1, alocal minimum at about x = 4, and a local
maximum at about x = 8.

(b) The table now gives values of the derivative, so critical points occur where f'(z) = 0. Since f’ is continuous, this
occurs between 2 and 3, so there is a critical point somewhere around 2.5. Since f is positive for values less than
2.5 and negative for values greater than 2.5, it appears that f has alocal maximum at about x = 2.5. Similarly, it
appearsthat f has alocal minimum at about z = 6.5 and another local maximum at about z = 9.5.

First, we wish to have f'(6) = 0, since f(6) should be alocal minimum:

a = —12.

Next, we need to have f(6) = —5, since the point (6, —5) is on the graph of f(z). We can substitutea = —12 into our
equation for f(x) and solve for b:

flz) =2 — 12z +0b
F6)=36—72+b=—5
b = 31.

Thus, f(z) = x® — 12z + 31.
We wish to have f'(3) = 0. Differentiating to find f’(z) and then solving f'(3) = 0 for a gives:

f(x) = z(ae®™) + 1(e*") = e (ax + 1)
F(3)=e*Ba+1)=0
3a+1=0

o= L

=3

Thus, f(z) = ze /3.

Using the product rule on the function f(z) = aze®®, we have f'(z) = ae’® + abze® = aeb®(1 + bzx). We want
f(%) = 1, and since this is to be amaximum, we require f' (1) = 0. These conditions give

F(1/3) = a(1/3)e"* =1,
£1(1/3) = ae’’*(1 + b/3) = 0.

Since ae*/? is non-zero, we can divide both sides of the second equation by ae*/®"* to obtain 0 = 1 + 2. This
impliesb = —3. Plugging b = —3 into the first equation gives usa(3)e™" = 1, or a = 3e. How do we know we have
amaximum at z = £ and not aminimum? Since f'(z) = ae® (1 + bx) = (3e)e™*"(1 — 3z), and (3e)e™*" isaways
positive, it follows that f'(z) > 0 whenz < % and f'(z) < 0 whenz > . Since f' is positive to the left of z = § and
negative to theright of = = 3, f(3) isalocal maximum.
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27. Figure 4.7 contains the graph of f(z) = 2> + cosz.

Figure 4.7 Figure 4.8

The graph looks like a parabola with no waves because f” (z) = 2 — cos =, which isaways positive. Thus, the graph
of f isconcave up everywhere; there are no waves. If you plot the graph of f(z) together with the graph of g(z) = 22,
you see that the graph of f does wave back and forth across the graph of g, but never enough to change the concavity of
f. SeeFigure 4.8.
2000

28. (a) Fromthegraph of P(t) = T G300 in Figure 4.9, we see that the population levels off at about 2000 rabbits.
o(5.3-0.

Population of rabbits

2000
1500
1000
500
‘ ‘ ‘ — Years since 1774
10 20 30
Figure 4.9

(b) The population appearsto have been growing fastest when there were about 1000 rabbits, about 13 years after Captain
Cook |eft them there.

(c) The rabbits reproduce quickly, so their population initially grew very rapidly. Limited food and space availability and
perhaps predators on the island probably account for the population being unable to grow past 2000.

29. (a) Sincethevolume of water in the container is proportional to its depth, and the volume isincreasing at a constant rate,

d(t) = Depthattimet = Kt,
where K is some positive constant. So the graph is linear, as shown in Figure 4.10. Since initially no water isin the
container, we have d(0) = 0, and the graph starts from the origin.

depth of water

depth of water
d(t) d(t)
slope = K
t t
Figure 4.10 Figure 4.11

(b) Astimeincreases, the additional volume needed to raise the water level by afixed amount increases. Thus, although
the depth, d(t), of water in the cone at time ¢, continues to increase, it does so more and more slowly. This means
d'(t) ispositive but decreasing, i.e., d(t) is concave down. See Figure 4.11.
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30. depth of water
T
|
|
| time at which water reaches
| widest part of urn
time
31. depth of water

time at which water
reaches corner of vase

/

32. From the first condition, we get that x = 2 isalocal minimum for f. From the second condition, it followsthat z = 4 is
an inflection point. A possible graph is shown in Figure 4.12.

time

Point of inflection

Local min
Il | | €T

—2-1 1 2 3 4 5 6

Figure 4.12

33. (a) (b)
A

AB b ; . Dg
S [

34. Since f isdifferentiable everywhere, f' must be zero (not undefined) at any critical points; thus, f/(3) = 0. Since f has
exactly one critical point, f' may change sign only at x = 3. Thus f is always increasing or always decreasing for z < 3
and for x > 3. Using the information in parts (a) through (d), we determine whether x = 3 is alocal minimum, local
maximum, or neither.

(a) = = 3isaloca maximum because f(z) isincreasing when z < 3 and decreasing when z > 3.
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(b) = = 3isaloca minimum because f(x) headsto infinity to either side of x = 3.

(¢) = = 3isneither alocal minimum nor maximum, as f(1) < f(2) < f(4) < f(5).

(d) =z = 3isaloca minimum because f(z) is decreasing to the left of x = 3 and must increase to theright of x = 3, as
f(3) =1 and eventualy f(x) must become close to 3.

35. (a) Thisisone of many possible graphs.

(b) Since f must have a bump between each pair of zeros, f could have at most four zeros.
(c) f could well have no zeros at al. To seethis, consider the graph of the above function shifted vertically downwards.
(d) f must have at least two inflection points. Since f has 3 maximaor minima, it has 3 critical points. Consequently f/
will have 3 corresponding zeros. Between each consecutive pair of these zeroes f must have alocal maximum or
minimum. Thus £’ will have one local maximum and one local minimum, which impliesthat ' will have two zeros.
These values, where the second derivative is zero, correspond to points of inflection on the graph of f.
(e) The3critical points are zeros of f', so degree(f’) > 3. Thus degree(f) > 4.
(f) For example:
f@) = To@+ D@~ D& -3 -5)
will look something like the graph in part (a). Many other answers are possible.
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36.

37.

38.

39.

41.

42.
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Neither B nor C is0where A hasits maximaand minimum. Therefore neither B nor C isthederivativeof A,s0 A = f".
We can see B could be the derivative of C because where C' has a maximum, B is 0. However, C' is not the derivative of
B because B isdecreasing for some z-values and C' is never negative. Thus, C = f, B = f',and A = f".

A has zeros where B has maxima and minima, so A could be a derivative of B. Thisis confirmed by comparing intervals
onwhich Bisincreasing and A ispositive. (They arethe same.) So, C iseither the derivative of A or the derivative of C'is
B. However, B does not have a zero at the point where C' has aminimum, so B cannot be the derivative of C'. Therefore,
C isthederivativeof A.SoB = f, A= f',andC = f".

Since the derivative of an even function is odd and the derivative of an odd function iseven, f and f’ are either both odd
or both even, and f’ isthe opposite. Graphs | and |11 represent even functions; Il represents an odd function, so Il is f'.
Since the maximaand minimaof |1 occur where | crossesthe z-axis, | must be the derivative of f/, that is, . In addition,
the maxima and minima of 111 occur where Il crosses the z-axis, so Il is f.

Since the derivative of an even function is odd and the derivative of an odd function is even, f and f' are either both
odd or both even, and f’ is the opposite. Graphs | and Il represent odd functions; 111 represents an even function, so 11
is f'. Since the maxima and minimaof 111 occur where | crosses the z-axis, | must be the derivative of f, that is, f”. In
addition, the maxima and minima of Il occur where |11 crosses the z-axis, so Il is f.
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44. (a) When a number grows larger, its reciprocal grows smaller. Therefore, since f isincreasing near xo, we know that
g (its reciprocal) must be decreasing. Another argument can be made using derivatives. We know that (since f is

increasing) f'(z) > 0 near zo. We also know (by the chain rule) that ¢'(z) = (f(z)™ ') = —}‘égg Since both
f'(x) and f(x)* are positive, this means ¢’ () is negative, which in turn means g(z) is decreasing near = xo.

(b) Since f hasalocal maximum near x1, f(x) increases as x nears x1, and then f(z) decreases as x exceeds x;1. Thus
the reciprocal of f, g, decreases as = nears x1 and then increases as x exceeds z;. Thus g has aloca minimum at

x = 1. To put it another way, since f hasalocal maximum at z = z;, weknow f'(z1) = 0. Sinceg’(z) = —;‘Egg
g'(z1) = 0. Totheleft of z1, f'(z1) ispositive, o g’ (z) is negative. To theright of z1, f'(z1) is negative, so g’ (z)
is positive. Therefore, g hasalocal minimum at ;.

(c) Since f isconcave down at z2, weknow f''(z2) < 0. We also know (from above) that

" 2f (x2)* [ (w2) 1 2f (x2)*>
e PRy E N TP ER PR ( fla) 7 (‘”)) |
Since W > 0,2f (z2)? > 0, and f(x2) > 0 (as f is assumed to be everywhere positive), we see that
g" (x2) ispositive. Thus g is concave up at zo.
Note that for the first two parts of the problem, we didn't need to require f to be positive (only non-zero).

However, it was necessary here.

45. (a) Since f"(z) > 0and g"(z) > 0 for al z, then f"'(z) + ¢g" (x) > 0 for al z, so f(z) + g(z) is concave up for al z.
(b) Nothing can be concluded about the concavity of (f + g)(z). For example, if f(z) = az® and g(z) = bz with
a>0andb < 0,then (f + 9)"(z) = a +b. SO f + g is either always concave up, aways concave down, or a
straight line, depending on whether a > |b|, a < |b|, or a = |b|. More generally, it is even possible that (f + g)(z)
may have one or more changes in concavity.
(©) Itispossible to have infinitely many changes in concavity. Consider f(z) = 2* + cosz and g(z) = —z2. Since
f'(x) = 2 — cosz, we see that f(x) is concave up for al z. Clearly g(z) is concave down for all z. However,
f(z) + g(x) = cos z, which changes concavity an infinite number of times.

Solutions for Section 4.2

Exercises

1. Wewant afunction of theformy = a(z — h)* + k, with a < 0 because the parabola opens downward. Since (h, k) isthe
vertex, we must take h = 2, k = 5, but we can take any negative value of a. Figure 4.13 shows the graph witha = —1,
namely y = —(z — 2)? + 5.

vo(2,5

Figure 4.13: Graphof y = —(z — 2)2 +5
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2. A circlewith center (h, k) and radius r has equation (z — h)? + (y — k)? = r%. Thush = —1, k = 2, and r = 3, giving
(z+1)° +(y-2)7°=9.
Solving for y, and taking the positive square root gives the top half, so
(y=2°=9-(z+1)°
y=2+ \/m

See Figure 4.14.

13
(71’2)

T
Figure 4.14: Graphof y = 2 + /9 — (z + 1)

3. Since the horizontal asymptote isy = 5, we know a = 5. The value of b can be any number. Thusy = 5(1 — e %) for
any b > 0.

4. Since the maximum is on the y-axis, a = 0. At that point, y = be %%/ = b, s0b = 3.

5. Sincethe vertical asymptoteisz = 2, we have b = —2. The fact that the horizontal asymptoteisy = —5 givesa = —5.
So

—bx

r—2

6. A cubic polynomid of theformy = a(x — 1)(z — 5)(xz — 7) hasthe correct intercepts for any value of a # 0. Figure 4.15
shows the graph witha = 1, namely y = (z — 1)(z — 5)(z — 7).

y
1 NS

Figure 4.15: Graphof y = (x — 1)(z — 5)(z — 7)

Yy =

7. Since the maximum isy = 2 and the minimum isy = 1.5, the amplitude is A = (2 — 1.5)/2 = 0.25. Between
the maximum and the minimum, the z-value changes by 10. There is half a period between a maximum and the next

minimum, so the period is 20. Thus

27 m
g2 = 10

The mid-lineisy = C = (2 + 1.5)/2 = 1.75. Figure 4.16 shows a graph of the function
. T
y = 0.25 sin (E) + 1.75.
¥ (5,2)

y =175

5 10 15

Figure 4.16: Graph of y = 0.25 sin(7wz/10) 4+ 1.75



4.2 SOLUTIONS 197

8. Sincethe z:® term has coefficient of 1, the cubic polynomial isof theformy = «* + axz? + bz + ¢. Wenow find a, b, and

c. Differentiating gives

@ = 32% + 2azx + b.
dx

The derivative is 0 at local maxima and minima, so

% =31’ +2a(1) +b=3+2a+b=0
z=1

dy _ 2 _ _

T =3(3)>+2a(3) +b=27+6a+b=0
=3

Subtracting the first equation from the second and solving for a and b gives

24 4+4a =0 o a=—6
b=-3—-2(—6)=09.
Since the y-intercept is 5, the cubic is
y:x3—6x2+9x+5.

Since the coefficient of z* is positive, z = 1 isthe maximum and z = 3 is the minimum. See Figure 4.17. To confirm
that x = 1 givesamaximum and x = 3 gives aminimum, we calculate

2

%:6m+2a:6x—12.
d2y
Atz =1, T2 = —6 < 0, so we have a maximum.
Xr
2
Atz = 3, % =6 > 0, so we have aminimum.

5/ m
/13

Figure 4.17: Graphof y = 2% — 622 + 9z + 5

9. Since the graph of the quartic polynomial is symmetric about the y-axis, the quartic must have only even powers and be
of the form
y:ax4+bx2+c.

The y-intercept is 3, so ¢ = 3. Differentiating gives

d_y = daz® + 2bz.
dzr

Sincethereisamaximum at (1,4), wehavedy/dz = 0if z =1, %0
4a(1)® +2b(1) =4a+26=0 s0 b= —2a.
Thefact that dy/dx = 0 if £ = —1 gives us the same relationship

—4a—2b=0 So) b= —2a.
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Wealso know that y = 4 if x = +1, s0
a(1)* +b(1)*+3=a+b+3=4 0 a+b=1

Solving for a and b gives
a—2a=1 SO a=-landb=2.

Finding d®y/dx* so that we can check that = = 41 are maxima, not minima, we see

2
TY  19a2” + 2b = —124” + 4.
dz?
dzy
Thusﬁ =—-8< 0forz==1,s0x = £1 are maxima. See Figure 4.18.
T
Y
(71,4) (1a4)
3

Figure 4.18: Graphof y = —z* + 222 + 3

The maximum of y = e~ =/ occurs at = = a. (Thisis because the exponent —(z — a)? /b is zero when z = a and
negative for all other z-values. The same result can be obtained by taking derivatives.) Thus we know that a = 2.
Points of inflection occur where d?y/dx? changes sign, that is, where d®y /dz? = 0. Differentiating gives

dy _ 2(z— 2)67(172)2/1;

de b

4’y 2 _e-22p Az —2° _eon2m 2 _(em2p2p 2 2
ey __z 2 -2 == 14+ 2@ —2)2?).
a2 = 5" to e b° ( +pE=2) )

Since e~ ®=2"/b isnever zero, d2y/dxz® = 0 where

—1+%(gc—2)2 =0.

We know d*y/dz? = 0 at z = 1, so substituting = = 1 gives
2

-1+2(1-22=0.
+301-2)
Solving for b gives
2
—-14+>-=0
+ b
b=2.
Sincea = 2, thefunction is
y=e @22,

You can check that at z = 2, we have
d2y 2 o
ZJd_ 2 -1
722 = 3¢ (-1+0)<0
so the point z = 2 does indeed give amaximum. See Figure 4.19.
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Maxatx = 2

Point of inflection

Point of inflection
] atx = 3

atr =1

./ 1 1 1

Figure 4.19: Graph of y = e~ (®=27/2

11. Differentiating y = az® In z, we have

@ =abz’ 'lnz +az®-
dx

Since the maximum occurs at =z = 2, we know that
a(eQ)b_l(bln(ez) +1)=0.
Sincea # 0 and (e?)*~* # 0 for al b, we have

=az" '(blnz +1).

8|

bln(e?) +1=0.
Sinceln(e?) = 2, the equation becomes
2b+1=0

1/21n 2. When 2 :ez,weknOWy =6e !, s0

Thusy = az™
y=a(e®) " Ine* = ae”'(2) = 6"
a=3.

Thusy = 3z~ /2 In .. To check that # = €2 gives alocal maximum, we differentiate twice

dy e —§a:_3/21na: + 32712 1 e —§a:_3/21na:+3x_3/2,
dz 2 x 2
d’y 9 _5p 3 32 1 3 , _5p2
cJ_ =2 lng — 2732, 2_2. 3
dz? 1" nrT g z 2
= %m75/2lnm — 6z % = §m75/2(31nx —8).

Atz = e?, sinceln(e?) = 2, we have amaximum because

dzy 3, 2y-5/2 2 3 _5
@:Z(e) (31n(e)—8):16 (3-2-8)<0
See Figure 4.20.
Y
(e2,6e~1)
1 1 1 1 -
20 60 100
Figure 4.20: Graph of y = 3z~ */?Inx
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Problems

12. (a) Letp(z) = 2* — ax, and suppose a < 0. Then p/ (x) = 322 — a > 0 for al x, so p(x) is dwaysincreasing.

(b) Now supposea > 0. Wehavep' () = 322 —a = Owhenz® = a/3,i.e,whenz = \/a/3 andz = —/a/3. We
also have p'’ (z) = 6x; sox = /a/3 isalocal minimum since64/a/3 > 0, and z = —+/a/3 isalocal maximum
since —64/a/3 < 0.

(c) Caselia<0
In this case, p(z) is always increasing. We have p’’ () = 6x > 0 if z > 0, meaning the graph is concave up for
x > 0. Furthermore, 6z < 0 if z < 0, meaning the graph is concave down for z < 0. Thus, z = 0 isan inflection
point.
Case2.a>0
We have

(/D)= (5) 5= = o

p
o 1(f2) =2+ S s (D)0

=0 ifjz|= \/g,
p(x)=3z>—a{ >0 if |x|>\/§,
<0 if|z] < /%

So p isincreasing for x < —4/a/3, decreasing for —/a/3 < x < y/a/3, and incressing for z > /a/3. Since
p''(z) = 6z, the graph of p(x) is concave down for values of x less than zero and concave up for values greater than
zero. Graphs of p(z) fora < 0 and a > 0 arefound in Figures 4.21 and 4.22, respectively.

I3704£L‘ 1133704:13

} \/a/3

x . : x

—+/a/3 }

Figure 4.21: p(z) fora < 0 Figure 4.22: p(z) fora > 0

13. (a) Wehavep'(z) = 32> —a, 0

p increasing p decreasing ‘ p increasing

|

| I

V3 T=vV3
Local maximum: p(—/%) = =54% + /2 — 4 2ave
Local minimum: p(,/%) = —p(—/%) = 2“\/‘/__

(b) Increasing the value of a movesthe critical points of p awvay from the y-axis, and moves the critical values away from
the z-axis. Thus, the “bumps’ get further apart and higher. At the same time, increasing the value of a spreads the
zeros of p further apart (while leaving the one at the origin fixed).

(c) SeeFigure4.23

Tr =

Figure 4.23
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14. Wehave f(z) = 2* + 2az = z(z + 2a) = Owhenz = 0 or = —2a.

=0 whenz=—-a
f(x)=2z+2a=2(z+a)S >0 whenz > —a
<0 whenz < —a.

See figure below. Furthermore, f(z) = 2, so that f(—a) = —a? isaglobal minimum, and the graph is aways concave
up.

—2a —a

Increasing |a| stretches the graph horizontally. Also, the critical value (the value of f at the critical point) drops
further beneath the xz-axis. Letting a < 0 would reflect the graph shown through the y-axis.

15. Since lim N = a, we have a = 200,000. Note that while N (¢) will never actualy reach 200,000, it will become

t— oo
arbitrarily close to 200,000. Since N represents the number of people, it makes sense to round up long before ¢ — co.
Whent = 1, wehave N = 0.1(200,000) = 20,000 people, so plugging into our formula gives

N(1) = 20,000 = 200,000 (1 — e~ *™")..
Solving for k gives
01 =1- 6_k

e ¥ =09
k= —1n0.9 ~ 0.105.

16. T(t) = thetemperature at timet = a(1 — e~ **) + b.
(a) Sinceattimet = 0 theyamisat 20°C, we have
T(0)=20°=a(1-€e’)+b=a(l—1)+b=b.

Thusb = 20°C. Now, common sense tells us that after a period of time, the yam will heat up to about 200°, or oven
temperature. Thus the temperature 7' should approach 200° asthetime ¢ grows large:

lim T(¢t) =200°C =a(1—0)+b=a+b.

t— o0

Sincea + b = 200°, and b = 20°C, thismeansa = 180°C.
(b) Since we're talking about how quickly the yam is heating up, we need to look at the derivative, T" (t) = ake™*¢:

T'(t) = (180)ke **.

