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CHAPTER SIX

Solutions for Section 6.1

Exercises
1 FEUO) =0
2.
/N(m —
1
F(0)=0
! x
1
3. 1 \/F(O) =1
| T
1 F(0)=0
4.

F0)=1
1 / F(0)=0

5. By the Fundamental Theorem of Calculus, we know that
2
5@ - 50 = [ fas
0

Using a left-hand sum, we estimate f02 f'(z)dz =~ (10)(2) = 20. Using a right-hand sum, we estimate f02 f'(z)de =

(18)(2) = 36. Averaging, we have
2
/ f'(z)dz = 20436 _ 28.
0

2
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We know f(0) = 100, so
2
f(2) = f(0) + / f'(x)dz ~ 100 + 28 = 128.
0

Similarly, we estimate

/f )()2(23)()_417
SO
f4) =f£(2)+ /4 f'(x)dx ~ 128 + 41 = 169.
Similarly, ’
/f )()2(25)():487
SO

6
f(6) = f(4) + / f'(x)dz ~ 169 + 48 = 217.
4

The values are shown in the table.

f(z) | 100 | 128 | 169 | 217

The changein f(z) between 0 and 2 isequa tof f'(z) dz. A |eft-hand estimate for thisintegral is (17)(2) = 34 and a
right hand estimate is (15)(2) = 30. Our best estlmatelsthe average, 32. The changein f(xz) between 0 and 2 is +32.
Since £(0) = 50, we have f(2) = 82. Wefind the other values similarly. The results are shown in Table 6.1.

Table 6.1

e ol 2] 4 6
f(z) |50 | 82 107 | 119

7. (&) The value of the integral is negative since the area below the z-axis is greater than the area above the z-axis. We

count boxes: The area below the z-axis includes approximately 11.5 boxes and each box hasarea (2)(1) = 2, so

/0 | f(z)dz ~

The area above the z-axis includes approximately 2 boxes, each of area 2, so

/57f(a:)da: ~
/07 f(z)dz = /05 fz)dx + /57 f(z)de =~ —23 +4 = —19.

(b) By the Fundamental Theorem of Calculus, we have
7
0) = / f(x)dx
0

7
F(7) = F(0) + / f(z)dz = 25 + (—19) = 6.

So we have
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8. Since dP/dt is negative for ¢ < 3 and positive for ¢ > 3, we know that P is decreasing for ¢ < 3 and increasing for
t > 3. Between each two integer values, the magnitude of the change is equal to the area between the graph dP/dt and
the t-axis. For example, between¢ = 0 and ¢t = 1, we see that the change in P is—1. Since P = 2 at t = 0, we must
have P = 1 att = 1. The other values are found similarly, and are shown in Table 6.2.

Table 6.2

t [1]12] 3 |4(5
Pl1|0|-1/2|0]|1

Problems

9. (a) Critica pointsof F(z) arethezerosof f: z = 1and z = 3.
(b) F(z) hasaloca minimumat z = 1 and alocal maximum at x = 3.
(0 | | I

1 2 3 4

8

Notice that the graph could also be above or below the z-axis at x = 3.
10. (@) Critical pointsof F(z) arex = -1,z =1andz = 3.

(b) F(z)hasaloca minimumat z = —1, alocal maximum at z = 1, and alocal minimum at z = 3.
(0
1 1 1 1 =
—2\ -1 1 3 |4
F(z)
11.
F(z)
I I‘l ‘IQ I‘g v

Note that since f(x1) = 0 and f'(z1) < 0, F(x1) isalocal maximum; since f(x3) = 0 and f'(x3) > 0, F(x3) is
alocal minimum. Also, since f'(z2) = 0 and f changes from decreasing to increasing about z = z», F hasan inflection
point a x = x».
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12.

13.

14.

15.
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Note that since f(z2) = 0, f'(xz2) > 0, S0 F(z2) is aloca minimum. Since f'(z1) = 0 and f changes from
decreasing toincreasing at x = z1, F hasan inflection point at z = ;.

Notethat since f(z1) = 0, F'(x1) iseither alocal minimum or apoint of inflection; itisimpossible to tell which from
the graph. Since f'(z3) = 0, and f’ changes sign around = = z3, F(z3) isan inflection point. Also, since f'(z2) = 0
and f changes from increasing to decreasing about x = z», F' has another inflection point at z = x-.
Betweent = 0 and ¢ = 1, the particle moves at 10 km/hr for 1 hour. Since it startsat « = 5, the particleisat x = 15
when ¢ = 1. See Figure 6.1. The graph of distance is a straight line between ¢ = 0 and ¢ = 1 because the velocity is
constant then.

Between ¢t = 1 and ¢t = 2, the particle moves 10 km to the left, ending at z = 5. Between¢ = 2 and ¢ = 3, it moves
10 km to the right again. See Figure 6.1.

x (km)
15

10

Figure 6.1

As an aside, note that the original velocity graph is not entirely realistic as it suggests the particle reverses direction
instantaneously at the end of each hour. In practice this means the reversal of direction occurs over atimeinterval that is
short in comparison to an hour.

(a) We know that f03 f'(z)dz = f(3) — £(0) from the Fundamental Theorem of Calculus. From the graph of f' we
can see that f03 f'(z)dz = 2 — 1 = 1 by subtracting areas between f’ and the z-axis. Since f(0) = 0, we find that
f(3) = 1. Similar reasoning gives f(7) = f07 fl@)de=2—-14+2-4+1=0.

(b) Wehave f(0) =0, f(2) =2, f(3) =1, f(4) =3, f(6) = —1, and f(7) = 0. So the graph, beginning at = = 0,
starts at zero, increasesto 2 at x = 2, decreasesto 1 at x = 3, increasesto 3 at = 4, then passes through a zero as
it decreasesto —1 at x = 6, and finally increasesto 0 at 7. Thus, there are three zeroes: x = 0,z = 5.5, and z = 7.
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| A\ T
12 3 4 5\y7
1 L

16. We can start by finding four points on the graph of F'(x). The first oneis given: F(2) = 3. By the Fundamental Theorem
of Calculus, F(6) = F(2) + f; F'(z)dz. The value of thisintegral is —7 (the areais 7, but the graph lies below the
z-axis), o F(6) = 3 — 7 = —4. Similarly, F(0) = F(2) —2 =1, and F(8) = F(6) + 4 = 0. We sketch a graph of
F(x) by connecting these points, as shown in Figure 6.2.

(2,3)

(6,4)

Figure 6.2

17. Thecritical pointsareat (0, 5), (2, 21), (4,13), and (5, 15). A graph is given below.

y (2,21)
20
15 (5,15)
10

X

18. Looking at the graph of g' below, we see that the critical points of g occur when z = 15 and x = 40, since g’ (z) = 0 at
these values. Inflection points of g occur when z = 10 and z = 20, because ¢’ (x) has alocal maximum or minimum at
these values. Knowing these four key points, we sketch the graph of g(z) asfollows.

Westart at z = 0, where g(0) = 50. Since g’ is negative on theinterval [0, 10], the value of g(x) isdecreasing there.
Atz = 10 we have

9(10) = g(0) + / J(x)dn

= 50 — (areaof shaded trapezoid 7})
10+ 20
=00~ ( 2

. 10) = —100.

Similarly,
15
909 =910+ [ (0)aa
10
= —100 — (areaof triangle T%)

= 100 — 2(5)(20) = ~150.
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Continuing,
20

g(20) = g(15) + / g (x)dz = —150 + %(5)(10) = —125,

and

g(40) = g(20) + / g (x)dx = —125 + %(20)(10) = —25.

(20, 10)

} T
T Y 15 40

—10

(10, —20)

We now find concavity of g(z) intheintervals[0, 10], [10, 15], [15, 20], [20, 40] by checking whether ¢’ () increases
or decreases in these same intervals. If ¢’ (z) increases, then g(z) is concave up; if ¢’ (x) decreases, then g(x) is concave
down. Thus we finally have our graph of g(x):

(0,50) T\ 9(z) .

(15, —150)

19. Betweentimet = 0 andtimet = B, the velocity of the cork is aways positive, which means the cork is moving upwards.
Attimet = B, the velocity is zero, and so the cork has stopped moving altogether. Since shortly thereafter the velocity
of the cork becomes negative, the cork will next begin to move downwards. Thuswhen ¢ = B the cork hasrisen asfar as
it ever will, and is riding on top of the crest of the wave.

Fromtimet = B totimet = D, the velocity of the cork is negative, which meansit is faling. When ¢t = D, the
velocity is again zero, and the cork has ceased to fall. Thuswhen ¢t = D the cork is riding on the bottom of the trough of
the wave.