We know T"(0) = 2°C/min, so
2 = (180)ke " = (180)(k).
So k = (2°C/min)/180°C = ssmin .
17. We begin by finding the intercepts, which occur where f(z) = 0, that is
z—kvz=0
Va(Ve —k) =0
0 =0 o Vr=k, z=Ek.
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So 0 and k? are the z-intercepts. Now we find the location of the critical points by setting f' (=) equal to O:

TN 1—(1/2))_ __k _

fi(z)y=1 k(zx =1 2\/5—0.
This means

1= F \/E—lk and z= Sk

2z’ T2 T4

We can use the second derivative to verify that z = % isalocal minimum. f"(z) =1 + 4E+/2 ispositive for al = > 0.
So the critical point, z = +k2, is1/4 of the way between the z-intercepts, z = 0 and = = k. Since f"' (z) = %kx_?’ﬂ,
£ (2k*) =2/k* > 0, thiscritical point isaminimum.

Graphs of y = ze™% for b = 1,2, 3, 4 are shown below. All the graphs rise at first, passing through the origin, reach a
maximum and then decay toward O. If b issmall, the graph rises longer and to a higher maximum before the decay begins.

0.5 T

Since y
d_Z = (1 —bz)e ",
we see
@ = at T = l
de — b

The critical point has coordinates (1/b,1/(be)). If b is small, the x and y-coordinates of the critical point are both large,
indicating a higher maximum further to the right. See figure below.

= fm—————

@ f'(z) = 42® + 2az = 22(22” + a); 02 = 0 and z = £./—a/2 (if £\/—a/2isred, i.e if —a/2 > 0) are
critical points.

(b) z = 0 isacritical point for any value of a. In order to guarantee that z = 0 is the only critical point, the factor
222 4+ a should not have aroot other than possibly z = 0. Thismeansa > 0, since 222 + a hasonly oneroot (z = 0)
fora = 0, and no rootsfor a > 0. Thereisno restriction on the constant b.

Now f"(z) = 1222 + 2a and f(0) = 2a.
If a > 0, then by the second derivative test, £(0) isalocal minimum.
If a = 0, then f(z) = z* + b, which hasalocal minimum at z = 0.
So x = 0 isaloca minimum whena > 0.

(c) Again, b will have no effect on the location of the critical points. In order for f'(z) = 2x(2z” + a) to have three
different roots, the constant a has to be negative. Let a = —2¢2, for some ¢ > 0. Then
f'(x) = 4x(2® — %) = da(z — ¢)(z +c).
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Thecritical pointsof f arez = 0andz = +c = £/ —a/2.
Totheleftof z = —c, f'(z) < 0.
Betweenz = —cand z = 0, f'(z)
Betweenz = 0andz = ¢, f'(z) <
Totheright of z = ¢, f'(z) > 0.
So, f(—c) and f(c) arelocal minimaand f(0) isaloca maximum.

(d) Fora > 0, thereisexactly one critical point, z = 0. For a < 0 there are exactly three different critical points. These
exhaust all the possibilities. (Notice that the value of b isirrelevant here.)

21. Since f'(x) = abe™*®, we have f'(x) > 0 for al z. Therefore, f isincreasing for all . Since f” (z) = —ab’e =", we
have f""(x) < 0 for al z. Therefore, f isconcave down for all z.

> 0.
0.

22. (a) The graph of r has a vertical asymptote if the denominator is zero. Since (xz — b)? is nonnegative, the denominator
can only bezero if a < 0. Then

a4 (x—-b>=0

(x —b)*=—a
r—b==+vV-a
r=b%+V—a.

In order for there to be a vertical asymptote, a must be less than or equal to zero. There are no restrictions on b.
(b) Differentiating gives
/ _ -1
B rE e
sor’ = 0whenz = b.1f a < 0, thenr’ isundefined at the same points at which r is undefined. Thusthe only critical
pointisz = b. Since we want r(z) to have amaximum at z = 3, we choose b = 3. Also, sincer(3) = 5, we have

-2(x — b),

71 —1—5 S0 a—1
a+(3-32 a 5

r(3) =
23. (@) Thez-intercept occurswhere f(z) = 0, s0

ar —xlnx =0
z(a—Inz)=0.
Since z > 0, we must have
a—Inx =0
Inz =a
z =e".

(b) SeeFigures4.24 and 4.25.

=
[\
w
—_
N
8

—1 +

Figure 4.24: Graph of f(z) with
a=-1 Figure 4.25: Graph of f(x) witha =1

—1 +

(c) Differentiating gives f'(x) = a — Inz — 1. Critical points are obtained by solving

a—Ilnx—1=0
Inxr=a-1

1
r=e""".
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Sincee® ! > 0 for al a, thereis no restriction on a. Now,
f(ea—l) — aea—l _ 6(1—1 ln(ea—l) — aea—l _ (a _ l)ea—l — 6a—17
0 the coordinates of the critical point are (e* 1, e~ 1). From the graphs, we see that this critical point is a local
maximum; this can be confirmed using the second derivative:
" 1 a—1
ffiz)y=—=x<0 forz =e""".
xr

24. (a) Figures4.26- 4.29 show graphs of f(z) = z* + cos(kz) for various values of k. For k = 0.5 and k = 1, the graphs
look like parabolas. For k = 3, there is some waving in the parabola, which becomes more noticesble if £k = 5. The
waving begins to happen at about k = 1.5.

T T VAN T \V \V T
Figure 4.26: k = 0.5 Figure 427: k =1 Figure 428: k = 3 Figure 429: k =5

(b) Differentiating, we have

f'(z) = 2z — ksin(kz)
() = 2 — k® cos(kz).

If k? < 2,then f'(x) > 2 — 2cos(kxz) > 0, since cos(kz) < 1. Thus, the graph is aways concave up if k < /2.
If k* > 2, then £’ (x) changes sign whenever cos(kz) = 2/k?, which occurs for infinitely many values of z, since
0<2/k*<1.

(c) Since f'(z) = 2z — ksin(kz), we want to find all points where

2z — ksin(kz) = 0.
Since

—1 <sin(kz) <1,
f'(xz) #0ifz > Ek/20orxz < —k/2. Thus, al theroots of f'(z) must beintheinterva —k/2 < = < k/2. Theroots
occur where theliney = 2z intersectsthe curve y = k sin(kx), and there are only afinite number of such points for
—k/2 <z <k/2

25. (a) Figure 4.30 suggests that each graph decreases to alocal minimum and then increases sharply. The local minimum

appears to move to the right as k increases. It appears to move up until k£ = 1, and then to move back down.

k=2 k=4
k=1
k=1/2
k=1/4
VAR
Figure 4.30

(b) f'(z) =e® —k=0whenz =Ink. Since f'(z) < 0forz <Inkand f'(z) > 0forz > Ink, f isdecreasing to
theleft of z = In k and increasing to the right, so f reaches alocal minimum at z = In k.
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() The minimum valueof fis
fnk)=e™" —k(nk) =k — kink.

Since we want to maximize the expression k — k In k, we can imagine afunction g(k) = k — kln k. To maximize
this function we simply take its derivative and find the critical points. Differentiating, we obtain
gk)=1—Ink—k(1/k) = —Ink.

Thus g’ (k) = Owhenk =1,¢'(k) > 0fork < 1,and ¢'(k) < 0 fork > 1. Thusk = 1 isalocal maximum for
g(k). That is, the largest global minimum for f occurswhen k = 1.

Let f(z) = Ae=P*’. Since
(z—0)2

—Bz? — 7B
f(z) = Ae = Ae /B)
thisis just the family of curvesy = e( x multiplied by a constant A. This family of curves is discussed in the text;
here,a = 0,b = 5. Whenz = 0,y = Ae” = A4, s0 A determines the y-intercept. A also servesto flatten or stretch the
graph of e~ 2" vertically. Since f'(z) = —2ABze 57", f(z) hasacritical pointat z = 0. For B > 0, the graphs are
bell-shaped curves centered at x = 0, and f(0) = A isaglobal maximum.

To find the inflection points of f, we solve f”(z) = 0. Since f'(z) = —2ABre B,
' (x) = —2ABe™ " 4 4AB e P
Since e~ B is always positive, f”' (x) = 0 when

—2AB +4AB*z* =0

1’2 _ 2AB
T 4AB?
1

=44/ —.

v 2B

These are points of inflection, since the second derivative changes sign here. Thus for large values of B, the inflection
points are close to z = 0, and for smaller values of B the inflection points are further from x = 0. Therefore B affects
the width of the graph.

In the graphsin Figure 4.31, A isheld constant, and variations in B are shown.

+—— Smal B

Large B
T

Figure 4.31: f(z) = Ae 3" for varying B

27. (a) Let f(z) = aze b*. Tofind the local maximaand local minimaof f, we solve

=0 ifz=1/b
fl(z) =ae ™™ —abze "™ =ae " (1—bx){ <0 ifz>1/b
>0 ifz<1/b.

Therefore, f isincreasing (f' > 0) for z < 1/b and decreasing (f' > 0) for z > 1/b. A local maximum occurs at
x = 1/b. There are no local minima. To find the points of inflection, we write

f'(z) = —abe™" + ab’ze™"" — abe™"”
= —2abe™"" + ab’ze™"”
= ab(bx — 2)e™"",

0 f' = 0 a x = 2/b. Therefore, f is concave up for x < 2/b and concave down for z > 2/b, and the inflection
pointisxz = 2/b.
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(b) Varying a stretches or flattens the graph but does not affect the critical point z = 1/b and theinflection point z = 2/b.
Since the critical and inflection points are depend on b, varying b will change these points, as well as the maximum
f(1/b) = a/be. For example, an increase in b will shift the critical and inflection points to the left, and aso lower
the maximum value of f.

©) y Varying a Varying b
4
be
3
be
2 b=1
be
1 b=2
be
| T z
r 1 2 b=3

28. Graphsof y = e™*"sin(bx) for b = 1 and various values of a are shown in Figure 4.32. The parameter a controls the
amplitude of the oscillations.
Yy

a=0.2
L a=0.4
1 a=0.6
a=0.8
0 —t x
™ 2
71 -
Figure 4.32
29. Y
1k
b=1
0 —t T
T ™ 2T
T Poss
b=3
-1r b=14

The larger the value of b, the narrower the humps and more humps per given region there are in the graph.
30. (a) Thelarger the value of | A|, the steeper the graph (for the same z-value).
(b) The graph is shifted horizontally by B. The shift is to the left for positive B, to the right for negative B. Thereisa
vertical asymptoteat x = —B.
(©
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31. (a) Since

2_
U:b(“ “‘T):o when z =a,

2

the z-intercept isz = a. Thereisavertical asymptote at + = 0 and a horizontal asymptote at U = 0.
(b) Setting dU/dz = 0, we have
dU 2a? a —2a® + ax
a—”<‘?+p> 4’(7963 -
So the critical point is

When z = 2a,
The second derivative of U is

When we evaluate thisat =z = 2a, we get

d’U 6a’ 2a b
= b — - —= > 0
dz? (2a)*  (2a)3 8a?

Since d?U/dx? > 0 a = = 2a, we see that the point (2a, —b/4) isalocal minimum.
(©
U

a 2a

N

(2a, =b/4)

32. Both U and F have asymptotes at x = 0 and the z-axis. In Problem 31 we saw that U has intercept (a,0) and local
minimum (2a, —b/4). Differentiating U gives
2a” a

2_
F:b(M):O for z = 2a,
xr

Since

F has oneintercept: (2a, 0). Differentiating again to find the critical points:

dF 6a> 2a —6a” + 2ax
%_b<_F+F> 4’(7 =0,

20> a b
F=b - =——.
(27(13 9a2> 27a

By thefirst or second derivative test, x = 3a isalocal minimum of F'. See figure below.

0z = 3a. When z = 3a,

v \F

a 2a 3‘a
T

(2a, —b/4) (3a, —b/(27a))
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33. (a) Theforceiszerowhere

A B
fry=-5+35=
Ar® = Br?
_ B
r=7

The vertical asymptoteisr = 0 and the horizontal asymptote isthe r-axis.
(b) Tofind critical points, we differentiate and set f'(r) = 0:

2A 3B
fi(r)= =i =0
24r* = 3Br®
3B
r = 2A

Thus, r = 3B/(2A) isthe only critical point. Since f'(r) < 0 for r < 3B/(2A) and f'(r) > 0 for r > 3B/(24),
we seethat r = 3B/(2A) isalocal minimum. At that point,

f<g)__ A B __4&
2A)  9B2/4A? ' 27B3/8A43 = 27B%’
Differentiating again, we have
6A 12B 6
f”(T‘) = _T'_4 + 7"—5 = —T_—5(A7" - 2B)
So f(r) < 0 wherer > 2B/A and f’(r) > 0 whenr < 2B/A. Thus, r = 2B/ A isthe only point of inflection.
At that point
G T _ A
A )~ 4B2?JA? " 8B3/A3 ~ 8B?’
(©
f(r)
— r
B
A
3 (2 —_AB)
% Zgr)

(d) (i) Increasing B meansthat the r-values of the zero, the minimum, and the inflection point increase, whilethe f(r)
values of the minimum and the point of inflection decrease in magnitude. See Figure 4.33.
(i) Increasing A means that the r-values of the zero, the minimum, and the point of inflection decrease, while the
f(r) values of the minimum and the point of inflection increase in magnitude. See Figure 4.34.

Small B Large A
<~ large B <~ Smal A
r r

Figure 4.33: Increasing B Figure 4.34: Increasing A
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34. (a) SeeFigure4.35.

\‘/

WA
AVAVAS

Figure 4.35

(b) (i) For fixed t, the function represents the surface of the water at time ¢. The shape of the surface is a sine wave of
period 2.
(i) For fixed z, the function represents the vertical (up-and-down) motion of a particle at position x.
(c) For fixed t, the derivative dy /dx represents the slope of the surface of the wave at position = and time ¢.
(d) For fixed z, the derivative dy /dt represents the vertical velocity of a particle of water at position 2 and time ¢.

Solutions for Section 4.3

Exercises
1 Yy Global and Local Maximum
8
6
Local Mini
4 ocal Minimum
2 Global and Local Minimum
| | | | | xT
1 2 3 4 5
2. Y Local and global max.  Local and global max.
4
3 Local min.
2 H.ocal min.
1 Local and global min.
| | | | | x

2 4 6 8 10

The global maximum is achieved at the two local maxima, which are at the same height.

3. (a) Wehave f'(z) = 102 — 10 = 10(z° — 1). Thisiszerowhenz = 1, s0 2 = 1 isacritical point of f. For values of
x lessthan 1, z° islessthan 1, and thus f'(z) is negative when = < 1. Similarly, f'(x) is positive for z > 1. Thus
f(1) = —9isaloca minimum.

We also consider the endpoints £(0) = 0 and £(2) = 1004. Since f'(0) < 0 and f'(2) > 0, weseez = 0 and
x = 2 arelocal maxima.
(b) Comparing values of f shows that the global minimumisat z = 1, and the global maximum isat x = 2.

4. (@ f'(r) =1 — 1/z. Thisis zero only when z = 1. Now f'(z) is positive when 1 < z < 2, and negative when
0.1 <z < 1.Thus f(1) = 1 isalocal minimum. The endpoints f(0.1) ~ 2.4026 and f(2) ~ 1.3069 are locd
maxima.

(b) Comparing values of f showsthat x = 0.1 gives the global maximum and z = 1 gives the global minimum.
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5. (a) Differentiating
f(z) =sin®z —cosz for0<z<m
f'(z) = 2sinzcosz + sinz = (sinz)(2cosz + 1)
f'(z) = 0 whensinz = 0 or when 2cosz + 1 = 0. Now, sinz = 0 when z = 0 or when z = 7. On the
other hand, 2 cos z + 1 = 0 when cos z = —1/2, which happens when z = 27 /3. So the critical pointsarez = 0,
z=2r/3,andz = 7.
Note that sinz > 0 for0 < z < m. Also,2cosz +1 < 0if 2n/3 < ¢ < mwand 2cosz +1 > 0 if
0 < z < 2m/3. Therefore,

f'(x) <0 for 2%<x<7r

f'(z) >0 for 0<a:<2?7T

Thus f hasalocal maximum at z = 27/3 and local minimaat z = 0 and z = .
(b) Wehave

£(0) = [sin(0)]* — cos(0) = ~1

(2?71- [Sln( )]2—(:052?#:1.25
f(m) = [sin(n)]” = cos(mw) = 1.

Thus the global maximum isat = = 27/3, and the global minimum isat z = 0.

Problems

6. (@) Weknow that b/ (z) < 0for —2 <z < —1,h"(—=1) = 0,and K" (x) > 0 for z > —1. Thus, b’ (z) decreases to its
minimum value at x = —1, which we know to be zero, and then increases; it is never negative.
(b) Since h'(zx) is non-negative for —2 < = < 1, we know that h(z) is never decreasing on [—2,1]. So a global
maximum must occur at the right hand endpoint of the interval.
(c) The graph below shows a function that is increasing on the interval —2 < z < 1 with a horizontal tangent and an
inflection point at (—1, 2).

7. We want to maximize the height, y, of the grapefruit above the ground, as shown in the figure below. Using the derivative
we can find exactly when the grapefruit is at the highest point. We can think of thisin two ways. By common sense, at the
peak of the grapefruit’s flight, the velocity, dy/dt, must be zero. Alternately, we are looking for a global maximum of y,
so we look for critical points where dy /dt = 0. We have

dy =50
i =-32t+50=0 and so t__32~1.563ec.

Thus, we have the time at which the height is a maximum; the maximum value of y isthen
y &~ —16(1.56)> + 50(1.56) + 5 = 44.1 feet.

60
40
20
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8. (a) Wehave

and

Since, by thisformula, dT'/dD is zero when D = 0 or D = C, negative when D > C, and positivewhen D < C,
we have (by the first derivative test) that the temperature change is maximized when D = C.

(b) The sensitivity isdT/dD = CD — D?; itsderivativeisd?T/dD? = C — 2D, whichiszero if D = C/2, negative
if D > C/2,and positiveif D < C/2. Thus by thefirst derivative test the sensitivity ismaximized at D = C/2.

9. Wehavethat v(r) = a(R — r)r’ = aRr® —ar®, and v’ (r) = 2aRr — 3ar® = 2ar(R — 2r), whichiszeroif r = 2R,

orif r =0, and so v(r) has critical points there.

v"'(r) = 2aR — 6ar, and thus v”'(0) = 2aR > 0, which by the second derivative test implies that v has a minimum at

r=0.v"(2R) = 2aR — 4aR = —2aR < 0, and so by the second derivative test v hasamaximum at r = 2 R. In fact,

thisisagloba max of v(r) since v(0) = 0 and v(R) = 0 at the endpoints.

10. (a) If we expect the rate to be nonnegative, then we must have 0 < y < a. See Figure 4.36.

rate (gm/sec)

Maxrate ——————~

y (gm)
Figure 4.36

(b) The maximum value of the rate occurs at y = a/2, as can be seen from Figure 4.36, or by setting

d
d—y(rate) =0
diy(rate) = diy(kay —ky®) =ka —2ky =0

_a
y=3

From the graph, we see that y = a/2 gives the global maximum.
11. (a) If weexpect therateto be nonnegative, we must have0 < y < aand0 < y < b. Sincewe assumea < b, werestrict
yto0 <y <a.
In fact, the expression for the rate is nonnegative for y greater than b, but these values of y are not meaningful
for the reaction. See Figure 4.37.

rate (gm/sec)
kab //

/
N 7 y (gm)
b

Figure 4.37

(b) From the graph, we see that the maximum rate occurs when y = 0; that is, at the start of the reaction.
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12. (a) Sincea/q decreases with g, this term represents the ordering cost. Since bq increases with ¢, this term represents the
storage cost.
(b) At the minimum,

dC a
giving
:_2 o _ /@
=% 1=V
Since )
d’C  2a

W:¥>O for ¢ >0,
minimum.

we know that ¢ = /a/b gives alocal minimum. Since ¢ = +/a/b isthe only critical point, this must be the global
13. Weset f'(r) = 0 tofind the critical points:

24

3B

7 g =0

2Ar —
1“43B:0
r

24r —3B =0

_3B
T 247
The only critical pointisat r = 3B/(24). If r > 3B/(24), wehave f' > 0 and if r < 3B/(24), wehave f' < 0.
Thus, the force between the atomsisminimized at r = 3B/(2A4).

r
14. Weset dU /dz = 0 to find the critical points:

—2a> a
b (T + x—> =0
—2a” +ax =0

z = 2a.
The only critical pointisat = 2a. When z < 2a we have dU/dz < 0, and when z > 2a we have dU/dz > 0. The
potential energy, U, isminimized at z = 2a.
15. Welook for critical points of M:

aM 1
Now dM/dz = 0 when z = L/2. At thispoint d”> M /dz® = —w so this point is alocal maximum. The graph of M (z)
is a parabola opening downwards, so the local maximum is a so the global maximum.
16.

dE _ (p+0)(1 —2u8) — (0 —p6*) _ p(l—2u6 — 6°)
a9 (1 +0)2

(n+6)2 -
Now dE/df = 0whenf = —u + /1 + p2. Sinced > 0, the only possible critical pointiswhen§ = —p + /2 + 1.
17.

Differentiating again gives E < 0 at this point and so it is a local maximum. Since E(#) is continuous for § > 0 and
E () hasonly one critical point, the local maximum is the global maximum.
A graph of F against 6 is shown below.

F’ (newtons)

1.0mg ¢

_ 0.15mg
F= sin@+40.15 cos #

[NES
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Taking the derivative:
dF _ mgp(cost — psinf)
ae (sin @ + pcos 6)?

At acritical point, dF'/df = 0, sO
cosf —pusinf =0

tanf = 1
0

f = arctan <l> .
B

If © = 0.15, then # = arctan(1/0.15) = 1.422 ~ 81.5°. To calculate the maximum and minimum values of F, we
evaluate at this critical point and the endpoints:

0.15mg
t6=0, sin0 + 0.15 cos 0 Omg newtons
0.15mg
At =1422 F = =0.14 ewtons.
= Si(1422) + 0,15 cos(1.d22) — U148y newtons
1
Atd =n/2, F = 0.15myg = 0.15mg newtons.

sin(%) + 0.15cos(%)
Thus, the maximum value of F' is 1.0mg newtons when 6 = 0 (her arm is vertical) and the minimum value of F' is
0.148mg newtonsiswhen § = 1.422 (her arm is close to horizontal). See Figure 4.38.
F
1.0mg ¢

_ 0.15mg
~ sin#+0.15cos

0.148mg

\
1.422

Figure 4.38

18. Thedomain for E isall rea z. Note E — 0 asz — =+oo. The critical points occur where dE /dz = 0. The derivative is
dE k 3 kx(2zx)
dr (z? +r§)3/2 2 (22 +r3)5/2

k (m2 +rf — 3x2)

k (r% - 2x2)

SodE/dx = 0 where

r0—2x2=0

p= 0
V2
Looking at the formulafor dE /dx shows
dE To To
— >0for ——= <z < —
dx V2 V2
ro
Iz <O0forzx < _ﬁ
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Therefore, © = —ro/+/2 gives the minimum value of E and x = r/+/2 gives the maximum vaue of E.

E

TSk
ND

Sﬂ;;
e

Since I(t) is a periodic function with period 27 /w, it is enough to consider I(¢) for 0 < wt < 2. Differentiating, we

find
dI

iy sin(wt) 4+ V3w cos(wt).

At acritical point
—wsin(wt) + V3w cos(wt) = 0
sin(wt) = v/3 cos(wt)
tan(wt) = V3.

So wt = w /3 or 47/3, or these values plus multiples of 27r. Substituting into I, we see

Atwt:g: I:cos(g)—l—\/?;sin(g):%%-\/g-(?) =2.

Atwt:%r: I:cos(%)%-\/?;sin(%r) :—%—\/5 <?> = -2

Thus, the maximum value is 2 amps and the minimum is —2 amps.
(a) To show that R isan increasing function of r;, we show that dR/dr: > 0 for al values of r,. We first solve for R:

1 1 1
R r
1 r+n
R_ rir2
R=-"

r2+ 711

We use the quotient rule (and remember that r» is aconstant) to find dR/dr::

d_R (247 (r2) = (mir2)(1) (rs)?

dry (ro+r1)? (ra +711)%

Since dR/dr: isthe square of a number, we have dR/dr, > 0 for all values of r1, and thus R isincreasing for all
T1.
(b) Since R isincreasing on any interval a < r; < b, the maximum value of R occurs at theright endpoint r; = b.

Lety = e~ Sincey’ = —21;6‘9”2, y isincreasing for z < 0 and decreasing for z > 0. Hencey = e® = 1 isagloba
maximum.

Whenz = £0.3, y = e~ %% 2 0.9139, which isaglobal minimum on the given interval. Thuse™%% < y < 1 for
lz] <0.3.
Lety =In(1+x).Sincey’ = 1/(1 + z), y isincreasing for al = > 0. Thelower bound isat x = 0, so, In(1) = 0 < .
Thereis no upper bound.
Lety = In(1 + 2?). Theny’ = 2z/(1 + z?). Since the denominator is aways positive, the sign of 3/ is determined by
the numerator 2z. Thusy’ > 0 whenz > 0, and y' < 0 when z < 0, and we have alocal (and global) minimum for y
ax =0.Sincey(—1) =1n2 and y(2) = In 5, the global maximumisat z = 2. Thus0 < y < In 5, or (in decimals)
0 <y < 1.61. (Note that our upper bound has been rounded up from 1.6094.)
Lety = 2% — 42® + 4z. To locate the critical points, we solvey’ = 0. Sincey’ = 32% — 8z +4 = (3z — 2)(x — 2), the
critical pointsarez = 2/3 and 2 = 2. To find the global minimum and maximum on 0 < z < 4, we check the critical
points and the endpoints: y(0) = 0; y(2/3) = 32/27; y(2) = 0; y(4) = 16. Thus, the global minimum isat z = 0 and
x = 2, theglobal maximumisatz =4,and 0 < y < 16.
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25. The graph of y = x + sin z in Figure 4.39 suggests that the function is nondecreasing over the entire interval. You can
confirm this by looking at the derivative:

y' =1+cosz
Y
2 S
™ .
y=x+sinz
1 1 1 T
-7 ™ 2T
Z -

Figure 4.39: Graphof y = = + sinz

Sincecosz > —1, wehavey’ > 0 everywhere, so y never decreases. This means that alower bound for y is O (its
value at the left endpoint of theinterval) and an upper bound is 27 (itsvalue at the right endpoint). That is, if 0 < z < 27

0<y<o2r

These are the best bounds for y over the interval.
26. Examination of the graph suggeststhat 0 < z3e~ < 2. The lower bound of 0 is the best possible lower bound since
F(0) = (0)°™" =0.
To find the best possible upper bound, we find the critical points. Differentiating, using the product rule, yields
fl(x) =3z " —aze "
Setting f'(x) = 0 and factoring gives
3z%e " —z%e " =0
2’ (3 —x) =0

So the critical pointsarez = 0 and z = 3. Notethat f'(z) < 0 forz > 3 and f'(z) > 0 for z < 3, so f(z) hasalocal
maximum at z = 3. Examination of the graph tells us that thisis the global maximum. So 0 < z®e™* < £(3).

f(3) = 3% ? ~ 1.34425

S00 < z2e® < 3%¢72 & 1.34425 are the best possible bounds for the function.

3%e73 xv 1.34425
1 |-

f(z) =23~ ®

Figure 4.40
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27. (a) For apoint (t, s), theline from the origin has rise = s and run = ¢; See Figure 4.41. Thus, the slope of the line OP
iss/t.
s (km)

t (hours)

Figure 4.41

(b) Sketching several lines from the origin to points on the curve, we see that the maximum slope occurs at the point P,
where the line to the origin is tangent to the graph. Reading from the graph, we see ¢t ~ 2 hours at this point.

s (km)

ol

2
7

z
7 _ A
-
<
‘

t (hours)

(c) The instantaneous speed of the cyclist at any time is given by the slope of the corresponding point on the curve. At
the point P, the line from the origin is tangent to the curve, so the quantity s/t equals the cyclist’'s speed at the point
P.

28. (a) To maximize benefit (surviving young), we pick 10, because that’s the highest point of the benefit graph.
(b) To optimize the vertical distance between the curves, we can either do it by inspection or note that the slopes of the
two curves will be the same where the difference is maximized. Either way, one gets approximately 9.

29. (a) At higher speeds, more energy is used so the graph risesto theright. Theinitial drop is explained by the fact that the

energy it takesabird tofly at very low speedsisgreater than that needed to fly at aslightly higher speed. When it flies
dlightly faster, the amount of energy consumed decreases. But when it flies at very high speeds, the bird consumes a
lot more energy (thisis analogous to our swimming in apool).

(b) f(v) measures energy per second; a(v) measures energy per meter. A bird traveling at rate v will in 1 second travel
v meters, and thus will consume v - a(v) joules of energy in that 1 second period. Thus v - a(v) represents the energy
consumption per second, and so f(v) = v - a(v).

() Sincev-a(v) = f(v),a(v) = f(v)/v. But thisratio has the same value as the slope of aline passing from the origin
through the point (v, f(v)) on the curve (see figure). Thus a(v) isminimal when the slope of thislineisminimal. To
find the value of v minimizing a(v), we solve a’(v) = 0. By the quotient rule,

Yoy = V0 — )

energy
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Thusa'(v) = 0 whenvf'(v) = f(v), or when f'(v) = f(v)/v = a(v). Since a(v) isrepresented by the slope
of aline through the origin and a point on the curve, a(v) is minimized when thislineistangent to f(v), so that the
sope a(v) equals f'(v).

(d) The bird should minimize a(v) assuming it wants to go from one particular point to another, i.e. where the distance
is set. Then minimizing a(v) minimizes the total energy used for the flight.

30. (a) Figure4.42 containsthe graph of total drag, plotted on the same coordinate system with induced and parasite drag. It
was drawn by adding the vertical coordinates of Induced and Parasite drag.

drag
(thousands of pounds)

3 ‘

9 [ Total
L Drag

1 = )/ 7 Parasite —
L Inducedk\ Drag
- i >< \T'T'FL_W—F‘V—
7\% L1 ﬁ T

speed (miles/hour)
100 200 300 400 500 600

Figure 4.42

(b) Airspeeds of approximately 160 mph and 320 mph each result in atotal drag of 1000 pounds. Since two distinct
airspeeds are associated with asingle total drag value, the total drag function does not have an inverse. The parasite
and induced drag functions do have inverses, because they are strictly increasing and strictly decreasing functions,
respectively.

(c) To conserve fuel, fly the at the airspeed which minimizes total drag. Thisis the airspeed corresponding to the lowest
point on the total drag curve in part (a): that is, approximately 220 mph.

31. (a) Toobtain g(v), whichisin gallons per mile, we need to divide f(v) (in gallons per hour) by v (in miles per hour).

Thus, g(v) = f(v)/v.

(b) By inspecting the graph, we seethat f(v) is minimized at approximately 220 mph.

(c) Note that a point on the graph of f(v) has the coordinates (v, f(v)). The line passing through this point and the
origin (0,0) has

Slope = LUU)_ 00 = @ = g(v).

So minimizing g(v) corresponds to finding the line of minimum slope from the family of lines which pass through
the origin (0, 0) and the point (v, f(v)) on the graph of f(v). Thislineisthe unique member of the family which is
tangent to the graph of f(v). The value of v corresponding to the point of tangency will minimize g(v). This vaue
of v will satisfy f(v)/v = f'(v). From the graph in Figure 4.43, we see that v ~ 300 mph.

f(v) (gallong/hour)

100 -
75 |- \
r f@)
50 VA
25 : " -
7\/\\/\/ L1l Ll L1l L1l L1 ,U(mlleslhour)

100 200 300 400 500 600

Figure 4.43
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(d) Thepilot'sgoa withregardto f(v) and g(v) would depend on the purpose of the flight, and might even vary within
agiven flight. For example, if the mission involved aerial surveillance or banner-towing over some limited area, or
if the plane was flying a holding pattern, then the pilot would want to minimize f(v) so as to remain aoft as long
as possible. In amore normal situation where the purpose was economical travel between two fixed points, then the
minimum net fuel expenditure for the trip would result from minimizing g(v).

32. Since the function is positive, the graph lies above the z-axis. If there is a global maximum at z = 3, # (x) must be
positive, then negative. Sincet' (z) and ¢ (=) have the same sign for z < 3, they must both be positive, and thus the graph
must beincreasing and concave up. Sincet' (z) and t” (x) have opposite signsfor > 3 and ' (x) is negative, t" (x) must
again be positive and the graph must be decreasing and concave up. A possible sketch of y = (x) is shown in the figure
below.

(3,3)

33. Hereisone possible graph of g:

(a) From left to right, the graph of g(z) starts “flat”, decreases slowly at first then more rapidly, most rapidly at z = 0.
The graph then continues to decrease but less and less rapidly until flat again at x = 2. The graph should exhibit
symmetry about the point (0, g(0)).

(b) Thegraph has an inflection point at (0, g(0)) where the slope changes from negative and decreasing to negative and
increasing.

(c) Thefunction has aglobal maximum at x = —2 and agloba minimum at z = 2.

(d) Since the function isdecreasing over theinterval —2 < z <2

9(=2) =5>g(0) > 9(2).
Since the function appears symmetric about (0, g(0)), we have
9(=2) = 9(0) = g(0) — 9(2).

34. (a) Wewanttofindwherex > 21n z, whichisthesame assolvingz —2Inz > 0. Let f(z) = z —2Inz. Then f'(z) =

1 — 2, whichimpliesthat z = 2 isthe only critical point of f. Since f'(z) < 0 forz < 2and f'(z) > 0 for z > 2,
by the first derivative test we see that f has alocal and global minimum at z = 2. Since f(2) =2 — 2In2 =~ 0.61,
thenforal z > 0, f(x) > f(2) > 0. Thus f(z) isaways positive, whichmeans z > 21In z for any z > 0.

(b) We've shown that z > 2Inz = In(z?) for all z > 0. Since e® is an increasing function, e® > e = g2 s
e® > g2 foralz > 0.

(c) Let f(x) = = — 3lnz. Then f'(z) = 1 — 2 = 0 at = = 3. By thefirst derivative test, f hasalocal minimum at
x = 3. But, f(3) =~ —0.295, which isless than zero. Thus3lnz > z a = = 3. So, z isnot less than 31n x for all
z > 0.

(One could also see this by substituting z = e: since3lne = 3,z < 3lnz whenz =e.)
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Solutions for Section 4.4

Exercises

1. Thefixed costs are $5000, the marginal cost per itemis $2.40, and the price per item is $4.

2. (a) Total cost, in millions of dollars, C(g) = 3 + 0.4q.

(b) Revenue, in millions of dollars, R(q) = 0.5q.

(c) Profit, in millions of dollars, w(q) = R(q) — C(q) = 0.5¢ — (3 + 0.4¢q) = 0.1q — 3.
3. The profit w(q) isgiven by

7(q) = R(q) — C(g) = 500q — ¢ — (150 + 10q) = 490q — ¢° — 150.
The maximum profit occurs when
7(q) =490 —2¢ =0 so ¢ =245 items

Since 7'’ (q) = —2, thiscritical point isamaximum. Alternatively, we obtain the same result from the fact that the graph
of 7 isa parabola opening downward.

4. Sincefor ¢ = 500, we have M C(500) = C'(500) = 75 and M R(500) = R'(500) = 100, so M R(500) > M C(500).
Thus, increasing production from ¢ = 500 increases profit.

5. Since fixed costs are represented by the vertical intercept, they are $1.1 million. The quantity that maximizes profit is
about ¢ = 70, and the profit achieved is $(3.7 — 2.5) = $1.2 million

Problems
6. Marginal
Cost Marginal
Profit M Revenue
/\ ,
qn q: L e o
\ L q | | q
q1 q2 q1 q2
7. (a) w(q) ismaximized when R(q) > C(q) and they are as far apart as possible:
$
C(q)
R(q)
|
I maximum r(q)
|
|
|
|
: q

(b) 7'(g0) = R'(q0) — C"(go) = 0 impliesthat C'(go) = R'(q0) = p-

Graphically, the slopes of the two curves at qo are equal. Thisis plausible because if C' (go) were greater than p
or less than p, the maximum of m(q) would be to the left or right of go, respectively. In economic terms, if the cost
were rising more quickly than revenues, the profit would be maximized at alower quantity (and if the cost wererising
more slowly, at a higher quantity).
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(©

C'(q)

q0

8. (a) Thevalue of C(0) represents the fixed costs before production, that is, the cost of producing zero units, incurred for

10.

(b)
(©
(d)
C)

@

(b)

(@)
(b)

initial investments in equipment, and so on.

The marginal cost decreases slowly, and then increases as quantity produced increases. See Problem 6, graph (b).
Concave down implies decreasing marginal cost, while concave up impliesincreasing marginal cost.

An inflection point of the cost function is (locally) the point of maximum or minimum marginal cost.

One would think that the more of an item you produce, the less it would cost to produce extra items. In economic
terms, one would expect the marginal cost of production to decrease, so we would expect the cost curve to be con-
cave down. In practice, though, it eventually becomes more expensive to produce more items, because workers and
resources may become scarce as you increase production. Hence after a certain point, the marginal cost may rise
again. This happensin oil production, for example.

We know that Profit = Revenue — Cost, so differentiating with respect to ¢ gives:
Marginal Profit = Marginal Revenue — Marginal Cost.

We see from the figure in the problem that just to the left of ¢ = a, marginal revenue is less than marginal cost, so
marginal profit is negative there. To the right of ¢ = a marginal revenue is greater than marginal cost, so marginal
profitispositive there. At ¢ = a margina profit changes from negativeto positive. This meansthat profit is decreasing
to the left of a and increasing to the right. The point ¢ = a corresponds to alocal minimum of profit, and does not
maximize profit. It would be aterrible idea for the company to set its production level at g = a.

We see from the figure in the problem that just to the left of ¢ = b marginal revenue is greater than marginal cost, so
marginal profit is positive there. Just to the right of ¢ = b marginal revenue is less than marginal cost, so marginal
profit isnegative there. At ¢ = b marginal profit changes from positive to negative. This meansthat profit isincreasing
to the left of b and decreasing to the right. The point ¢ = b corresponds to alocal maximum of profit. In fact, since
the area between the M C and M R curves in the figure in the text between ¢ = a and ¢ = b is bigger than the area
between ¢ = 0 and ¢ = a, ¢ = bisin fact aglobal maximum.

The fixed cost is 0 because C(0) = 0.
Profit, 7(q), isequal to money from sales, 7q, minus total cost to produce thoseitems, C'(q).

m=7q—0.01¢> + 0.6¢> — 13¢q
7 =—-0.03¢" +1.2¢ —6

—1.2 £ ,/(1.2)2 — 4(0.03)(6)
—0.06

Now 7" = —0.06¢ + 1.2, so «"'(5.9) > 0 and 7"'(34.1) < 0. Thismeans g = 5.9 isalocal minand ¢ = 34.1 a
local max. We now evaluate the endpoint, w(0) = 0, and the points nearest ¢ = 34.1 with integer g-values:

~59 or 34.1.

=0 if ¢g=

7(35) = 7(35) — 0.01(35)* + 0.6(35)> — 13(35) = 245 — 148.75 = 96.25,

7(34) = 7(34) — 0.01(34) + 0.6(34)° — 13(34) = 238 — 141.44 = 96.56.

So the (global) maximum profit is w(34) = 96.56. The money from sales is $238, the cost to produce the itemsis
$141.44, resulting in a profit of $96.56.
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(c) Themoney from salesisequal to pricex quantity sold. If the priceisraised from $7 by $z to $(7 + z), theresultisa
reduction in sales from 34 itemsto (34 — 2x) items. So the result of raising the price by $z is to change the money
from sales from (7)(34) to (7 + z)(34 — 2z) dollars. If the production level isfixed at 34, then the production costs
are fixed at $141.44, asfound in part (b), and the profit is given by:

m(z) = (7T+z)(34 — 2z) — 141.44
This expression gives the profit as a function of changein price z, rather than as a function of quantity asin part (b).
We set the derivative of 7 with respect to = equal to zero to find the change in price that maximizes the profit:
dm
i
So z = 5, and this must give a maximum for 7(x) since the graph of = is a parabola which opens downwards. The

profit when the priceis $12 (= 7+« = 7 + 5) isthus n(5) = (7 + 5)(34 — 2(5)) — 141.44 = $146.56. Thisis
indeed higher than the profit when the price is $7, so the smart thing to do is to raise the price by $5.

(1)(34 — 22) + (7 + ) (—2) = 20 — 4z = 0

(@) Say n passengers sign up for the cruise. If n < 100, then the cruise’s revenue is R = 10007, and so the maximum
revenueif n < 100 is R = 1000 - 100 = 100,000. If n > 100, then the priceis
p = 1000 — 5(n — 100)
and hence revenue is
R = n(1000 — 5(n — 100)) = 1500n — 5n°.
To find the maximum of this, we set dR/dn = 0, or 10n = 1500, or n = 150, yielding revenue of (1000 — 5 - 50) -
150 = 112500. Since this is more than the maximum revenue when n < 100, we see that the boat maximizes its
revenue with 150 passengers, each paying $750.

(b) We approach this problem in a similar way to part (a), except now we are dealing with the profit function . If n <
100, we havethat = = 10007 — 40,000 — 2007, and thus = would be maximized with 100 passengersyielding a profit
of m = 800-100—40,000 = $40,000. If » > 100, we havetheformular = n(1000—5(n—100))—(40,000+200n).
We again wish to set dm/dn = 0, or 1300 = 10n, or n = 130, yielding profit of $44,500. So the boat will maximize
profit by boarding 130 passengers, each paying $850. This gives the boat $44,500 in profit.