Since the cork is on the crest at time B and in the trough at time D, it is probably midway between crest and trough
when the time is midway between B and D. Thus at time ¢ = C' the cork is moving through the equilibrium position on
its way down. (The equilibrium position is where the cork would be if the water were absolutely calm.) By symmetry,
t = A isthe time when the cork is moving through the equilibrium position on the way up.

Since acceleration is the derivative of velocity, points where the acceleration is zero would be critical points of the
velocity function. Since point A (a maximum) and point C' (aminimum) are critical points, the acceleration is zero there.

A possible graph of the height of the cork is shown below. The horizontal axis represents aheight equal to the average
depth of the ocean at that point (the equilibrium position of the cork).

heigh
eight B

time
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20. The rate of change is negative for ¢ < 5 and positive for ¢ > 5, so the concentration of adrenaline decreases until t = 5

21.

22.

23.

and then increases. Since the area under the z-axisis greater than the area over the z-axis, the concentration of adrenaline
goes down more than it goes up. Thus, the concentration at ¢ = 8 isless than the concentration at ¢ = 0. See Figure 6.3.

adrenaline concentration (£.g/ml)

Lt 111 L L L g (minutes)
1 23456738
Figure 6.3

(a) Thetotal volume emptied must increase with time and cannot decrease. The smooth graph (1) that isalwaysincreasing
is therefore the volume emptied from the bladder. The jagged graph (1) that increases then decreases to zero is the
flow rate.

(b) Thetota changein volumeistheintegral of the flow rate. Thus, the graph giving total change (1) shows an antideriva-
tive of the rate of change in graph (I1).

The graph of f(z) = 2sin(z?) isshown in Figure 6.4. We see that there are roots at « = 1.77 and « = 2.51. These are

the critical points of F'(x). Looking at the graph, it appears that of the three areas marked, A; isthe largest, A» is next,

and A3 issmallest. Thus, as x increases from 0 to 3, the function F'(x) increases (by A:), decreases (by A-), and then

increases again (by As). Therefore, the maximum is attained at the critical point © = 1.77.

Wheat is the value of the function at this maximum? We know that F'(1) = 5, so we need to find the change in F’
between z = 1 and z = 1.77. We have

1.77
Changein F' = / 2sin(z”) de = 1.17.
1
We seethat F(1.77) = 5+ 1.17 = 6.17, so the maximum value of F' on thisinterval is6.17.

2+

T1 @9 xsw
f'(=)

(@ f(x)isgreatest at ;.
(b) f(z)islesstat zs.
(©) f'(x)isgreatest at x3..
(d) f'(z)isleast at zs.
(e) f"(x)isgreatestat z;.
(f) f'(z)isleast at x5.

~ —
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24. Both F(z) and G(z) haveroots at + = 0 and z = 4. Both have a critical point (which isalocal maximum) at z = 2.
However, since the area under g(z) between z = 0 and z = 2 islarger than the area under f(z) between x = 0 and
z = 2, the y-coordinate of G(z) at 2 will be larger than the y-coordinate of F'(z) at 2. See below.

G(z)
| | | €T
1 2 3 4
25. (a) Suppose Q(t) isthe amount of water in the reservoir at time¢. Then
Q'(t) = Rateat whichwater ~_ Inflow  Outflow
" inreservoirischanging ~ rate rate

Thus the amount of water in the reservoir is increasing when the inflow curve is above the outflow, and decreasing
when it is below. This means that Q(t) is a maximum where the curves crossin July 1993 (as shown in Figure 6.5),
and Q(t) is decreasing fastest when the outflow is farthest above the inflow curve, which occurs about October 1993
(see Figure 6.5).

To estimate values of Q(t), we use the Fundamental Theorem which says that the change in the total quantity
of water in the reservair is given by

t
Q(t) — Q(Jan'93) = / (inflow rate — outflow rate) dt

Jan93
t
or Q(t) = Q(Jan'93) + / (inflow rate — outflow rate) dt.
Jan93
rate of flow . . )
(millions of gallons/day) Q(t) is decreasing most rapidly
Q(t)is increasing Q(t) is max
most rapidly Q(t) is min
Outflow
Inflow
| | |
Jan (93) April Jul Oct Jan(94)
Q(t)
millions of gallons
| | | |
Jan (93) April July Oct Jan(94)

Figure 6.5
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(b) SeeFigure 6.5. Maximum in July 1993. Minimum in Jan 1994.

(c) SeeFigure 6.5. Increasing fastest in May 1993. Decreasing fastest in Oct 1993.