For each month,
Profit = Revenue — Cost
7 =pq—wL=pcK*L’ —wL

The variable on theright is L, so at the maximum

dm _ o e
I = BpcK“L w=0
Now 3 — 1 isnegative, since0 < 8 < 1,s01 — 3 ispositive and we can write
BpcK®
Li-8

giving

w
Since 3 — 1 isnegative, when L isjust above 0, the quantity L°~* is huge and positive, so d=/dL > 0. When L islarge,
LP~1issmal, so dn/dL < 0. Thus the value of L we have found gives a global maximum, since it is the only critical
point.
(@ N =100 + 20z, graphed in Figure 4.44.
number of bees
2100 -

L:(M)ﬁ

N(z) = 100 + 20z

100 | |
50

T (acres)

Figure 4.44
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(b) N'(x) = 20 and its graph isjust a horizontal line. This means that rate of increase of the number of bees with acres
of clover is constant — each acre of clover brings 20 more bees.

On the other hand, N(z)/z = 100/z + 20 means that the average number of bees per acre of clover approaches

20 asmore acres are put under clover. See Figure 4.45. As x increases, 100/z decreasesto 0, so N (z)/« approaches

20 (i.e. N(z)/xz — 20). Since the total number of bees is 20 per acre plus the original 100, the average number of

bees per acre is 20 plus the 100 shared out over x acres. As z increases, the 100 are shared out over more acres, and

so its contribution to the average becomes less. Thus the average number of bees per acre approaches 20 for large x.

bees/acre
N(z) _ 100
/ > = T 20
20
™~ N'(x) = 20
. —  (acres)
50 100
Figure 4.45

14. This question implies that the line from the origin to the point (z, R(x)) has some relationship to (). The slope of this
lineis R(z)/x, whichisr(z). So the point zo at which r(z) is maximal will also be the point at which the slope of this
lineismaximal. The question claims that the line from the origin to (zo, R(z0)) will be tangent to the graph of R(x). We
can understand this by trying to see what would happen if it were otherwise.

If the line from the origin to (zo, R(z0)) intersects the graph of R(x), but is not tangent to the graph of R(x) at zo,
then there are points of this graph on both sides of the line— and, in particular, there is some point z; such that the line
from the originto (x1, R(x1)) has larger slope than the lineto (zo, R(xo)). (See the graph below.) But we picked zo so
that no other line had larger slope, and therefore no such xz; exists. So the original supposition is fase, and the line from
theorigin to (zo, R(zo)) istangent to the graph of R(zx).

(@) See(b).
(b) . o
Line through the origin is tangent here (@)
R(x
/ optimal point on ()

r(z)

(©
" (z) = mR’(x)arZ— R(x)

So when r(x) is maximized 0 = zR'(x) — R(z), the numerator of r'(z), or R'(z) = R(z)/z = r(z).i.e
when r(z) ismaximized, r(z) = R'(z).
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Let us call the z-value at which the maximum of r occurs x,,. Then the line passing through R(z,,) and the
originisy = z - R(xm)/xm. Itsslopeis R(z)/zm, which also happens to be r(z,, ). In the previous paragraph,
we showed that at z.,, this is also equal to the slope of the tangent to R(x). So, the line through the origin is the
tangent line.

15. (a) Thevalue of MC isthe slope of the tangent to the curve at go. See Figure 4.46.
(b) Theline from the curve to the origin joins (0, 0) and (go, C'(go)), SO its slopeis C(qo)/q0 = a(qo).
(c) Figure 4.47 shows that the line whose slope is the minimum a(q) is tangent to the curve C(q). Thisline, therefore,

16. (a)
(b)

(©

(d)

17. (a)

aso hasslope MC, soa(q) = MC at the g making a(g) minimum.

C(q) $

slope= M C

/ | Slope of
| this line is
;L } minimum a(q)
‘ q | }
//
qo0 L ! q
Figure 4.46 Figure 4.47

a(q) = C(q)/q, 50 C(q) = 0.01¢> — 0.6¢> + 13¢.
Taking the derivative of C(q) gives an expression for the marginal cost:

C'(q) = MC(q) = 0.03¢°> — 1.2¢ + 13.

Tofind the smallest M C wetakeitsderivative and find the value of ¢ that makesit zero. So: M C’ (¢) = 0.06g—1.2 =
0 wheng = 1.2/0.06 = 20. Thisvalue of ¢ must give aminimum because the graph of A/C(q) isaparabola opening
upwards. Therefore the minimum marginal cost is M C(20) = 1. So the marginal cost is a a minimum when the
additional cost per itemis $1.

a'(q) = 0.02g — 0.6

Setting a’(¢) = 0 and solving for ¢ gives ¢ = 30 as the quantity at which the average is minimized, since the graph
of a isaparabola which opens upwards. The minimum average cost isa(30) = 4 dollars per item.

The marginal cost at ¢ = 30 is MC(30) = 0.03(30)* — 1.2(30) + 13 = 4. Thisis the same as the average cost at
this quantity. Note that since a(q) = C'(q)/q, we have d’ (q) = (¢C’ (q) — C(q))/q*. At acritica point, qo, of a(q),

we have ,
0= d(qo) = qC (qo()f_ C(qo)
0

50 C'(go) = C(q0)/q0 = a(qo). Therefore C' (30) = a(30) = 4 dollars per item.

Another way to see why the marginal cost at ¢ = 30 must equal the minimum average cost a(30) = 4 isto view
C'(30) as the approximate cost of producing the 30™" or 315t good. If C’(30) < a(30), then producing the 31°¢
good would lower the average cogt, i.e. a(31) < a(30). If C'(30) > a(30), then producing the 30** good would
raise the average cost, i.e. a(30) > a(29). Since a(30) is the global minimum, we must have C’ (30) = a(30).
Differentiating C(¢) gives

)

K _ K /1 —
=K, o= K (i) o
a a a

Ifa > 1,then C"(g) < 0, so C' is concave down.

(b) Wehave
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s0a(q) = C’'(q) means
qu/a + F _ Eq(l/a),l

q a
Solving,
qu/a +F= %ql/a
K (1 - 1) Ve =
a
. Fa “
1=\ Ka—a| -

Solutions for Section 4.5

Exercises

1. Wetakethe derivative, set it equal to 0, and solve for x:

dt _ 1 1 1 2 2\ —1/2 _
w613 ((2000 — z)* + 600%) 2(2000 — z) = 0
2 2 2\ 1/2
(2000 — ) = 3 ((2000 — z)* + 600%)
(2000 — z)* = g ((2000 — z)* + 600°)
5 2 _ 4 2
5(2000 — ) = = 600
4 12
2000 —z = 1/ = . 600> = 2220
5 V5
1200
x = 2000 — == feet.
V5

Note that 2000 — (1200/+/5) ~ 1463 feet, as given in the example.
2. Call the stacks A and B. (See below.) Assumethat A corresponds to k:, and B corresponds to k.

20 miles

e

AT
Suppose the point where the concentration of deposit isaminimum occurs at a distance of x miles from stack A. We

want to find = such that
k1 ko 7 1
= — —_— k' _— e —
S x? + (20 — x)? ? (:1:2 + (20 —:1:)2>

is aminimum, which is the same thing as minimizing f(x) = 722 + (20 — )2 since k» is nonnegative.
We have

, _ _ —14 2 —14(20 — z)® + 22°
fl(e) =~ =220 =) (1) = 5+ T = 9(03(20 gi)a:)?’ -

Thuswewant to find = such that —14(20 — z)® + 2z® = 0, whichimplies 2z = 14(20 — z)*. That'sequivalent to =3 =
7(20 — )%, or 222 = (1/7)"/® ~ 0.523. Solving for z, we have 20 — z = 0.523z, whence z = 20/1.523 = 13.13.
To verify that this minimizes f, we take the second derivative:

2,8 s
x4 (20 —z)4
forany 0 < x < 20, so by the second derivative test the concentration is minimized 13.13 miles from A.

Flx)=42e""+6(20—z)"" =
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3. Weonly consider A > 0. For such \, thevalue of v — oo as XA — oo and as A — 0". Thus, v does not have a maximum
velocity. It will have a minimum velocity. To find it, we set dv/d\ = 0:

dv 1 /) e\ Y2 /1 c
a-*?(z*x) (z—ﬁ)—“

Solving, and remembering that A > 0, we obtain

T =0
1 ¢
PRV
AZ=¢2
so
A=c
Thus, we have one critical point. Since
d—v <0 fori<e
d\
and p
v
— f
o\ >0 for\>c,

the first derivative test tells us that we have alocal minimum of v at x = c. Since A = c isthe only critical point, it gives
the global minimum. Thus the minimum value of v is

v="Fk/S+ < = V3.
C C

Problems

4. Wewish to choose a to maximize the area of the rectangle with corners at (a,+/a) and (9, /a). The area of thisrectangle

will be given by the formula
R=h-1=+/a(9—a) =9a'? —a*?.

We are restricted to 0 < a < 9. To maximize this area, we set dR/da = 0, and then check that the resulting area is
greater than the areaifa = 0ora =9.SinceR =0ifa=00ra = 9, dl weneed to doisto find where dR /da = 0:

dR _ 9 —1y2 3 12 _ 0

da 2 2
9 _ 3a
2v/a 2
18 = 6a
a=3.

Thus, the dimensions of the maximal rectangle are 6 by V3.
5. (a) Suppose the height of the box is k. The box has six sides, four with area xh and two, the top and bottom, with area
z2. Thus,
dzh + 2z° = A.
So
A— 222

h= 4x

Then, the volume, V, is given by
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226
(b) The graph isshown in Figure 4.48. We are assuming A is a positive constant. Also, we have drawn the whole graph,

but we should only consider V' > 0, z > 0 asV and z are lengths.

v
V = %:v - %:v?’
x
\/Z
2
Figure 4.48

(c) To find the maximum, we differentiate, regarding A as a constant:

v _ A _ 3.,
de ~ 4 277
SodV/dz = 0 if
A 3,
7 20 =0
A
=34/ —=.
v 6

For areal box, wemust usez = \/A/6. Figure 4.48 makesit clear that thisvalue of z givesthe maximum. Evaluating

axr=/A/6, weget

4

6. Let w and [ be the width and length, respectively, of the rectangular area you wish to enclose. Then

w~+ w + [ = 100 feet
[ =100 — 2w
Area=w -l = w(100 — 2w) = 100w — 2w’

WALL

l

To maximize area, we solve A" = 0 to find critical points. Thisgives A’ = 100 — 4w = 0, sow = 25,1 = 50. SO
the areais 25 - 50 = 1250 square feet. Thisis alocal maximum by the second derivative test because A”

Since the graph of A isaparabola, the local maximum isin fact a global maximum

7. From the triangle shown in Figure 4.49, we see that
w 2 h 2 2
(3) +(3) =»
w® + h* = 4(30)° = 3600.

3
vA/A_1[ /4y A jA4 _1 4 é_(é)‘”’“
- 6 2 6)  4V6 2 6V6 \6 ‘

-4 < 0.
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30 hy2

w/2
Figure 4.49

The strength, S, of the beam is given by ‘
S = kwh?,
for some constant k. To make S afunction of only one variable, substitute for k2, giving
S = kw(3600 — w?) = k(3600w — w®).

Differentiating and setting d.S/dw = 0,

as 2

T = k(3600 — 3w”) = 0.
Solving for w gives

w = V1200 = 34.64 cm,

)

h? = 3600 — w” = 3600 — 1200 = 2400
h = /2400 = 48.99 cm.

Thus, w = 34.64 cmand h = 48.99 cm give acritical point. To check that thisis alocal maximum, we compute
d’s
dw?

Since d>S/dw® < 0, we see that w = 34.64 cm is a local maximum. It is the only critical point, o it is a global

maximum.

=—6w<0 for w>0.

. Consider the rectangle of sides = and y shown in the figure below.

x

Thetotal areais zy = 3000, so y = 3000/x. Suppose the left and right edges and the lower edge have the shrubs
and the top edge has the fencing. Thetotal cost is

C = 25(z + 2y) + 10(z)
= 35z + 50y.
Since y = 3000/, this reduces to
C(z) = 35z + 50(3000/z) = 35z + 150,000/z.
Therefore, C’ () = 35 — 150,000/2>. We set thisto 0 to find the critical points:

a5 150,500 —0
xr
150,000
— =35
xr
z? = 4285.71
T~ 65.5 ft

o that
y = 3000/z ~ 45.8 ft.

Since C(z) — oo asz — 01 andz — oo, z = 65.5 isaminimum. The minimum total cost isthen
C(65.5) ~ $4583.
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9. Figure 4.50 shows the the pool has dimensions x by y and the deck extends 5 feet at either side and 10 feet at the ends of
the pool.

L —— y =

10

———8

Figure 4.50

The dimensions of the plot of land containing the pool are then (z + 5 + 5) by (y + 10 + 10). The area of the land
isthen
A = (z +10)(y + 20),

which isto be minimized. We also are told that the area of the pool iszy = 1800, so

y = 1800/z
and
A= (2 +10) (liﬂuo)
18000

= 1800 + 20z + R + 200.

Wefind dA/dz and set it to zero to get
dA _ o, 18000 _

dz 2
202> = 18000
z? =900
z = 30 feet.

Since A — coasz — 07 andasz — oo, thiscritical point must be a global minimum. Also, y = 1800/30 = 60 feet.
The plot of land is therefore (30 + 10) = 40 by (60 + 20) = 80 feet.
10. Volume: V = 22y,
Surface: S = 2° + dzy = 2° + 42V /2 = 2 + 4V/x.
To find the dimensions which minimize the area, find = such that d.S/dz = 0.

as _,. 4V _,
de z2
SO
x> =2V,

and solving for  givesz = +/2V. To see that this gives a minimum, note that for small =, S ~ 4V'/z is decreasing. For
large z, S ~ 22 isincreasing. Since there is only one critical point, this must give a global minimum. Using z to find y

givesy = V/x> = V/(2V)¥3 = {/V/4.
11. If theillumination is represented by I, then we know that
kcos 6

r2

I =

See Figure 4.51.
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L
0
h T
0] 10 P
Figure 4.51

Sincer? = h? 4+ 102 and cos § = h/r = h/+/h? + 102, we have
kh

(h2 4+ 102)3/2°

To find the height at which I is maximized, we differentiate

ar _ k _ 3kh(2h)  _ K(h®+10%) —3kh® _ Kk (10° —2A%)
dh  (R24+102)%/2  2(h2 +102)%/? (h2 4 102)°/2 (h2 4 102)%/2"
Setting dI/dh = 0 gives
10> —2p° =0
h = V/50 meters.

SincedI /dh > 0 for0 < h < /50 and dI/dh < 0 for h > /50, weknow that I isamaximum when i = /50 meters.

The distance from a given point on the parabola (x, 2*) to (1, 0) is given by
D= +/(x—1)2 + (22 — 0)2.

Minimizing this is equivalent to minimizing d = (x — 1)* + 2*. (We can ignore the square root if we are only
interested in minimizing because the square root is smallest when the thing it isthe square root of issmallest.) To minimize
d, wefind its critical pointsby solvingd’ = 0. Sinced = (¢ — 1)® + 2* = 2% — 2z + 1 + z*,

d =2z -2+ 42> =222 + 2 - 1).

By graphing d’ = 2(2z® + 2z — 1) on acalculator, we see that it has only 1 root, = & 0.59. This must give a minimum
becaused — cc asx — —oco and asx — +oo, and d has only one critical point. This is confirmed by the second
derivative test: d” = 1222 + 2 = 2(6x> + 1), which is always positive. Thus the point (0.59, 0.59%) = (0.59, 0.35) is
approximately the closest point of y = 2> to (1, 0).

Any point on the curve can be written (z, 2?). The distance between such apoint and (3, 0) is given by

s(x)=/(B—2)2+ (0 —22)2 = /(3 — ) + z*.

Plotting this function in Figure 4.52, we see that there isaminimum near z = 1.

Figure 4.52
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To find the value of x that minimizes the distance we can instead minimize the function Q) = s* (the derivative is
simpler). Then we have
Qz) = (3 —=z)° +z".
Differentiating Q(z) gives
dq
dz
Plotting the function 4z> 4 2 — 6 showsthat thereis onereal solution at = = 1, which can be verified by substitution; the
required coordinates are therefore (1, 1). Because Q" (z) = 2 + 12z is always positive, z = 1 isindeed the minimum.
See Figure 4.53.

= —6+ 2z + 42°.

100+

—4 2 4
—50+
—100+
Figure 4.53

We see that the width of the tunnel is 2r. The area of the rectangle is then (2r)h. The area of the semicircleis (7r?)/2.
The cross-sectional area, A, isthen

A=2rh+ %7‘(’7’2
and the perimeter, P, is
P =2h +2r + nr.
From A = 2rh + (7r?)/2 we get

A ar
h=_———
2r 4
Thus, N N
P=2(——ﬂ) o dar=2" o+ 2
2r 4 r 2
We now have the perimeter in terms of » and the constant A. Differentiating, we obtain
ap_ A L,
dr — 2 2°
To find the critical pointswe set P’ = 0:
A 7
_ = = 2 =
2 + 5 + 0
2
A 447
. 2A
Va4

Substituting this back into our expression for h, we have
V4T om V2A
V2A 4 Jixn

Since P — oo asr — 01 and asr — oo, thiscritical point must be agloba minimum. Notice that the h-value simplifies

to
/| 2A
h= 4+7T—r.

h =

0o
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Let the sides of the rectangle have lengths a and b. We shall ook for the minimum of the square s of the length of either
diagondl, i.e. s = a” + b*. Theareais A = ab, s0b = A/a. Thisgives
N 2
s(a)=a" + R

To find the minimum sgquared length we need to find the critical points of s. Differentiating s with respect to a gives
ds 2 _—3 A2
%=2a+(—2)Aa :2a<1—a—4

2
The derivative ds/da = 0 when a = VA, that iswhen @ = b and so the rectangle is a square. Because Z f =
a2

2
2 (1 + %) > 0, thisisaminimum.
a
Let x equal the number of chairs ordered in excess of 300, s00 < z < 100.
Revenue = R = (90 — 0.25z)(300 + )
= 27,000 — 752 + 90z — 0.25z% = 27,000 + 15z — 0.25z2

Atacritica point dR/dx = 0. SincedR/dz = 15 — 0.5z, we have x = 30, and the maximum revenue is $27, 225 since
the graph of R is a parabola which opens downwards. The minimum is $0 (when no chairs are sold).

If v isthe speed of the boat in miles per hour, then
Cost of fuel per hour (in $/hour) = kv®,

where & isthe constant of proportionality. To find k, use the information that the boat uses $100 worth of fuel per hour
when cruising at 10 miles per hour: 100 = k10%, s0 k = 100/10® = 0.1. Thus,

Cost of fuel per hour (in $/hour) = 0.1v°.
From the given information, we also have
Cost of other operations (labor, maintenance, etc.) per hour (in $/hour) = 675.
So

Total Cost per hour (in $/hour) = Cost of fuel (in $/hour) + Cost of other (in $/hour)
= 0.10" + 675.
However, we want to find the Cost per mile, which isthe Total Cost per hour divided by the number of milesthat the ferry

travelsin one hour. Since v isthe speed in miles/hour at which the ferry travels, the number of milesthat the ferry travels
in one hour issimply v miles. Let C' = Cost per mile. Then

Total Cost per hour (in $/hour)
Distance traveled per hour (in miles/hour)

Cost per mile (in $/mile) =

3
C = 0.1v" 4+ 675 :0.1U2+@.
(2 v
We also know that 0 < v < co. To find the speed at which Cost per mileis minimized, set
ac 675
— =201y - = =
7o (0.1)w 2 0
S0
675
3 675
v' = 200 = 3375
v = 15 miles/hour.
Since R (675)
a-c 2(675
=0.2
To2 0.2 + 3 >0

for v > 0, v = 15 gives alocal minimum for C' by the second-derivative test. Since this is the only critical point for
0 < v < oo, it must give agloba minimum.
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18. (a) Wehave

1/
ml/z — 6ln(m ) — e(l/z) lnm.

Thus
d(z/®) B d(e(t/®)nz)y B d(%lnl‘) c(1/2) Ine

dz dz dz
. Inz 1 1/
(4 h)-

VE =0 whenz=e
(I1-Inz){ <0 whenz>e

2
>0 whenz <e.

Hence e'/® isthe global maximum for z'/*, by the first derivative test.

(b) Since z'/® isincreasing for 0 < z < e and decreasing for z > e, and 2 and 3 are the closest integers to e, either
2172 or 31/3 isthe maximum for n'/™. We have 2/2 ~ 1.414 and 3'/3 ~ 1.442, so 3'/3 isthe maximum.

(c) Sincee < 3 < 7, and x/* isdecreasing for > e, 3/% > 7/7.

19. (a) If, following the hint, we set f(z) = (a + z)/2 — /az, then f(z) represents the difference between the arithmetic
and geometric means for some fixed a and any > 0. We can find where this difference is minimized by solving
f'(z) =0.Since f'(z) = £ — % \/az™"/?,if f'(x) = 0then L \/az™'/? = 1, orz = a. Since ' (z) = L\/ax™/?
is positive for all positive z, by the second derivative test f(x) has a minimum a z = a, and f(a) = 0. Thus
f(z) = (a+x)/2 —\/az > 0foral z > 0, which means (a + z)/2 > \/az. This means that the arithmetic mean
is greater than the geometric mean unless a = x, in which case the two means are equal.

Alternatively, and without using calculus, we obtain

a+b _\/a—: a—Z\/(E—i—b
2 2
2
— M >0,
5 >
and again we have (a + b)/2 > Vab.

(b) Following the hint, set f(z) = 2+= — {/abz. Then f(z) represents the difference between the arithmetic and
geometric means for some fixed a,b and any x > 0. We can find where this difference is minimized by solving
f'(z) = 0.Since f'(z) = & — +Vabe™/3, f'(x) = 0 implies that £ Vabz™>/® = %, or z = Vab. Since
f"(z) = 2 Vaba™>/3 is positive for al positive z, by the second derivative test f(z) hasaminimum at « = v/ab.

But
_a+b++Vab 3/ _a+b++Vab _a+b—2Vab
f(vab)—f— abva —ﬁ—va —f

By the first part of this problem, we know that 22 — v/ab > 0, which implies that a + b — 2v/ab > 0. Thus
f(Vab) = a4b=2Vab > ( Since f has a maximum a = = V/ab, f(z) is dways nonnegative. Thus f(z) =
atbte _ aby > 0,50 L+ > /abe. Note that equality holds only when a = b = c. (Part (b) may also be done
without calculus, but it’s harder than (a).)

20.
2 ~
Load @ G
(Number of Wormss)ﬂ umber of Worms
/4:7/ - (1)
-7 7R
- -+ : Time
P, P O T Searching Time

Travelling
Time
(@) Seeline (1). For any point  on the loading curve, the line PQ has slope

QT _ QT _ load
PT ~ PO+ OT ~ traveling time + searching time’
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(b) The dlope of the line PQ is maximized when the line is tangent to the loading curve, which happens with line (2).
The load isthen approximately 7 worms.

(c) If the traveling time is increased, the point P moves to the left, to point P, say. If line (3) istangent to the curve, it
will be tangent to the curve further to the right than line (2), so the optimal load is larger. This makes sense: if the
bird has to fly further, you'd expect it to bring back more worms each time.

21. Let z be asindicated in the figure in the text. Then the distance from S to Town 1is+/1 + z2 and the distance from S to

Town 2is+/(4 — z)? + 42 = V/z2 — 8z + 32.

Total length of pipe = f(z) = \/1 + 22+ \/1‘2 — 8z + 32.

We want to look for critical pointsof f. The easiest way isto graph f and seethat it hasalocal minimum at about z = 0.8
miles. Alternatively, we can use the formula:

f,($)_ 2x 2x — 8
2vV1+z2  2v/x2—8z +32
T r—4

+
V1422 /22 —8x + 32
_zVe?—8r+32+ (z —4)V1+2?
V1+22/x2 — 8z + 32

f'(x) isequal to zero when the numerator is equal to zero.

/22 —-8r+32+ (z—4)V/1+22=0
/2?2 -8z +32=(4—z)V1+z2

Squaring both sides and simplifying, we get

(2 — 8z + 32) = (2 — 8z + 16)(142°)
et —8z® + 322" = ' — 82 + 172 — 82 + 16
152° + 82 — 16 = 0,
B3z +4)(bz —4) = 0.
Soz = 4/5. (Discard = —4/3 since we are only interested in = between 0 and 4, between the two towns.) Using the
second derivative test, we can verify that z = 4/5 isaloca minimum.
22. (a) Thedistance the pigeon flies over water is

N B 500
P = = —
sinf  sinf’
and over land is 500 500 0
PL = AL — AP = 2000 — - = 2000 — 2297
tan 6 sin 6

Therefore the energy required is

E =2 (5.&) te (2000 - M)
sin sin

2 —cos@ 500 ™
= - — )| << =,
500e ( ) ) +2000e, for arctan (2 ) 0 5

2 —cosf

(b) Noticethat E and the function f(6) = g
1n

must have the same critical points since the graph of E isjust a

stretch and a vertical shift of the graph of f. The graph of 2;7:;59 for arctan($9%%) < ¢ < I in Figure 4.54

shows that E has precisely one critical point, and that a minimum for E occurs at this point.



234 Chapter Four /SOLUTIONS

500
arctan 3000

w3 -
[VIE R

Figure 4.54: Graph of f(6) = 2=°58 for arctan(2%%) < § <

sin @ 2000

w3

To find the critical point 6, we solve f'(9) = 0 or

B = 0= 500e sinf -sinf — (2 — cos ) - cosf
R sin’ @
1—2cos@
= 500 (7) .
c sin’ @
Therefore1 — 2cos =0andso 6§ = /3.
(c) Lettinga = AB andb = AL, our formulafor E becomes

a acos @

E_Ze(sin9)+e(b_ sin 6 )
=ea (M) +eb, for arctan (2) <6< T
sin b 2

Again, the graph of F isjust astretch and a vertical shift of the graph of 2;TC(;SH. Thus, the critical point 6 = /3

isindependent of e, a, and b. But the maximum of E on the domain arctan(a/b) < 8 < T isdependent on the ratio
a/b= j_—lz. In other words, the optimal angleis 6 = 7/3 provided arctan(a/b) < %; otherwise, the optimal angle
isarctan(a/b), which means the pigeon should fly over the lake for the entire trip—this occurs when a /b > 1.733.

23. We want to maximize the viewing angle, whichis@ = 6; — 6.
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Now
2 2
tan(f1) = 92 S0 0; = arctan (9—)
x x
4 4
tan(f2) = 16 S0 6> = arctan (—6) .
x x
Then

f# = arctan (%) — arctan (ﬁ) for = >0.
T T

We look for critical points of the function by computing d6/dx:

Y (C2) - s (5
dr ~— 1+ (92/2)2 \ x2 1+ (46/2)2 \ 2
—92 —46

24922 22+ 462
—92(x? + 462) + 46(2* + 92%)
T T (27 +927) - (2 + 462)
46(4232 — 2?)
(22 +922) - (22 + 462)°

Setting df/dx = 0 gives

> = 4232
r = £/4232.
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Since z > 0, the critical point isxz = /4232 =~ 65.1 meters. To verify that this isindeed where 0 attains a maximum,
we note that df/dx > 0 for 0 < < v/4232 and df/dx < 0 for x > +/4232. By the First Derivative Test, § attains a

maximum at x = /4232 ~ 65.1.

24. (a) Sincethe speed of light is aconstant, the time of travel is minimized when the distance of travel is minimized. From

Figure 4.55,

Distance OP = \/m2+12 = \/m2+1
Distance PQ = /2 —2)2 + 12 = /(2 - 2)? + 1

Thus,

Total distance traveled = s = \/x2 +1+ \/(2 — )2 + 1.
Thetotal distanceisaminimum if

ﬁ _ 1 2 —1/2 . 1 _ 2 —1/2 . _ _ _

da:_Z(x +1) 21‘+2((2 z)” +1) 2(2—-z)(-1)=0,
giving

T _ 2—x -0
V2 +1 \/(Q_x)2+1
x _ 2—x
Vez+l L J(2-a2)2+1

Squaring both sides gives

2 (2—2)?
r2+1° (2—z)2+1

Cross multiplying gives
22—z +1)=(2-2)*(*+1).
Multiplying out

?A—dr+a’+1)=@d—de+2)) (> +1)
dg? — 4z + 2t + 2 = 42® — 42 + 2P+ 4 — 4z + 22
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Collecting terms and canceling gives

0=4—-4x
r=1.
We can see that this value of x gives a minimum by comparing the value of s at this point and at the endpoints,
rz=0,z=2.
Atz =1,
s=vV124+1+/(2-1)> +1 =283
Atz =0,
s=v02+1+/(2-0)2+1=324.
Atx =2,

s=vV2+1+/(2-22+1=324.
Thus the shortest travel time occurs when = = 1; that is, when P is at the point (1,1).

v P=(z,1)
1,

0 T 2-z) 2
Figure 4.55
(b) Sincex = 1 ishafway between z = 0 and z = 2, the angles 6, and 8, are equal.
25. (@) SinceRB' =z and A'R = ¢ — z, we have

AR =+/a’+ (c—z)? and RB =+\/b>+z2.

See Figure 4.56.
A Medium 1
Velocity 1
a
A’ B’

Medium 2
Velocity 2

|
|
|
iL‘
|
|
|
|
|
|
|
|
|
|

C

Figure 4.56

Thetimetraveled, T', is given by

Distance AR + Distance RB

V1 (2]

T =TimeAR + TimeRB =

a2+(c—ﬂﬁ)2+\/b2+—:1:2

U1 v2
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(b) LetuscaculatedT/dx:
ar —2(c —x) 2z

= + .
dr  2u;\/a® + (c—z)2 2v2Vb? + 22

At the minimum dT'/dz = 0, so
cC—T T

viy/a? + (c — x)? vV +a?

But we have
sin 61 = —— "%  and sin 0 = ——— id
a? + (c — x)? b+

Therefore, setting d7'/dz = 0 tellsus that

~

sinf; _ sinf>

V1 V2

which gives
sinf; v

sinfy v
26. We know that the time taken is given by
VRt ik
- vy V2
T _ —(c—1x) 4 T

dz  y\/a® + (c — z)? v V/B2 + 22

Differentiating again gives

dQ_T _ 1 n (c —z)(—2(c — x)) n 1 _ z(2x)
W i @t - T s e 20?22
a’>+ (c—xz)? = (c—x)? b2 + 22 — 22
T T oi(aZ + (c—1)2)3/2 02 (b2 + 22)3/2
a’ b2

= v1(a? + (c — x)2)3/2 + v2 (b2 + x2)3/2°

This expression for d*T'/dx? shows that for any value of z, a, ¢, v, and v2 with vy, v2 > 0, we have d°T/dz? > 0.
Thus, any critical point must be alocal minimum. Since thereis only one critical point, it must be a global minimum.

Solutions for Section 4.6

Exercises
1. Using thechainrule, % (cosh(2z)) = (sinh(2z)) - 2 = 2sinh(2z).

2. Using the chainrule, diz (sinh(3z + 5)) = cosh(3z + 5) - 3 = 3cosh(3z + 5).

3. Using thechain rule,
% (cosh(sinh t)) = sinh(sinh¢) - cosh ¢
4. Using the product rule,

% (t3 sinh t) = 3t”sinh ¢ + t® cosh ¢.
5. Using the chain rule,

% (cosh2 t) = 2cosht-sinht.

6. Using the chain rule twice, % (cosh(etz)) = sinh(e’) - " - 2t = 2te’” sinh(e!).



238 Chapter Four /SOLUTIONS

7. Using the chain rule twice,
d%; (sinh (sinh(3y))) = cosh (sinh(3y)) - cosh(3y) - 3
= 3 cosh(3y) - cosh (sinh(3y)) .

8. Using the chain rule,

1 . sinh(1 + 0)
— .sinh(1+60)= ——— 2 — tanh(1 + 6).
cosh(1 + 6) sinh(1 +6) ¢ anh(1 + )

d
— (In(cosh(1 +0))) = osh(1 + )

do

9. Substitute z = 0 into the formulafor sinh z. Thisyields

0 -0

e —e 1-1
inh=———=—=0.
sin 5 5

10. Substituting —z for z in the formulafor sinh z gives

-z _ —(-x) - _ xr __ T
sinh(—z) = = 26 =2 5 c =% 26 = —sinhz.

11. Using the formulafor sinh z and thefact that d(e™*)/dx = —e ™%, we see that

d <em—e_””> e +e "
il = 5 = cosh z.

dz 2
Problems

12. The graph of sinh z in the text suggests that

. 1
Asz — oo, sinhz — 56“”.

T

Asxr —» —o0, sinhzx — —%67 .
Using the facts that

Asx =00, e © —0,
Asz — —oo, " =0,

we can obtain the same results analytically:

Asxz — oo, sinhz = % — iez.
xr _ — 1 _
Asz — —oo, sinhz = £ e
2 2
13. First we observe that
2r 6—2z
sinh(2z) = 5

Now let’s calculate

1
=3 sinh(2z).

Thus, we see that
sinh(2z) = 2sinh z cosh z.
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14. First, we observe that
cosh(2z) =

Now let's use the fact that e” - e™* = 1 to calculate

xr —xT 2
cosh’z = (%)

(ez)2+2€m '€7m+(671)2
4
62z+2+e—2x

2
p efli _ 67113
. hg _ (e —¢e "
Sin T ( B )

Similarly, we have

Thus, to obtain cosh(2), we need to add (rather than subtract) cosh? z and sinh? z, giving

e2z+2+672m+621_2+672m
4

2 .12
cosh” z +sinh” z =

2e%" 4 2¢7 %"
4
Q2 4 o2
2
= cosh(2z).

Thus, we see that the identity relating cosh(2x) to cosh z and sinh z is

cosh(2z) = cosh® z + sinh® z.

15. (a) Substituting z = 0 gives
e —e® 1-1
tanhozm = T =0.

T —z
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(b) Sincetanhx = % and e” + e~ * isaways positive, tanh z hasthe samesignase” — e~ *. For x > 0, we

e” +e®

havee” > lande™ ™ < 1,50e” —e ® > 0.Forz < 0,wehavee” < lande ™™ > 1,50e” —e * < 0.Forz =0,
wehavee® =lande™ =1,50¢e¢” — e™® = 0. Thus, tanh z is positive for x > 0, negative for x < 0, and zero for

z = 0.
(c) Taking the derivative, we have
4 (tanh z) = —=—
dx (fan cosh?z’
Thus, for al z,
% (tanhz) > 0.
Thus, tanh z isincreasing everywhere.
(d) Asz — cowehavee™ ™ — 0; asxz — —oo, we havee” — 0. Thus

lim tanhz = lim <l> =1,

r— 00 r— 00 et 4+ e~

lim tanhz = lim <l> = 1.

r——00 r——00 et 4 e~
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Thus, y = 1 and y = —1 are horizontal asymptotes to the graph of tanh z. See Figure 4.57.

8

-4 -1

Figure 4.57: Graph of y = tanh x

(e) The graph of tanh x suggests that tanh z is increasing everywhere; the fact that the derivative of tanh x is positive
for al = confirms this. Since tanh z is increasing for all z, different values of x lead to different values of y, and
therefore tanh x does have an inverse.

16. For —5 < z < 5, we have the graphs of y = a cosh(z/a) shown below.

v a=1
10+
a=2
a=3
1
| | T
-5 5

Increasing the value of a makes the graph flatten out and rai ses the minimum value. The minimum value of y occurs

a xz = 0 and isgiven by
0 6O/a +€—0/a
y:acosh(—):a — | =a.
a 2

17. (a) Thegraphin Figure 4.58 looks like the graph of y = cosh z, with the minimum at about (0.5, 6.3).

Y

y = 2e* + be” T

T
Figure 4.58
(b) We want to write
y=2e"+5e * = Acosh(z —c) = ge‘”* + gef(w*c)
= 56‘1376 + 56—m6c




Thus, we need to choose A and ¢ so that

Dividing gives

Solving for A gives

Thus,

4.6 SOLUTIONS

Ae™° Ae°
5 and 5 5
Ae® §
Ae—c 2
e =25
c= %ln 2.5 ~ 0.458.
A= ;fc = 4e° ~ 6.325.

y = 6.325 cosh(z — 0.458).
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Rewriting the function in this way shows that the graph in part (a) isthe graph of cosh « shifted to the right by 0.458
and stretched vertically by afactor of 6.325.

18. We want to show that for any A, B with A > 0, B > 0, we can find K and ¢ such that

y=Ae” + Be ”

Thus, we want to find K and ¢ such that

Ke@=©) 4 Ke~(—°)
2

K _ K _

Eeze c—l—?e Tef

[ Ke™®\ , Ke®\ _,
—< 2 >e +( 5 )e .

Ke™¢ Ke®
2 and 2
Dividing, we have

Ke® E
Ke—< A
€2C — E
A

c= 1 In (E)

) Al

If A> 0, B > 0, thenthereisasolution for c¢. Substituting to find K, we have

Ke ¢

2

=A
K = 24e° = 24eB/A/2

=24e" VBN =94, /% =2V AB.

Thus, if A > 0, B > 0, thereisasolution for K also.

Thefact that y = Ae®” + Be ™ can be rewritten in this way shows that the graph of y = Ae” + Be ™ * isthe graph
of cosh z, shifted over by ¢ and stretched (or shrunk) vertically by afactor of K.

19. (a) Thegraphs are shown in Figures 4.59-4.64.
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(b)
©
(d)

Y Y y
A=2
A=B=1 A=—-B=1 B=1
T T x
Figure 459: A > 0,B > 0 Figure 460: A > 0,B <0 Figure 461: A >0,B > 0
y Y Y
A=2
B=-1
x T T
A=-2
B=-1 A=-=2
B=1
Figure 462: A > 0,B <0 Figure 463: A < 0,B <0 Figure 464: A < 0,B >0

If A and B have the same sign, the graph is U-shaped. If A and B are both positive, the graph opens upward. If A
and B are both negative, the graph opens downward.

If A and B have different signs, the graph appears to be everywhere increasing (if A > 0, B < 0) or decreasing (if
A<0,B>0).

The function appears to have alocal maximumif A < 0 and B < 0, and alocal minimumif A > 0 and B > 0.
To justify this, calculate the derivative
dy _
dr e e

Setting dy/dx = 0 gives

Ae® = Be™”
2z — E
i
This equation has asolution only if B/A ispositive, that is, if A and B have the same sign. In that case,
B
2z = In (Z)
-4 (E)
r = 2 n A .

Thisvalue of z givesthe only critical point.

To determine whether the critical point isalocal maximum or minimum, we use the first derivative test. Since

;l_z = Ae® — Be™ 7,

we see that:

If A> 0,B > 0, wehavedy/dx > 0 for large positive z and dy/dz < 0 for large negative z, so thereisa
local minimum.

If A <0,B < 0,wehavedy/dx < 0 for large positive z and dy/dz > 0 for large negative z, so thereisa
local maximum.
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20. (a) Sincethecosh functioniseven, the height, y, isthesameat + = —T'/w and z = T'/w. The height at these endpoints
is
1 —1
ZJZzCOSh(E~Z):zcosh1:Z e te .
w T w w w 2
At the lowest point, z = 0, and the height is
Yy = T cosh 0 = z
w w

Thusthe “sag” in the cable is given by

T (e+e ! T T (e+e ! T
= — - —=— —1) ~0.54—.
so= () wmn (T ) poee

w w w

(b) To show that the differential equation is satisfied, take derivatives
W _ T W nn (Y0 = sinn (22
dr  w Tsmh(T)_Smh(T)

P’y w we
= e (7).

Therefore, using the fact that 1 + sinh? @ = cosh? @ and that cosh is always positive, we have:

w [ dy2_w . 2(wa:)_w 2(wx)
T 1+(dm) =7 1 + sinh )= cosh T
w wr
= Tcosh (?)
So
w dy\? d%y
—14/1 =) =-—=.
T + (dm) dx?
21. Y
(0,615)
o
(265, 0)

Weknow z = 0 and y = 615 at the top of the arch, so
615 =b —acosh(0/a) =b —a.
Thismeansb = a + 615. We also know that z = 265 and y = 0 where the arch hits the ground, so
0 =b—acosh(265/a) = a + 615 — acosh(265/a).

We can solve this equation numerically on a calculator and get a ~ 100, which means b ~ 715. This results in the
equation

y ~ 715 — 100 cosh (%) .
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Solutions for Section 4.7
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Exercises

1

False. For example, if f(z) = 22, then f'(0) = 0, s0z = 0 isacritical point, but z = 0 is neither alocal maximum nor
alocal minimum.

2. False. The derivative, f'(z), isnot equal to zero everywhere, because the function is not continuous at integral values of
z, 0 f'(z) does not exist there. Thus, the Constant Function Theorem does not apply.

3. False, since f(z) = 1/ takes on arbitrarily large values as x — 0. The Extreme Value Theorem requires the interval
to be closed as well as bounded.

4. False. The Extreme Value Theorem says that continuous functions have global maxima and minima on every closed,
bounded interval. It does not say that only continuous functions have such maxima and minima.

5. Fase. The horse that winsthe race may have been moving faster for some, but not all, of therace. The Racetrack Principle
guarantees the converse—that if the horses start at the same time and one moves faster throughout the race, then that horse
wins.

6. True. If g(x) is the position of the dower horse at time = and h(z) is the position of the faster, then ¢'(z) < h'(x) for
a < x < b. Since the horses start at the same time, g(a) = h(a), so, by the Racetrack Principle, g(z) < h(z) for
a < x < b. Therefore, g(b) < h(b), so the slower horse loses the race.

7. True. If f' ispositive on [a, b], then £ is continuous and the Increasing Function Theorem applies. Thus, f isincreasing
onfa,b], %0 f(a) < f(b).