(d) Inorder for the water to be the same as Jan ’ 93 the total amount of water which has flowed into the reservoir must be
0. Referring to Figure 6.6, we have

July94
/ (inflow — outflow)dt = —A; + Ay — A3+ A4 =0
J

an93
giving A; + Az = As + Ay

rate of flow
(millions of gallons/day)

Inflow

Outflow
Ay

| | | | | |
Jan (‘93) April July Oct Jan (‘94) April July

Figure 6.6

Solutions for Section 6.2

Exercises

ot
8

S U N S

©w
=
=
~

~
w
+
ol
o~
M

Wl
W
wlw

=3
x

—_

© N o g~ wDdh R

10. €
11. —cost
12 265 + 3¢ + 440

13— —— - =

14. y—5 + In |y|

15. sint + tant

16 & :“ LI % which hasantiderivativeg +1nt|
17. —cos 26

18. e + 5%e5t =el 4+
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10.
20.

21.

22. F

23. H

24. F

25 R

26.

27.

28.

29.

30.

31 P

32. G

33. F

35.

36.

37.

38.

39.

41.

42.
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1 3
s(t+1)

T

nb
22

wlw

l\DlCﬂ’_‘ o

/6tdt=3t2+(]
0= e
/
/

F(z) = /z+e)d :?—f-e +C

4

2
T
- - —+4+C
T T) 2 +
3
z 2
(z° —4x+7)d =?—2x +7x+C
4
+§t2—t+C

t
t 5t —1)dt = —
+ 4

G(t) = /\/_dt e
G(:z:):/(sinm+cosx)dx:—cosx+sinm+0
H(m):/(4x3—7)dx:x4—7x+0
P(t):/(2+sint)dt:2t—cost+0

/—dt—2t1/2+C

0= [ Ga=-Zo
/—dm-——-{-C

=3, F(z) =3z + C.F(0) =0impliesthat3-0+ C = 0,s0C = 0. Thus F(x) = 3z isthe only possibility.
f(z) =2z,%0 F(z) = 2> + C. F(0) = 0 impliesthat 0> + C = 0, s0 C = 0. Thus F(z) = z” isthe only possibility.

f(z) = =Tz, 0 F(z) = =22 4 C. F(0) = 0 impliesthat —% - 0 + C' = 0,50 C = 0. Thus F(z) = —72%/2 isthe
only possibility.
f(z) = 1z, 0 F(z) = % + C. F(0) = 0impliesthat £ - 0> + C = 0,50 C = 0. Thus F(z) = z*/8 isthe only
possibility.

5 z? — 0? 3 S
f(z) =2°,0F(z) = 3 + C. F(0) = 0 impliesthat 5 +C=0,0C=0.ThusF(z) = 3 isthe only possibility.

f(z) =22 s0 F(z) = 222 + C. F(0) = 0 impliesthat 2 - 0*2 + C = 0,0 C' = 0. Thus F(z) = 22/ isthe
only possibility.

f(z) =244z +52%, 50 F(z) = 2z + 22° + 22® + C. F(0) = 0 impliesthat C = 0. Thus F(z) = 2z + 22° + 22°
isthe only possibility.

f(z) =sinz,s0 F(x) = —cosz + C. F(0) = 0 impliesthat —cos0 + C =0,s0C = 1. Thus F(z) = —cosx + 1
isthe only possibility.

/5mdx= ;x2+0.

4
3 gy &
/mda:—4+C



44,

46.

47.

48.

49.

50.
51.
52.

53.

55.

56.

57.
58.

59.

60.

61.

62.

63.

65.

66.

67.

68.

/sin9d9:—c050+C
3 z*
/(x —Z)dmzz—h‘—f-c

s 1y 1
/(t +t2)dt_3 -+
/4\/Edw:§w3/2+0

3 2
/(x2+5x+8)dm:%+5x

2
4 4
/t—th_—Eﬁ-C

A4+t +C
sinf + C
5e* + C

+8x+ C

1‘2
5ttt C

—cost+ C
12

7rx+m—+C

12
2 5/2
/(t3/2 +t7%7) dt = tT - 740

sin(zr + 1)+ C
1 +C

e*

2
1 1 3 1
/(y——) dy:/<y2—2+—2> dyzy——Qy——+C
Y Y 3 Y
3 3 3
/(x2+4x+3)da::<%+2a:2+3x>
0

= (9+18+9)—0=36
3 3
/1dt=1n|t|
1 t

0
=In|3| —In|1| =In3 ~ 1.0986.
/4
/ sinx dx = —cosx
0

1
2 2
/ 3e” dx = 3e”
0

=3¢ — 3¢ = 3¢ — 3 = 19.167.
5 4 3
3 2 T T
— de = | == — 2=
/2(35 wx”) dz <4 3 >

0
1

/ sinfdf = —cos b
0

14y 1
Since ty =—-+4y,
Yy Y )

2 2 2
1+
/ — -y = (ln|y|+y—>
1 Y 2 1
2 3 4 2
m—+2m der = x—+x2
o 3 12 o

idzz/efzdzz—efz—f-c

/4 \/E
2

0

5
= % — 397 =~ 29.728.