8. False Let f(x) = #® on[—1,1]. Then f(z) isincreasing but f'(z) = 0 for z = 0.

9. No, it does not satisfy the hypotheses. The function does not appear to be differentiable. There appears to be no tangent
line, and hence no derivative, at the “corner.”

No, it does not satisfy the conclusion as there is no horizontal tangent.

10. Yes, it satisfies the hypotheses and the conclusion. This function has two points, ¢, a which the tangent to the curve is
paralel to the secant joining (a, f(a)) to (b, f(b)), but this does not contradict the Mean Value Theorem. The function is
continuous and differentiable on the interval [a, b].

11. No, it does not satisfy the hypotheses. This function does not appear to be continuous.

No, it does not satisfy the conclusion as there is no horizontal tangent.
12. No. Thisfunction does not satisfy the hypotheses of the Mean Value Theorem, asit is not continuous.
However, the function has a point ¢ such that
) f(®) = f(a)
fo=52=
Thus, this satisfies the conclusion of the theorem.
Problems

13. Let f(z) = sinz and g(z) = x. Then £(0) = 0 and g(0) = 0. Also f'(z) = cosz and g'(z) = 1,soforal z > 0
we have f'(x) < g'(z). So the graphs of f and g both go through the origin and the graph of f climbs slower than the
graph of g. Thusthe graph of f isbelow the graph of g for x > 0 by the Racetrack Principle. In other words, sinz < x
forz > 0.

14. Let g(x) = Inz and h(z) = x — 1. Forz > 1, wehave ¢'(z) = 1/z < 1 = h'(z). Since g(1) = h(l) the

1,
Racetrack Principle with a = 1 saysthat g(z) < h( yforz > 1,thatis,Inz <z —1forz > 1. For0 < z < 1,
wehaveh'(z) =1 < 1/z = ¢'(z). Since g(1) = h(1), the Racetrack Principle with b = 1 saysthat g(z) < h(z) for
0<z<lthaishz<z—-1for0<z<1.



15.

16.

17.

18.

10.

20.

21.

22.

23.
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y=x—1

y=Inx

7 x

/ 1
y=x+1

Graphical solution: If f and g are inverse functions then the graph of g isjust the graph of f reflected through the
liney = x. But e” and In z areinverse functions, and so are the functions z + 1 and x — 1. Thus the equivalence is clear
from the figure.

Algebraic solution: If z > 0 and

z+1<e",

then, replacing = by x — 1, we have
z<e® L

Taking logarithms, and using the fact that In is an increasing function, gives
Inx <x—1.

We can aso go in the opposite direction, which establishes the equivalence.

If f iscontinuous then — f is continuous aso. So — f has a global maximum at some point z = ¢. Thus — f(z) < —f(c)
fordl z in [a,b]. Hence f(z) > f(c) foral z in[a,b]. So f hasaglobal minimum at z = c.
The Decreasing Function Theorem is: Suppose that f is continuous on [a, b] and differentiable on (a, b). If f'(z) < 0 on
(a,b), then f isdecreasing on [a, b]. If f'(x) < 0 on (a,b), then f isnonincreasing on [a, b].

To prove the theorem, we note that if f is decreasing then — f isincreasing and vice-versa. Similarly, if f is non-
increasing, then — f is nondecreasing. Thus if f/(z) < 0, then —f'(z) > 0, so —f is increasing, which means f is
decreasing. And if f'(x) < 0, then —f'(z) > 0, S0 — f isnondecreasing, which means f is nonincreasing.

Use the Racetrack Principle, Theorem 4.6, with g(z) = z. Since f'(z) < ¢'(z) for dl z and f(0) = g(0), then
f(z) < g(x) =xfordlz > 0.

First apply the Racetrack Principle, Theorem 4.6, to f'(¢t) and g(t) = 3t. Since f' (t) < ¢'(¢) foral t and f'(0) = 0 =
g(0), then f(¢) < 3t forall t > 0. Next apply the Racetrack Principle againto f(¢) and h(t) = 2t>. Since f'(t) < h'(t)
foralt > 0and f(0) = 0 = h(0), then f(t) < h(t) = 2¢* forall t > 0.

Apply the Constant Function Theorem, Theorem 4.5, to h(z) = f(z) — g(z). Then &' (z) = 0 for adl z, so h(z) is
constant for al z. Since h(5) = f(5) — g(5) = 0, we have h(x) = 0 for al z. Therefore f(z) — g(x) = 0 for al z, so
f(z) = g(z) for al z.

By the Mean Value Theorem, Theorem 4.3, there is a number ¢, with 0 < ¢ < 1, such that

F(1) = £(0)

7o ==

Since f(1) — f(0) > 0, we have f'(c) > 0.
Alternatively if f'(c) < 0foral cin (0, 1), then by the Increasing Function Theorem, £(0) > f(1).

Suppose f has critical points z = a and x = b. Suppose a < b. By the Extreme Value Theorem, we know that
the derivative function, f’(z), has globa extrema on [a, b]. If both the maximum and minimum of f'(z) occur at the
endpoints of [a, b], then f'(a) = 0 = f'(b), so f'(z) = 0 for al z in [a,b]. In this case, f would have more than two
critical points. Since f has only two critical points, there is alocal maximum or minimum inside the interval [a, b]. Any
local maximum or minimum of f’ isan inflection point of f.

Since f'(t) < 7for0 < t < 2, if we apply the Racetrack Principle with a = 0 to the functions f'(¢) — f'(0) and 7¢,
both of which go through the origin, we get

ff&)y—f0)y<7t foro<t<2.



246

24,

25.

26.

27.

28.

29.

30.
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The left side of thisinequality isthe derivative of f(t) — f'(0)t, soif we apply the Racetrack Principlewith a = 0 again,
this time to the functions f(t) — f'(0)t and (7/2)t* + 3, both of which have the value 3 at t = 0, we get

f(t)—f'(O)tht2+3 for0 <t <2
That is,
f(t)53+4t+%t2 for0 <t<2.

In the same way, we can show that the lower bound on the acceleration, 5 < f(¢) leads to:
f(t) >3 +4t + ;t2 for0<t<2.

If we substitute t = 2 into these two inequalities, we get bounds on the position at time 2:

21 < f(2) < 25.

Consider thefunction f(z) = h(z) — g(z). Since f'(z) = h'(z)
Increasing Function Theorem. Thismeans f(z) < f(b) fora < =z
which means h(z) < g(z).

If f'(x) = 0, then both f'(z) > 0 and f'(x) < 0. By the Increasing and Decreasing Function Theorems, f is both
nondecreasing and nonincreasing, so f is constant.

Leth(z) = f(z) —g(z). Thenh'(z) = f'(z) — g'(x) = 0 for dl = in (a, b). Hence, by the Constant Function Theorem,
thereisaconstant C' such that h(z) = C on (a,b). Thus f(z) = g(z) + C.

We will show f(z) = Ce® by deducing that f(z)/e” is a constant. By the Constant Function Theorem, we need only
show the derivative of g(z) = f(x)/e® iszero. By the quotient rule (since e® # 0), we have

oy = L@ =1 (@)
g( )_ (6m)2 .

g'(x) > 0, we know that f is nondecreasing by the
b.

<. However, £() = h(b) - g(b) = 0,50 f(z) <0,

Since f'(x) = f(x), wesimplify and obtain

which iswhat we needed to show.

Apply the Racetrack Principleto the functions f(z) — f(a) and M (x —a); we cando thissince f(a) — f(a) = M(a—a)
and f'(z) < M.Weconcludethat f(z) — f(a) < M(z — a). Similarly, apply the Racetrack Principle to the functions
m(z —a) and f(z) — f(a) toobtainm(z — a) < f(z) — f(a). If we substitute z = b into these inequalities we get

m(b—a) < f(b) — f(a) < M(b—a).

Now, divideby b — a.

(@ Since f"(xz) > 0, f'(z) is nondecreasing on (a,b). Thus f'(c) < f'(z) fore < z < band f'(z) < f'(c) for
a<z<ec

(b) Letg(z) = f(c)+f'(c)(x—c) and h(z) = f(xz). Theng(c) = f(c) = h(c),and g'(z) = f'(c) and 1’ (z) = f' ().
Ife <z < b theng'(z) < K (z),andif a < z < ¢, then g'(z) > h'(z), by (a). By the Racetrack Principle,
g(z) < h'(z)forc <z <bandfora < z < ¢, aswe wanted.

() If both the global minimum and the global maximum are at the endpoints, then f(z) = 0 everywhere in [a, b], since
f(a) = f(b) = 0. Inthat case f'(z) = 0 everywhere as well, so any point in (a, b) will do for c.

(b) Suppose that either the global maximum or the global minimum occurs at an interior point of the interval. Let ¢ be
that point. Then ¢ must be alocal extremum of f, so, by the theorem concerning local extrema on page 168, we have
f'(c) = 0, asrequired.

(@) Theequation of the secant linebetweenz = aandxz = b is

f(b)—f(a)(

y = fla)+ =——

T —a)
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and .
o) = 1) — f) - LT @ gy,

s0 g(z) isthe difference, or distance, between the graph of f(z) and the secant line. See Figure 4.65.

Y

Secant
line

T

Figure 4.65: Value of g(z) isthe difference between the secant line
and the graph of f(x)

(b) Figure 4.65 shows that g(a) = g(b) = 0. You can aso easily check this from the formula for g(z). By Rolle's
Theorem, there must be a point c in (a, b) where g'(c) = 0.
(c) Differentiating the formulafor g(x), we have

oy — g F(0) = fla)
g@)=f@)- 1=
So from ¢’ (c) = 0, we get
’ _ f(b) _ f(a)
f (C) - b —a ’
as required.
Solutions for Chapter 4 Review
Exercises
1 Y Local and global max.
50 | Local max.
40 L
30 Local max.
Local min.
20 +
10 Local and global min.
| | | | | | €T
1 2 3 4 5 6
2. Y Local and global max.
8 + Local max.
6 L Critical point
(not max or min)
4 L
2 Local and global min.
| | | | | €T
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(@) Increasing for x > 0, decreasing for x < 0.
(b) f(0) isalocal and global minimum, and f has no global maximum.

(@) Increasing for all x.
(b) No maximaor minima

(a) Decreasing for z < 0, increasing for 0 < z < 4, and decreasing for x > 4.
(b) f(0) isalocal minimum, and f(4) isalocal maximum.

(a) Decreasing for z < —1, increasing for —1 < z < 0, decreasing for 0 < = < 1, and increasing for z > 1.
(b) f(—1) and f(1) areloca minima, f(0) isaloca maximum.

(@) We wish to investigate the behavior of f(z) = 2 — 3z ontheinterval —1 < z < 3. Wefind:

f'(z) = 3¢% — 62 = 3z(x — 2)
f'(z) =6z —6="6(x—1)

(b) The critical pointsof f arex = 2 and z = 0 since f'(z) = 0 at those points. Using the second derivative test, we
find that z = 0 isaloca maximum since f/(0) = 0 and f”/(0) = —6 < 0, and that = = 2 isaloca minimum since
f(2)=0and f'(2) =6 > 0.

(c) Thereisaninflection pointat x = 1 since "' changessignat = = 1.

(d) Atthecritical points, f(0) = 0and f(2) = —4.

Attheendpoints: f(—1) = —4, f(3) = 0.
So the global maximaare f(0) = 0 and £(3) = 0, whilethe global minimaare f(—1) = —4 and f(2) = —4.

(e | incr. | decreasing | incr. |

| concavedown | concaveup |

-1 1 3

(&) Firstwefind f' and f”'; f'(x) =1+ cosz and "' (z) = —sin z.

(b) Thecritical point of f isz = «, since f'(7) = 0.

(c) Since f” changessign at x = m, it meansthat z = 7 isan inflection point.

(d) Evaluating f at the critical point and endpoints, wefind f(0) = 0, f(w) = m, f(2w) = 2m,. Therefore, the global
maximumiis f (27) = 2m, and the global minimumis £(0) = 0. Notethat = wisn't alocal maximum or minimum
of f, and that the second derivative test isinconclusive here.

C)

s 2
| |

| increasing |
| concavedown | concaveup |

(a) Firstwefind f’ and f":

f(r)=—e "sinzr+e “cosz
f'(x) =e "sinz—e “cosx
—e "cosz—e “sinx

= —2e""cosz

(b) Thecritical pointsare z = 7 /4, 5m/4, since f'(x) = 0 here.
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(c) Theinflection pointsarex = /2, 3w /2, since f"" changes sign at these points.

(d) Attheendpoints, f(0) = 0, f(27) = 0. Sowehave f(r/4) = (e~™/*)(v/2/2) astheglobal maximum; f(5m/4) =
—e~57/%(\/2/2) asthe global minimum.

(e)

3

jus ST
2 s 2 2w
| S R
conc. down | concave up | conc. down |
incr. | decreasing | increasing |

10. (a) Wefirst find f’ and f":

(b) Critical point: x = 2.

(c) Thereare no inflection points, since "' does not change sign on theinterval 1.2 < z < 3.5.

(d) At the endpoints, f(1.2) ~ 1.94821 and f(3.5) ~ 1.95209. So, the global minimum is f(2) ~ 1.88988 and the
global maximum is f(3.5) = 1.95209.

(e Y
2 —

1.9 - \_/

1.2 2 3.5
1 1 | xT

| decreasing| increasing |

| concave up |

11. The polynomial f(z) behaveslike 22° asx goesto co. Therefore, ILm f(z) = o0 and l‘:m f(z) = —o0.
Wehave f'(z) = 62> — 18z + 12 = 6(z — 2)(z — 1), whichiszerowhenz = 1 orz = 2.
Also, f"(z) = 12z — 18 = 6(2z — 3), which is zero when z = 3/2. For z < 3/2, f'(z) < 0; for z > 3/2,
f"(z) > 0. Thusz = 3/2 isan inflection point.
The critical pointsarez = 1andz = 2, and f(1) = 6, f(2) = 5. By the second derivative test, f'(1) = —6 < 0,
soz = 1isaloca maximum; f(2) =6 > 0,0z = 2 isaloca minimum.
Now we can draw the diagrams below.

y >0 y' <0 y >0
} }
increasing , — | decreasing , — o increasing

y' <0 y' >0

T
concavedown ., _ 3 /2 concave up
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The graph of f(z) = 2z® — 922 4+ 12z + 1 is shown below. It has no global maximum or minimum.

Yy
f(z) =222 — 922 + 12z + 1

12. If we divide the denominator and numerator of f(z) by 2* we have

. 4>
lim - = lim T
z—too 1’2 =+ 1 z—too 1 —+ ==
xr

since )
lim — =0.
r—too T

Using the quotient rule we get

2 +1)8z — 4222z 8x
fl(w) = ( )2 2 (22) = (2 27
(z2+1) (z2+1)
which iszero when z = 0, positive when z > 0, and negative when z < 0. Thus f(z) hasaloca minimumwhen z = 0,

with £(0) = 0.
Because f'(z) = 8x/(2* + 1)?, the quotient rule implies that

_ (2® +1)?8 — 8z[2(z? + 1)27]

@) = (z2 +1)4
_ 822 +8—3227  8(1-—3z%)
(@241 (@413

The denominator is always positive, so f'(z) = 0 when z = +./1/3, positive when —/1/3 < z < 4/1/3, and
negative when z > /1/3 or z < —+/1/3. This gives the diagram

e=—Ii ==

y <0 ‘ y >0
decreasing . ‘: 0 increasing
y' <0 ‘ y' >0 ‘ y' <0
concave down concave up concave down

and the graph of f looks like:

x

with inflection points = +4/1/3, agloba minimum at z = 0, and no local or global maxima (since f(z) never
equals 4).
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13. Asz — —o0,e”® =3 00,90ze ¥ = —o0. Thuslim, s o ze™* = —00.
Asz — oo, ZF — 0, sincee” grows much more quickly than . Thuslim, 0o ze™" = 0.
Using the product rule,
flx)y=e"—ze ™ =1 —-2)e",
which is zero when 2 = 1, negative when = > 1, and positive when 2 < 1. Thus f(1) = 1/e' = 1/e isaloca
maximum.
Again, using the product rule,

f”(l‘) — —67I _ 67I + mefz

ze ¥ —2e7°
— (- 2)e,

which is zero when x = 2, positive when z > 2, and negative when z < 2, giving an inflection point at (2, e%)' With the
above, we have the following diagram:

y' >0 | y' <0
increasing | ) decreasing
r =
y// <0 ‘ y// >0
concave down | 5 concave up
r =
The graph of f is shown below.
y
f(z) = ze™®

and f(z) has one global maximum at 1/e and no local or global minima.
14. lim f(z) = 4oo,and lim f(z) = —o0.
T—00 z——00
There are no asymptotes.
f'(z) = 3z% + 6z — 9 = 3(x + 3)(x — 1). Criticad pointsarex = —3, z = 1.
f"(x) = 6(z +1).

T -3 -1 1

I’ + 0 - - (0] +
fr — — — 0 + + +
f 1/~ N N /S~

Thus, z = —1 isan inflection point. f(—3) = 12 isalocal maximum; f(1) = —20 isaloca minimum. There are
no global maxima or minima.
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Y

/\12 /f(x)::v3+3:v2—9:v—15

T | x
-3 1

—20 T

15. lim f(z) = 4oo,and lim f(z) = —oo.
r— 400 T — —00

There are no asymptotes.

f'(z) = 52* — 4527 = 52 (2% — 9) = 522 (z + 3)(z — 3).

The critical pointsarez = 0, x = £3. f’ changes sign at 3 and —3 but not at 0.
f"(z) = 2023 — 90z = 102(2x> — 9). £’ changes signat 0, £3/v/2.

So, inflection pointsareat z = 0, z = +3/v/2.

x -3 -3/V2 0 3/V2 3

Vil + 0 — - |0 - — o +
- — — 0 + (0| — 0 + |+
1/~ N N N Ne— /S~

Thus, f(—3) isalocal maximum; f(3) isaloca minimum. There are no global maxima or minima.

Y

f(z) = 2% — 1523 + 10
10
T T T

—152 +

16. lim f(z) = 4oo,and lim f(z) = +oco.
z—0t

r— 400
Hence, x = 0 isavertical asymptote.

2 -2 . - .
flx)y=1-== z ,S0x = 2 istheonly critical point.

T
2 . . . .
f'(z) = ot which can never be zero. So there are no inflection points.

x 2

T ="1o] +

f/l + + + ‘

N = 5 ‘

Thus, f(2) isaloca and globa minimum.
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17. lim f(z) = +oo, lim f(z)=0.
r—+00 T— —00
y = 0 isthe horizontal asymptote.
f'(z) = 2ze® + 5x2e®® = ze® (5x + 2).
Thus, z = —2 and z = 0 are the critical points.

f(x) = 267" + 22> - 5 4 102e” + 2527
= " (252% + 20z + 2).

=242

So, = areinflection points.  So, f(—2) isalocal maximum; f(0) isalocal and global minimum.

r——00

18. Since lim f(z) = lim f(z) =0,y = 0isahorizontal asymptote.
r—+00

#'(z) = —2ze~"". S0, z = 0 isthe only critical point.
f'(x) = —2(6_902 + :1:(—2:1:)6_”2) = 26_”2(2252 -1)= 2" (V2x —1)(vV2z +1).
Thus, = +1/+/2 areinflection points.

Table 4.1
x —1/v/2 0 1/V2
f! + + + 0 — — —
f” + 0 _ — — 0 +
I /™ N N

Thus, £(0) = 1 isaloca and global maximum.

19. lim f(z)= lim f(z)=1.
r— 400 r— — 00
Thus, y = 1 isahorizontal asymptote. Since z> + 1 is never 0, there are no vertical asymptotes.

vy 2z(2® +1) —2®(2z) 2z
FO=""tr e

So, z = 0 isthe only critical point.
20?4+ 1) —2¢-2(x* +1) - 2z

" _
_2(2® +1—42”)
- (2 4 1)3
_2(1-32?%)
GRSV
So, z = i% areinflection points.
Table 4.2
T =1 0 L
V3 V3
Vil — — — |0 + +
il — 0 + + + 0 —
[N N\ S~ /S~

253
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Thus, £(0) = 0 isaloca and global minimum. A graph of f(z) can be found in Figure 4.66.

Figure 4.66

Problems

20. Differentiating gives
dy
dx
Thus, dy/dxz = 0 whenz = 1/b. Then

=a(e™" —bze ") = ae”""(1 — bx).

Y= alo-vib @ -1
b b '
Differentiating again gives
——2 = —abe ""(1 — bz) — abe **
= —abe "*(2 — bx)
Whenz = 1/b,

2
% = —abe 1/? (2 —b- %) = —abe .

Therefore the point (£, e~ ") isamaximum if a and b are positive. We can make (2, 10) amaximum by setting

1 1
Z—9 —
b o b=3
and a a
5671 = 1/—2671 =2 '=10 S0 a=be.