=1—cos1 =~ 0.460.
0

=In2+ g =~ 2.193.

= % +4=16/3 ~ 5.333.

= —cos% —(—cos0) = ——+1=0.293.

6.2 SOLUTIONS

323
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/4
69. / (sint + cost)dt = (—cost +sint)
0

-1
70. / 33 dr=—r?
-3 r

1
71. / 2e” dx = 2e”
0

1 /4
72. Since (tanz)’ = v ,/
z

"“:<\ﬁ V6>_F

0

-1

1
=—1+5=-8/9~ -0880.

-3

1

=2e—2=3.437.
0

/4
:tan% —tan0 = 1.
0

dr = tanzx

cos2

73. 2zdm:L2m+C,sinceiZ‘”:ln2~2””,so
In2 dzr

1
1
2%dx = — |2°
/_1 m ln2{

Problems

1
3
. :| = om2 ~ 2.164.

74. We have

4% 12 e4-1
= - = =21.
3 3 3

4 1’3
Area:/ ridr = =
1

4
3 1

75. The graph crosses the z-axis where
7T—8x+1z>=0
(z—7)(x—1) =0
soz = 1and z = 7. See Figure 6.7. The parabola opens upward and the region is below the z-axis, so

7
Area :—/ (7 — 8z + z°) dx
1
3 7
=—<7$—4x2+$—> = 36.
3 1
y=17—8x + x>
x
L 7

Figure 6.7
76. Thegraph is shown in the figure below. Sincecos 6§ > sin for 0 < 6 < 7 /4, we have

/4
Area = / (cos 6 — sin 6) df
0

/4
= (sin @ + cos0)
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77. Sincethe graph of y = ¢” is above the graph of y = cos z (see the figure below), we have

1
Area :/ (e® — cosz) dx
0
1 1

:/ ezdm—/ coszdx
0 0

1 1
—sinzx
0

T
=€

0

1 0 . .
=e —e —sinl+sin0

=e—1-—sinl.

78. Theareaunder f(z) = 8z betweenz = 1 and z = bisgivenby || lb (8z)dx. Using the Fundamental Theorem to evaluate
the integral:
b
Area = 4z”| =4b” — 4.
1
Sincethe areais 192, we have

4p® — 4 =192
4b® = 196

b’ =49
b=4T7.

Since b islarger than 1, we haveb = 7.
79. Thegraph of y = 2% — ¢? has z-intercepts of & = +¢. See the figure below. The shaded area is given by

Area = —/ (x> — ) dx

We want c to satisfy (4¢*)/3 = 36, s0¢ = 3.

y=a2 ¢
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80. We have

1 1o 1 [(a®
Averagevalue = ——— (z® 4+ 1)dzx —+z
10-0/,

Y 108 103
10 \3 < +10 0) 3

0 10 \ 3

We seein Figure 6.8 that the average value of 103/3 ~ 34.33 for f(x) looks right.

100 f(@)=22+1
50
3433 —————————F———————
1 1 xT
5 10
Figure 6.8

81. The average value of v(z) ontheinterval 1 <z < cis
L e (Y
c—1/ =? c—1 x/ |,

/ 6d1’=1,W€ha\/e§:1,SOC=6.
C
1

Since

2

c—1
82. (a) Theaveragevaueof f(t) = sint over 0 < ¢t < 27 isgiven by theformula

2m —

1 27
Average = / sint dt
0 0

2m
= % (—cost)

0

1

271_( cos2m — (—cos0)) =0
We can check this answer by looking at the graph of sin ¢ below. The area below the curve and above the t-axis
over theinterval 0 < ¢t < m, A1, is the same as the area above the curve but below the t-axis over the interval
m <t < 2w, A>. When we take the integral of sin ¢ over the entireinterval 0 < ¢ < 27, weget A; — Ay = 0.