Thusa = be, b =1/2.
21. We want the maximum value of (¢) = ate™%* to be 0.3 mi/sec and to occur at ¢ = 0.5 sec. Differentiating gives

' (t) = ae™ " — abte™",

sor'(t) = 0 when

1
ae” (1 —bt) =0 or t= 7
Since the maximum occursat t = 0.5, we have
1
- =0.5 0 b=2.
b

Thus, 7(t) = ate™ 2. The maximum value of r is given by
r(0.5) = a(0.5)e 2 = 0.5ae "

Since the maximum value of r is0.3, we have

0.3e
0.5ae"* = 0.3 S0 =" —=1.63.
ae a 05

Thus, »(t) = 1.63te™ 2" ml/sec.
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22. Thecritical points of f occur where f' is zero. These two points are indicated in the figure below.

23.

24.

25.

26.

f(@)
f hasa f hascrit. pt.
local min. Neither max or min

Note that the point labeled as alocal minimum of £ isnot acritical point of f'.

(@) Thefunction f isaloca maximum where f'(z) = 0 and ' > 0 tothe left, f/ < 0 to the right. This occurs at the
point x3.

(b) The function f isalocal minimum where f'(z) = 0 and f < 0 to theleft, f' > 0 to the right. This occurs at the
points z1 and 5.

(c) Thegraph of f isclimbing fastest where f’ is amaximum, which is at the point .

(d) Thegraph of f isfaling most steeply where f' isthe most negative, which is at the point 0.

@ f'(@)
T4 Ts
| | T
T1 X2 ww
|

(b) f'(x) changessign at x1, =3, and z5.
(c) f'(x) haslocal extremaat z> and z4.
The local maxima and minimaof f correspond to places where f' is zero and changes sign or, possibly, to the endpoints

of intervalsin the domain of f. The points at which f changes concavity correspond to local maxima and minimaof f'.
The change of sign of f', from positive to negative corresponds to amaximum of f and change of sign of f from negative
to positive corresponds to a minimum of f.

To find the critical points, set dD/dx = 0:
dD
2o =2z —a) +2(z —a2) + 2w —az) + -+ + 2z —an) = 0.

Dividing by 2 and solving for x gives
r+r+r+---+r=a1+ax+az+ -+ an.
Since there are n terms on the | eft,

nr=a1+a2+az+ - +an

n
_al+a2+03+"'+an_1§: ]
- n T4 @i

=1

The expression on the right isthe average of a1, az,as, - -, an.
Since D isaquadratic with positive leading coefficient, this critical point isa minimum.

27. Thevolumeisgiven by V = 2?y. The surface areais given by

S =227 + 4xy
= 22" + 42V/2® = 227 + 4V /x.
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To find the dimensions which minimize the area, find = such that d.S/dz = 0:

ds 4V
2=V

Solving for z givesz = /V = y. To see that this gives a minimum, note that for small z, S = 4V//z is decreasing. For
large z, S ~ 2z?% isincreasing. Since there is only one critical point, it must give a global minimum. Therefore, when the
width equals the height, the surface areais minimized.

28. D (km)
15 knots 3
== I
2 -
12 knots
3km Lk
s
: = ¢ ()
N 0.05 0.1
Figure 4.67: Position of the tanker Figure 4.68: Distance between the
and ship ship at S and the tanker at T’

Suppose ¢ is the time, in hours, since the ships were 3 km apart. Then TT = ‘%ﬁ — (15)(1.85)t and ST =
3—‘f — (12)(1.85)t. So the distance, D(¢), in km, between the shipsat time ¢ is

o= (2 )+ (3 .

3 3
a5 (ﬁ — 2775 t) _ 444 (—2 _ 22.2t)

i , — ;
2 (ﬁ—27.75t) +(ﬁ—22.2t)

Solving dD/dt = 0 givesacritical point at ¢ = 0.0839 hours when the ships will be approximately 331 meters apart. So
the ships do not need to change course. Alternatively, tracing along the curve in Figure 4.68 gives the same result. Note
that thisis after the eastbound ship crosses the path of the northbound ship.

29. Since the volume isfixed at 200 ml (i.e. 200 cm?), we can solve the volume expression for h in terms of r to get (with h
and r in centimeters)

Differentiating gives

200-3
h = .
T2
Using this expression in the surface area formulawe arrive at

. 600 2
S=3mry[r* + (771'1“2)
By plotting S(r) we see that there is aminimum value near » = 2.7 cm.

30. (a) Thebusiness must reorder often enough to keep pace with sales. If reordering is done every t months, then,

Quantity sold in ¢ months = Quantity reordered in each batch

rt =gq

t = 4 months.

r

(b) Theamount spent on each order isa + bg, which is spent every ¢/ months. To find the monthly expenditures, divide
by g/r. Thus, on average,

Amount spent on ordering per month = a+bg = % + rb dollars.

q/r
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(c) Themonthly cost of storageis kq/2 dollars, so
C' = Ordering costs + Storage costs
C= % +rb+ % dollars.

(d) The optimal batch size minimizes C, so

ac _zra  k_y
dq q> 2
ra _k

2 2

2 2ra
=

2ra .
4=\ items per order.

31. (a) Consider Figure 4.69. The company wants to truck its potatoes to some point, P, along the coast before transferring
them to a ship. Let = represent the distance between that point and the point C'. The distance covered by truck is the
hypotenuse of the right triangle (provided that it is covered by highway)whose sides have lengths of = and 300 (in
miles). Thisdistanceis given by

Distance in miles covered by truck = 1/ x2 + 3002.

The cost of transporting by truck is 2 cents per mile, or 2v/z2 + 3002 cents while the cost of transporting by ship is
1 cent per mile, or 1(1000 — z) cents. The cost function which we want to minimize, in cents, is therefore

C(z) = 2y/x? + 3002 + (1000 — z).

300

Boise

X San Diego

Figure 4.69

(b) To minimize the cost function C, we compute its derivative,

C'(z) = (x> +300%) /2. (2z) + (—1)
2x
Va2 + 3002

When we set C'(z) to 0 to determine the critical point, we get

2x
Va2 + 3002
2z = v/ x? + 3002

4z% = 2% + 3007

3z® = 300°
» 300 90000
ot = 5= = —— =130000

r = /30000 = 173.21 miles
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32.

33.
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Taking the second derivative, we see that
2
Va2 + 3002

which is positive at x = 173.21, so the critical point is aminimum. Since there is only one critical point, this must
be the global minimum.

C"(z) = — 227 (2” 4 300%) %2,

5m/4

VAN .
AV

Letting f(z) = e~ " sin z, we have
f'(x) =—e *sinz +e " cos .

Solving f'(z) = 0, weget sin z = cos z. Thismeansz = arctan(1) = /4, and /4 plus multiples of , arethe critical
points of f(z). By evauating f(z) at the points km + /4, where k is an integer, we can find:

e "/ sin(5r/4) < e "sinw < e~/ *sin(w/4),
since f(0) = 0 at the endpoint. So
—0.014 < e ®sinz < 0.322.

Let f(z) = xsinz. Then f'(z) = z cosz + sinz.
f'(z) =0whenz = 0,z ~ 2, and = ~ 5. The latter two estimates we can get from the graph of f'(x).

Zooming in (or using some other approximation method), we can find the zeros of ' (x) with more precision. They
are (approximately) 0, 2.029, and 4.913. We check the endpoints and critical points for the global maximum and minimum.

f(0) =0, f(2m) =0,
£(2.029) ~ 1.8197,  f(4.914) ~ —4.814.

Thusfor0 < z < 27, —4.81 < f(z) < 1.82.

To find the best possible bounds for f(z) = z® —6z% +9x4+50n0 < = < 5, wefind the global maximum and minimum
for the function on the interval. First, we find the critical points. Differentiating yields

f'(x) =32> - 12249
Letting f'(x) = 0 and factoring yields

322 =122 +9=0
3(2° —4x +3) =0
3(x—3)(x—1)=0

Sox = 1 andz = 3 are critica points for the functionon 0 < x < 5. Evaluating the function at the critical points and
endpoints gives us

£(0) = (0)" = 6(0)" +9(0) +5 =
F) =) -6(1)°+91)+5=09
f3)=(3)" —6(3)" +9(3) +5 =
f(5) = (5)° —6(5)> +9(5) +5 =25
So the global minimum on this interval is f(0) = f(3) = 5 and the global maximum is f(5) = 25. From this we

conclude
5<z®—6z2+9x+5<25

are the best possible bounds for the function on theinterval 0 < z < 5.
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a=—2
a=0
a=2
To solve for the critical points, we set 2 = 0. Since - (m3 - axQ) = 322 — 2ax, wewant 322 — 2az = 0, SO
r=00rz = %a. Atz = 0, wehavey = 0. Thisfirst critical point isindependent of a and lies on the curve y = —%x?’.
Atz = Za,wecdculatey = —5-a® = —1 (%a)s. Thus the second critical point also lieson the curve y = —1 2.
(a) a-intercept: (a,0), y-intercept: (0, =)

((b; Area= %(a)(a%’_l) = 2(a++1)

C

_*

T 2(a%+1)

2(a® +1) — a(4a)

4(a® +1)2

2(1 — a?)

4(a® +1)?
(1-a%

2(a? +1)%°

If A" =0, thena = +1. We only consider positive values of a, and we note that A’ changes sign from positive to

negative at a = 1. Hencea = 1 isalocal maximum of A which isaglobal maximum because A’ < 0 foralla > 1
and A’ >0for0<a < 1.
(d A=3(1)(3) =3
(@ Set gty = 1 and solve for a:
5a = 2a” + 2
2a° —5a+2=0

(2a —1)(a—2) =0.

(a) We have ¢'(t) = t(l/’?% = 1*t—lz‘“t,which iszeroif t = e, negativeif t > e, and positive if ¢t < e, sincelnt is
increasing. Thus g(e) = £ isaglobal maximum for g. Sincet = e wasthe only point at which ¢'(t) = 0, thereisno
minimum.

(b) Now Int/t isincreasingfor0 < t < e,In1/1 = 0,andIn5/5 = 0.322 < In(e)/e. Thus, for1 < ¢ < e, Int/t
increases from O to above In 5/5, so there must be a¢ between 1 and e such that Int/t = In5/5. Fort > e, there
isonly one solutiontoInt/t = In5/5, namely t = 5, sincelnt/¢ isdecreasing for ¢ > e. For0 < ¢t < 1,Int/tis
negative and so cannot equal In 5/5. Thusln z/x = Int/t has exactly two solutions.

(c) Thegraph of In ¢/t intersectsthe horizonta liney =1n5/5, ax = 5 and z = 1.75.

(@) The concavity changes at t; and ¢3, as shown below.

f#)

Y3 -
Y2 -

Y1 r

t1 to t3
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(b) f(t) grows most quickly where the vase is skinniest (at y3) and most slowly where the vase is widest (at y1). The
diameter of the widest part of the vase looks to be about 4 times as large as the diameter at the skinniest part. Since
the area of a cross section is given by wr?, where r is the radius, the ratio between areas of cross sections at these
two places is about 42, so the growth rates are in aratio of about 1 to 16 (the wide part being 16 times slower).

39.

r(A) =a(X) (" —1)7!
() = a(=5A"9) (e — 1) +a(A7) (%eb//\) (¥ 1)

(0.96, 3.13) isamaximum, so r'(0.96) = 0 impliesthat the following holds, with A = 0.96:

BA S — 1)1 = A~ (%eb/x) (¥ = 1)
BA(”* — 1) = bet/?
5ae” — X = be/?
5ae’? — be"* = 5x

BA—b\ o
( A )6 =1

4.8 —b 4/0.06
200 —1=0.
18 ¢ 0

Using Newton’s method, or some other approximation method, we search for aroot. The root should be near 4.8. Using
our initial guess, we get b =~ 4.7665. At A = 0.96, r = 3.13, S0

a
313=———" o
0.965 (b/0-96 — 1)

a = 3.13(0.96)° (e*/*%° — 1)
~ 363.23.

Asacheck, wetry r(4) ~ 0.155, which looks about right on the given graph.

40. (a) Thelength of the piece of wire madeinto acircleisz cm, so thelength of the piece made into asquareis (L —z) cm
See Figure 4.70.

L—xz
Wire

Circle: Square:
Perimeter Perimeter L —

Figure 4.70

The circumference of the circleis z, soitsradius, r cm, is given by

i cm
r= — Ccm.
2w

The perimeter of the squareis (L — z), so the side length, s cm, is given by

L—=x

cm.
Thus, the sum of areasis given by

2 _ 2 2 o2
A:7TT'2+82=7T(£) +(L x) = M, for0 <z < L.
4 16
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Setting dA/dxz = 0 to find the critical points gives

ﬁ_i_ (L—2) =0
dx 2w 8
8r = 2nL — 2nx
(8 + 2m)x = 27L
2rL wL

_ - ~ 0.44L.
= S3om a1 Y0

To find the maxima and minima, we substitute the critical point and the endpoints, z = 0 and z = L, into the area
function.

L2
Forx:O,wehaveA:E.
Forx:i,wehaveL—x:L— L = 4L . Then
44+ 4+ 44+
L’ +i(4L )2_ wL? n L?
T dr(d4m)? 16 \d+7/) T 4(d+7)2  (4+m)2
w4412 L L7
T 44472 T 4@+ 16+4n
L2
Forx = L,wehave A = —.
4 )
L . .. L
Th = ——— givesthe minimum v f A= —— .
us, © 4+Trg esthe um value of 16+ ar

! i . L?
Since 4w < 16, weseethat x = L givesthe maximum valueof A = —.
iy
This corresponds to the situation in which we do not cut the wire at al and use the single piece to make acircle.
(b) Atthe maximum, z = L, so

Length of wireinsquare _ 0 _ 0
Length of wireincircle ~ L =
Areaof square 0

Areaof circle  L2/dr

0.

Attheminimum,x:—WL ,OL—xz=L-— L = AL .
4+ 7 4+ 4+7
Length of wireinsquare _ 4L/(4+m) _ 4
Length of wireincirde = wL/(4+m) =«
Areaof square _ L*/(4+m)° 4
Areaofcircle ~ wL2/(4(4+m)2)
(c) For agenera vaue of z,
Length of wireinsquare L —=x
Length of wireincircle =~ =«
Areaof square (L —x)°/16 _ « (L —x)’
Areacf circle =~ x2/(4w) 4 2

If the ratios are equal, we have
L-z 7 (L-2)’
r 4 2
So either L — z = 0, giving z = L, or we can cancel (L — z) and multiply through by 427, giving

dr = w(L —x)
v = L
T 447

Thus, the two values of  found in part (a) arethe only values of z in 0 < x < L making theratios in part (b) equal.
(Theratios are not defined if x = 0.)
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CAS Challenge Problems

41. (a) Sincek > 0, wehave lim e " =0.Thus

— 00

L L
lim P = li = =1L.
haroet breet 14+Ce kt 14C-0
The constant L is called the carrying capacity of the environment because it represents the long-run population in the
environment.

(b) Using aCAS, wefind

d’P _ LCk?e ™(1— Ce ")

ez (14 Ce—*t)3

Thus, d? P/dt*> = 0 when
1—Ce * =0

In(1/C)
-
Since e~ "t and (1 4+ Ce™**) are both always positive, the sign of d>P/dt* is negative when (1 — Ce™*) > 0,
that is, for + > —1In(1/C)/k. Similarly, the sign of d>P/dt* is positive when (1 — Ce ") < 0, that is, for
t < —In(1/C)/k. Thus, thereisan inflection point at t = — In(1/C) /k.
Fort = —1n(1/C)/k,

t=—

L L L

T 1+Cem70) T 1+C0(1/0)  2°
Thus, the inflection point occurs where P = L/2.

42. (a) Thegraph hasajump discontinuity whose position depends on a. The function isincreasing, and the slope at a given
z-value seems to be the same for al values of a. See Figure 4.71.

y Yy y
2+ 2 F 2+
; x ! z 1 z
1/a 1/a 1/a
-2 F -2 F -2 F
a=0.5 a=1 a=2
Figure 4.71

(b) Most computer algebra systems will give afairly complicated answer for the derivative. Here is one example; others

may be different.
dy _ VT +aaz

dr 2z (1+a+2\/5\/5+x+a:1:—2\/a:1:)'
When we graph the derivative, it appears that we get the same graph for all values of a. See Figure 4.72.

dy/dz

Figure 4.72
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(c) Since a and z are positive, we have \/ax = /a+/z. We can use this to simplify the expression we found for the

derivative:
dy _ Ve +Vavaw
dr 2z (1+4a+2yayz + 7+ az — 2\/ax)
_ VE+ Vi
2z (1+a+2VaVz + x + az — 2y/a/z)
Vita/z  _ (+a)i __ \/E

- 20(14+a+z+ax) 22(1+a)(1+x) 2x(l+z)
Since a has canceled out, the derivative is independent of a. This explains why all the graphs look the same in part
(b). (In fact they are not exactly the same, because f'(x) is undefined where f(z) has its jump discontinuity. The
point at which this happens changes with a.)

43. (a) A CASgives

iarcsinhg[/= -1
dx V14 1z

(b) Differentiating both sides of sinh(arcsinhz) = z, we get
cosh(arcsinh gzc)i

dx
d . 1
—_— h _————
dz (arcsinha) cosh(arcsinh z)

(arcsinhz) =1

Since cosh?z — sinh?z = 1, coshz = ++/1 + sinh? z. Furthermore, since coshz > 0 for al z, we take

the positive square root, so coshz = 1/1 + sinh? z. Therefore, cosh(arcsinhz) = \/1 + (sinh(arcsinhz))? =
V1+ z2. Thus
iarcsi nhz = 1
dx Vitaz?
44. (a) A CASgives
iarccoshx = ! , x>1.
dx r2 —1
(b) Differentiating both sides of cosh(arccoshz) = z, we get
. d
sinh(arccosh m)%(arccosh z)=1
d 1
g (Arecosh ) = sinh(arccosh )’

Since cosh? z — sinh® z = 1, sinh z = #1/cosh? z — 1. If z > 0, then sinh z > 0, S0 we take the positive square

root. Sosinh z = \/cosh® z — 1, z > 0. Therefore, sinh(arccosh z) = \/(cosh(arccosh z))2 —1=+/z2 — 1, for
x > 1. Thus

iarccoshan = #
dl’ 1.2 -1

45. (a) Using acomputer algebra system or differentiating by hand, we get

f’(a:) _ 1 _ va+zx
2Vataz(Va+vr)  2/a(Vat Vi)

Simplifying gives
fla)= —— VAT
2 (Va+z) Vrvate
The denominator of the derivative is dways positive if z > 0, and the numerator is zero when z = a. Writing the
numerator as/a(/z — v/a), we see that the derivative changes from negative to positive at z = a. Thus, by thefirst
derivative test, the function has alocal minimum at « = a.
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(b) Asa increases, the local minimum moves to the right. See Figure 4.73. Thisis consistent with what we found in part
(a), sincethelocal minimumisat x = a.

Yy
1k

o SIS}
T
e

—
8

10

Figure 4.73

(c) Using acomputer algebra system to find the second derivative when a = 2, we get
42412z + 622 =322
12 VE) B k)
Using the computer algebra system again to solve /() = 0, we find that it has one zero at x = 4.6477. Graphing
the second derivative, we see that it goes from positive to negative at z = 4.6477, so thisisan inflection point.

46. (a) Different CASsgivedifferent answers. (Infact, their answers could be more complicated than what you get by hand.)
One possible answer is

(@) =

dy _ tan (%)
dl' o 1— T '
2y/ TFeoss

(b) Thegraph in Figure 4.74 is astep function:

12 2am<z<(2n+ D)7
f(z) = -1/2 n+r<z<(2n+2)m

Yy
o o o o 0.50 o o o
‘ 1 1 1 1 1 1 —
—Ar =37 27 -7 ™ 2 3 4
o——o Oo—85 o——o0 o——o
Figure 4.74

Figure 4.74, which shows the graph in disconnected line segments, is correct. However, unless you select certain
graphing options in your CAS, it may join up the segments. Use the double angle formula cos(z) = cos®(z/2) —
sin’(x/2) to simplify the answer in part (a). We find

dy tan(z/2) tan(z/2) _ tan(z/2)
l—cosx 1—cos(2-(z/2)) 9 1—cos2(z/2)+sin2(z/2)
1+cosz 14+cos(2-(z/2)) 14cos2(z/2)—sin2(z/2)

_ tan(z/2)  tan(z/2) _  tan(z/2)
2\/2sm2(z/2> 2y /tan?(z/2) 2 ltan(z/2)]

2 cos2(z/2)

Thus, dy/dx = 1/2 when tan(z/2) > 0, i.e. when 0 < = < = (more generally, when 2nw < z < (2n + 1)7), and
dy/dz = —1/2 when tan(z/2) < 0,i.e, when 7 < z < 27 (more generally, when (2n + 1)7 < z < (2n + 2)m,
where n isany integer).



47. (a)

(b)
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b
S

B

T V3—a

Py

&
L 4
|
|
|
|
|
|
|
|

Figure 4.75

We want to maximize the sum of the lengths EC and C'D in Figure 4.75. Let = be the distance AE. Then x can
be between 0 and 1, the length of the left rope. By the Pythagorean theorem,

EC =+/1- 22

The length of the rope from B to C' can also be found by the Pythagorean theorem:

BC =+/EC? + EB? = \/1—x2 (V3 —1z)2 =V4—2V3z.

Since the entire rope from B to D has length 3 m, the length from C to D is

CD=3-V4-2V3a.
The distance we want to maximizeis
f(r)=EC+CD=+/1—-224+3—-V4-2/3z, for 0<z<1.

Differentiating gives
—2z —2V/3

f(x)=2¢1_x2—2\/4_2\/§x.

Setting f'(x) = 0 gives the cubic equation
2V32® — 72> +3=0.

Using a computer algebra system to solve the equation gives three roots: © = —1/v/3,z = V/3/2,z = /3. We
discard the negative root. Since z cannot be larger than 1 meter (the length of the left rope), the only critical point of
interestisz = /3/2, that is, halfway between A and B.

To find the global maximum, we calculate the distance of the weight from the ceiling at the critical point and at
the endpoints:

=V1+3-V4=2
( ) ,/1——+3—\/4—2f\[
f)=V0+3-V4-2v/3=4—-V3=221.

Thus, the weight is at the maximum distance from the ceiling when = = \/3/2; that is, the weight comesto rest at a
point halfway between points A and B.

No, the equilibrium position depends on the length of the rope. For example, suppose that the left-hand rope was 1
cm long. Then there isno way for the pulley at its end to move to a point halfway between the anchor points.
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CHECK YOUR UNDERSTANDING

1. True. Sincethedomain of f isall real numbers, al local minima occur at critical points.
2. True. Since the domain of f is al real numbers, all loca maxima occur at critical points. Thus, if z = p isaloca

15.

16.

17.

maximum, z = p must be a critical point.

. False. A local maximum of f might occur at a point where f' does not exist. For example, f(z) = —|z| has a local

maximum at z = 0, but the derivative isnot 0 (or defined) there.

. False, because z = p could be alocal minimum of f. For example, if f(z) = 22, then f'(0) = 0,s0z = 0 isacritica

point, but z = 0 isnot alocal maximum of f.

. False. For example, if f(x) = 2, then f'(0) = 0, but f(x) does not have either alocal maximum or alocal minimum at

xz =0.

. True. Suppose f isincreasing at some points and decreasing at others. Then f' () takes both positive and negative values.

Since f'(z) is continuous, by the Intermediate Value Theorem, there would be some point where f' (z) is zero, so that
therewould be acritical point. Sincewe aretold thereare no critical points, f must be increasing everywhere or decreasing
everywhere.

. False. For example, if f(z) = z*, then f'(z) = 1222, and hence f(0) = 0. But f does not have an inflection point at

x = 0 because the second derivative does not change sign at O.

. True. Since " changes sign at the inflection point z = p, by the Intermediate Value Theorem, f”(p) = 0.
. True, by the Increasing Function Theorem, Theorem 4.4.

10.
11.
12.
13.
14,

False. For example, let f(z) = = + 5, and g(z) = 2z — 3. Then f'(z) < ¢'(z) for dl =, but £(0) > g(0).
False. For example, let f(z) = 3z + 1 and g(z) = 3z + 7.
False. For example, if f(z) = —x, then f'(z) < 1foral z, but f(—2) = 2,50 f(—2) > —2.
Let f(z) = az?, witha # 0. Then f'(z) = 2ax, so f hasacritical point only at z = 0.
Let g(z) = ax® + bx?, where neither a nor b are allowed to be zero. Then

g (z) = 3ax” + 2bx = x(3ax + 2b).
Then g(x) hastwo distinct critical points, at z = 0 and at = —2b/3a. Since

g" (z) = 6ax + 2b,

there is exactly one point of inflection, z = —2b/6a = —b/3a.
Thefunction f(z) = |z| iscontinuous on [—1, 1], but there isno number ¢, with —1 < ¢ < 1, such that

ioa - H=1=1 _ o
that is, the slope of f(z) = |z| isnever 0.

Let f be defined by

19 ifz=2
Then f isdifferentiable on (0,2) and f'(z) = 1 for al z in (0, 2). Thusthereisno cin (0, 2) such that

o~ D= 10) _19

2-0 2

The reason that this function does not satisfy the conclusion of the Mean Value Theorem isthat it is not continuous
atx = 2.

f(x):{m ifo<z<?2

Let f be defined by
x? ifo<z<1
f(m)_{1/2 ifz=1.
Then £ is not continuous at = = 1, but f is differentiable on (0,1) and f'(z) = 2z for 0 < = < 1. Thus, ¢ = 1/4
satisfies

f’(C)Z%{:(O)zé, since f’(i):Q.i:%.



18.

10.

20.
21.

22.
23.

24.

25,
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(a) True, f(z) < 4 ontheinterva (0,2)

(b) False. Thevaluesof f(x) get arbitrarily closeto 4, but f(z) < 4 for al z intheinterva (0, 2).
(c) True. Thevaluesof f(x) get arbitrarily closeto O, but f(z) > 0 for all z in theinterval (0, 2).
(d) Fase. Ontheinterval (—1,1), the global minimumiisO.

(e) True, by the Extreme Value Theorem, Theorem 4.2.

(@) Thisis not implied; just because a function satisfies the conclusions of the statement, that does not mean it has to
satisfy the conditions.

(b) Thisis not implied; if a function fails to satisfy the conditions of the statement, then the statement doesn’t tell us
anything about it.

(c) Thisisimplied; if afunction failsto satisfy the conclusions of the statement, then it couldn’t satisfy the conditions of
the statement, because if it did the statement would imply it also satisfied the conclusions.

f(z) = x? + 1 ispositive for all = and concave up.

Thisisimpossible. If f(a) > 0, then the downward concavity forces the graph of f to cross the z-axis to the right or left
of x = a, which means f(x) cannot be positive for all values of x. More precisely, suppose that f(x) is positive for all
x and f is concave down. Thus there must be some value z = a where f(a) > 0 and f'(a) isnot zero, since a constant
function is not concave down. The tangent line at = a has nonzero slope and hence must cross the z-axis somewhere to
theright or left of = a. Since the graph of f must lie below thistangent line, it must also cross the z-axis, contradicting
the assumption that f(z) is positive for al z.

f(z) = —x® — 1 isnegative for al 2 and concave down.

Thisisimpossible. If f(a) < 0, then the upward concavity forces the graph of f to cross the z-axis to the right or left
of x = a, which means f(x) cannot be negative for all vaues of 2. More precisely, suppose that f(z) is negative for all
x and f is concave up. Thus there must be some value z = a where f(a) < 0 and f'(a) isnot zero, since a constant
function is not concave up. The tangent line at x = a has nonzero slope and hence must cross the z-axis somewhere to
theright or left of z = a. Sincethe graph of f must lie above thistangent line, it must also cross the z-axis, contradicting
the assumption that f(z) is negative for al z.

Thisisimpossible. Since f" exists, so must ', which means that f is differentiable and hence continuous. If f(z) were
positive for some values of = and negative for other values, then by the Intermediate Value Theorem, f(x) would have
to be zero somewhere, but this is impossible since f(z) f"'(z) < 0 for al z. Thus either f(z) > 0 for al values of z,
in which case f''(z) < 0 for all values of =, that is f is concave down. But this is impossible by Problem 21. Or else
f(z) < 0foradl z,inwhich case f/(x) > 0 for al z, that is f is concave up. But thisisimpossible by Problem 23.

Thisisimpossible. Since f' exists, f must be continuous. By the Intermediate Value Theorem, f(x) cannot change
sign, since f"'(z) cannot be zero. In the same way, we can show that f'(z) and f(z) cannot change sign. Since the
product of these three with "’ (z) cannot change sign, /' (x) cannot change sign. Thus f(z) £’ (z) and f'(z) f'"' (x)
cannot change sign. Since their product is negative for all x, one or the other must be negative for al x. By Problem 24,
thisisimpossible.
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<—— Remaining wall

Removed
wall

Figure 4.76: A Cross-section of the Projected Greenhouse

Suppose that the glass is at an angle 6 (as shown in Figure 4.76), that the length of the wall is [, and that
the glass has dimensions D ft by [ ft. Since your parents will spend a fixed amount, the area of the glass, say
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k ft2, isfixed:
Dl =k.
The width of the extensionis D cos 6. If h isthe height of your tallest parent, he or she can walk in a distance
of z, and
ﬁ =tanf, SO =
o ’ Y= tand
Thus,
h T
x=Dcosf —y=Dcosf ——— for0<f< —.
tan 6
We maximize x since doing so maximizes the usable area:
dx h 1
. — _Dsin# . -
de e+ (tan )2 (cosf)? 0
.. 3 _ v
sin” 6 = D

. h 1/3
6 = arcsin <<5> > .

Thisisthe only critical point, and z — 0 when 8 — 0 and when 8 — «/2. Thus, the critical point is a global

maximum. Since
B\ 2/3
cosf =1 —sin’f = 1—<5> ,

the maximum value of z is
z = Dcosf — :Dcost‘)—h?oso
tan @ sin 6
1/2
h A 2/3
= <D — sin0> cosf = <D — 7(}1/1))1/3) . (1 — (B) )
h2/3 1/2
_ 2/311/3
= (D — h*/3D'/3). <1—D2/3>
2/3 2/3 \ 1/2 2/3 \ 3/2
:D<1_h_>.<_h_> :D<1_h_>
D2/3 D2/3 D2/3
Thismeans
Maximum Usable Area = Iz
h2/3 3/2

H(-07)

2. (@) The point ontheliney = max corresponding to the point (2, 3.5) has y-coordinate given by y = m(2)

2m. Thus, for the point (2, 3.5)
Vertical distancetotheline = |2m — 3.5|.

We calculate the distance similarly for the other two points. We want to minimize the sum, S, of the

squares of these vertical distances
S = (2m —3.5)> + (3m — 6.8)% + (5m — 9.1)2.



(b)

(©)
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Differentiating with respect to m gives

ﬁ
dm

Setting dS/dm = 0 gives

=2(2m —3.5) -2+ 2(3m — 6.8) - 3+ 2(5m — 9.1) - 5.

2:2(2m —3.5)+2-3(3m —6.8) +2-5(5m —9.1) = 0.
Canceling a2 and multiplying out gives

4m —T+9m —20.44+25m —45.5=0
38m =729
m = 1.92.

Thus, the best fitting line has equation y = 1.92z.
To fit aline of the form y = mx to the data, wetakey = V and = 3. Then k will be the Slope m. So
we make the following table of data:

z=r 8 125 343 512
y=V 8.7 | 140.3 | 355.8 | 539.2

To find the best fitting line of the form y = mx, we minimize the sums of the squares of the vertical
distances from the line. For the point (8, 8.7) the corresponding point on the linehasy = 8m, so

Vertical distance = |8m — 8.7|.
We find distances from the other points similarly. Thus we want to minimize
S = (8m — 8.7)% + (125m — 140.3)? + (343m — 355.8)% + (512m — 539.2).
Differentiating with respect to m, which is the variable, and setting the derivative to zero:

is
dm

After canceling a 2, solving for m leads to the equation

= 2(8m —8.7) - 8 + 2(125m — 140.3) - 125 + 2(343m — 355.8) - 343 + 2(512m — 539.2) - 512 = 0.

&2m + 125%m + 343%m + 5122m = 8 - 8.7+ 125 - 140.3 + 343 - 355.8 + 512 - 539.2
m = 1.051.

Thus, £ = 1.051 and the relationship between V" and r is
V = 105172

(Infact, the correct relationshipis V = 7r® /3, so the exact value of k is7/3 = 1.047.)
The best fitting line minimizes the sum of the squares of the vertical distances from points to the line.
Since the point on theliney = ma corresponding to (z 1, y1 ) isthe point with y = ma; for this point we
have

Vertical distance = |mz; — y1|.

We calculate the distance from the other points similarly. Thus we want to minimize

S = (ml‘l - y1)2 + (ml‘Z - y2)2 et (mmn - yn)z'
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Thevariableism (the z;sand y;sare al constants), so

ds

e 2(may —y1)w1 + 2(maz — y2)@e + -+ 4 2(MTy — Yn)Tp =0

2m(xf + a3+ +22) — (T1y1 + T2y + -+ Tayn)) = 0.

Solving for m gives

n
TiYi
_ T1y1 2y + -+ Tpln _i; e
- 22 422 4 4 g2 Toon ’
1 2 n Zlm?
1=

3. Theoptimization problemin part (d) is unusual in that the optimum valueis known (55 mph), and the problem
is to find the conditions which lead to this optimum. A variant of this project is to ask what group of people
in the real world might be interested in each of the questions asked. A possible answer is owners of trucking
companies for parts (b) and (), traffic police for part (d), and Interstate Commerce Commission for parts (€)
and (f).

(a) Thetotal cost per mileisthe cost of the driver plusthe cost of fuel. We let
w  bethedriver's hourly wage in dollars/hour,
v be the average speed in miles/hour,
m  betheweight of the truck in thousands of pounds,
f  thecost of fuel in dollars/gallon.
The cost per mile of the driver'swagesisw/v. The cost of fuel per mile will be one over the " mileage per

gallon” times the cost of fuel per gallon—i.e. f/mpg. The mileage per gallonis 6 — (m — 25)(0.02) —
(v —45)(0.1) for velocities over 45 and 6 — (m — 25)(0.02) for velocities under 45. So the total cost per

mile, ¢, is f
w
T 25002 fcvsd
R / 45 < v
v 6—(m—25)(0.02) — (v—45)(0.1) '

Note that there is an upper limit to the velocity in this last expression given when
6 — (m — 25)(0.02) — (v — 45)(0.1) = 0.
(b) We are now given the values

w = 15.00 dollarsg/hour
m = 75 thousand pounds
f = 1.25 dollars/gallon.

We have
15 1.25
1o 0<v<45
B 6 — (75 — 25)(0.02) <vs
B + ! 45 <
— v
v 6— (75— 25)(0.02) — (v — 45)(0.1) ’
which simplifies to
15 1
— + = O0<ov<4)d
e=3 15t 15
— + - 45 < v < 95.

v 5—(v—45)(0.1)
The upper limit for v occurswhen 5 — (v — 45)(0.1) = 0, that is, v = 95.
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To initiate our search for aminimum, note that the function ¢ = 15/v + 1/4 is strictly decreasing. So
we only need find the minimum of the function
15 1.25
c=—
5— (v—45)(0.1)
ontheinterval 45 < v < 95. Rearranging this dlightly, we get

_, 12
T o 9501

Then differentiating gives
de 15 (1.25)(0.1)

dv  v2 (9.5 —0.1v)2"
Setting this to zero and solving, we get
0 - 15 (1.25)(0.1)
(9.5 —0.1v)2
15(9.5 — 0.1v)? = 0.12507
3.87(9.5 — 0.1v) ~ =+0.354v
36.8 — 0.387v ~ £0.354v
36.8 2 0.741v or 36.8 ~ 0.033v

v~ 49.7 or v~ 1100.

2

This last valueis not in the domain, so we only consider the critical point v = 49.7 and the endpoints of
v = 45 and v = 95. We evaluate the cost function:

c(45) = 0.333 + 0.25 = 58.3¢/mile
¢(49.7) = 0.302 + 0.276 = 57.8¢/mile

c(95) =

So v = 49.7 isaminimum; the cheapest speed is49.7 mph.
(c) Evaluating the cost at v = 55 mph, v = 60 mph, and the minimum v = 49.7 mph gives

c(49.7) = 57.8¢
¢(55) = 58.5¢
¢(60) = 60.7¢.
Notice that the cost per mile does not rise very quickly. A produce hauler often gets extra revenue for
getting there fast. Increasing speed from 50 to 60 mph decreases the transit time by over 15% but increases
the costs by only 5%. Thus, many produce haulers will choose a speed above 49.7 mph.
(d) Now we are not given the price of fuel, but we want the minimum to be at v = 55 mph. We find the value
of f makingv = 55 the minimum. The function we want to minimizeis
15 f
=% Tos—o1w
Differentiating gives
de 15 0.1f
dv 2 (9.5—0.1v)2
Setting this equal to 0, we have

0o 15 0.1f
w2 (9.5 -0.1v)2
0= —15(9.5 — 0.1v)? + 0.1fv?.
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Substituting v = 55 and solving for f gives

0= —15(4)? +0.1(55)*f
f =~ 80¢/gallon.

Now we are not told the driver's wages, w, or the fuel cost, f. We want to find the relationship between w
and f making the minimum cost occur at v = 55 mph. We have
w f
‘=S 9501
dc w 0.1f

dv 02 (9.5—0.10)2
We need thisto equal 0 whenv = 55, sO

w 0.1f

0==305 " 16

This means
w  (3025)(0.1)

— = 18,
7 16 8.9,
that is, thefuel cost per gallon should be 1/18.9 that of the driver’shourly wage. If the Interstate Commerce
Commission wants truck driversto keep to a speed of 55 mph, they should consider taxing fuel or driver’'s
wages so that they remainin therelation w = 18.9f.

Now we assume w = 18.9f and that m is variable. We want to minimize cost, getting a relationship
between m and the optimal v. The function we want to minimizeis
o 189f N f
v 6 — (m — 25)(0.02) — (v — 45)(0.1)
_18.9f f

v 11 —-0.02m — 0.1v"

Differentiating gives
de  —18.9f 0.1f

dv 02 (11— 0.02m — 0.1v)2
We areinterested in when dc/dv = 0:

_18.9f 0.1f o
v2 (11 —0.02m — 0.1v)2

Solving gives
v=1063.7—-0.116m or v =403.5—0.734m.
Only thefirst gives plausible speeds (and givesv = 55 when m = 75), so we conclude the optimal speed

varies linearly with weight according to the equation v = 63.7 — 0.116m. This means that every 10,000
increase in weight reduces the optimal speed by just over 1 mph.

4. (a) (i) Wewanttominimize A, thetotal arealost to the forest, which is made up of n firebreaksand 1 stand

of trees lying between firebreaks. The area of each firebreak is (50 km)(0.01 km) = 0.5km?, so
the total area lost to the firebreaks is 0.5n km?. There are n total stands of trees between firebreaks.
The area of asingle stand of trees can be found by subtracting the firebreak area from the forest and
dividing by n, so
2500 — 0.5n

- .

Area of one stand of trees =



(b)
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Thus, the total arealost is

A = Areaof onestand + Arealost to firebreaks

2500 — 0. 2
= P00 4 g5m= 2% 5405,

We assumethat A isadifferentiablefunction of a continuousvariable, n. Differentiating this function
yields
dA 2500
dn ~ n?
At critical points, dA/dn = 0,50 0.5 = 2500/n2 or n = /2500/0.5 ~ 70.7. Since n must be an
integer, we check that whenn = 71, A = 70.211 andwhenn = 70, A = 70.214. Thus, n = 71 gives
asmaller arealost.
We can check that thisis alocal minimum since the second derivative is positive everywhere

+0.5.

d®A _ 5000

anZ 3 > 0.

Finally, we check the endpoints. n = 1 yields the entire forest lost after a fire, since there is only
one stand of trees in this case and it al burns. The largest n is 5000, and in this case the firebreaks
removethe entireforest. Both of these cases maximize the area of forest lost. Thus, n = 71 isaglobal
minimum. So 71 firebreaks minimizes the area of forest lost.

(il) Repeating the calculation using b for the width gives

2
A= % — 50b + 50bn,

and
dA  —2500

dn n?
with acritical point when b = 50/n? son = 1/50/b. So, for example, if we make the width b four
times as large we need half as many firebreaks.

We want to minimize A, the total arealost to the forest, which is made up of n firebreaksin one direction,
n firebreaks in the other, and one square of trees surrounded by firebreaks. The area of each firebreak is
0.5 km2, and there are 2n. of them, giving atotal of 0.5 - 2n. But thisis larger than the total area covered
by the firebreaks, since it counts the small intersection squares, of size (0.01) 2, twice. Since there are n>
intersections, we must subtract (0.01)2n? from the total area of the 2n firebreaks. Thus,

+ 500,

Area covered by the firebreaks = 0.5 - 2n — (0.01)*n>.

To this we must add the area of one square patch of trees lost in afire. These are squares of side (50 —
0.01n)/n = 50/n — 0.01. Thusthetotal arealostis

A =n—0.0001n* + (50/n — 0.01)*

Treating n as a continuous variable and differentiating this function yields

@:1—0.00027”2 @—0.01 -0
dn n n?

Using a computer algebra system to find critica points we find that dA/dn = 0 whenn ~ 17 and
n = 5000. Thusn = 17 givesaminimum lost area, since the endpointsof n = 1 and n = 5000 both yield
A = 2500 or the entire forest lost. So we use 17 firebreaks in each direction.