(b) Since

™

/ sintdt = —cost| = —cosw— (—cos0)=—(—-1)—(-1)=2,
0 0

the average value of sint on 0 < ¢ < wisgiven by

1 [7 2
Averagevalue = —/ sintdt = —.
™ 0 Vs



83.

84.

Solutions for Section 6.3
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Since C'(x) = 4000 + 10z we want to evaluate the indefinite integral
/ (4000 + 10z) dz = 4000z + 5z° + K
where K is a congtant. Thus C(z) = 522 + 40002 + K, and the fixed cost of 1,000,000 riyal means that C(0) =
1,000,000 = K. Therefore, the total cost is
C(x) = 52> + 4000z + 1,000,000.
Since C(z) depends on 2, the square of the depth drilled, costs will increase dramatically when = grows large.

(@ CCly dumped
16

: t
3 7

(b) 7 years, because t* — 14t + 49 = (¢t — 7)? indicates that the rate of flow was zero after 7 years.
(c)

7
Area under the curve = 3(16) +/ (t> — 14t +49) dt
3

7
=48 + (%t?’ — 7t + 49t)

3

4
:48+%—343+343—9+63—147
208 1 .
= — = 69= cubic yards.
3 693 y

Exercises

1

2.

4
y=/(m3+5)dx=%+5x+c

yz/(Sx—i—l) dr = 42 +In|z| + C
T
W:/4\/Zdt:§t3/2+c

r= /3sinpdp: —3cosp+C

Sincey = z + sinz — m, we differentiate to see that dy/dxz = 1 + cos z, S0 y satisfies the differential equation. To show
that it also satisfiesthe initial condition, we check that y(7) = 0:

y=x+sinxr —7
y(r) = +sinw — 7 = 0.
y:/(6x2+4:1:)dx:2a:3+2x2+0. If y(2) = 10, then 2(2)® +2(2)> 4+ C =10and C = 10 — 16 — 8 = —14.
Thus, y = 22% 4 222 — 14.

P= / 10e" dt = 10e’ + C. If P(0) = 25,then 10e° + C = 2550 C = 15. Thus, P = 10e’ + 15.

s = /(—32t +100) dt = —16t> + 100t + C. If s = 50 when ¢ = 0, then —16(0) + 100(0) + C = 50, s0 C = 50.
Thus s = —16¢> + 100t + 50.
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9. Integrating gives
/%dz: /(2+sinz)dz:2z—cosz+0.
If ¢ =5 when z =0, then2(0) — cos(0) + C =5s0C =6.Thusq = 2z — cos z + 6.
10. We differentiate y = xze ™ + 2 using the product rule to obtain

dy _ (- -2
ﬁ—x(e (—1))+(1)e +0

=—ze " +e”
= (1-2)e,

x

and soy = ze~* + 2 satisfies the differential equation. We now check that y(0) = 2:

y=mxe “+2
y(0) =0’ +2=2.

Problems

11. (a) Acceleration = a(t) = —9.8 m/sec?
Velocity = v(t) = —9.8¢ + 40 m/sec
Height = h(t) = —4.9t> 4+ 40t + 25 m

(b) At the highest point,
v(t) = —9.8t +40 =0,

0 40
t = — = 4.08 seconds.
9.8
At that time, h(4.08) = 106.6 m. We see that the tomato reaches a height of 106.6 m, at 4.08 seconds after it is
thrown.

(c) Thetomato lands when h(t) = 0, so
—4.9t" + 40t + 25 = 0.

The solutionsaret = —0.58 and ¢ = 8.75 seconds. We see that it lands 8.75 seconds after it is thrown.
12. (@) y = /(2:1: + 1) dz, sothe solutionisy = 2% + = + C.
(b) Y Y

(©) Aty(1) =5,wehave1? + 1+ C =5 and so C = 3. Thus we have the solution y = z* 4+ = + 3.
13.

dy 1/2
— =kvVt=kt
i =RV

2 )
y = gktS/z +C.

Sincey = 0 whent = 0, wehaveC =0, s0
2, .32
= kt'".
Y73
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14. (a) Tofind the height of the balloon, we integrate its velocity with respect to time:

= /(—32t+40) dt

42
—325 +40t + C.

Sinceat t = 0, we have h = 30, we can solve for C to get C' = 30, giving us a height of
h(t) = —16t> + 40t + 30.
(b) To find the average velocity betweent = 1.5 and ¢ = 3, we find the total displacement and divide by time.

Average velocity = h’(S; — ’17’(51'5) _6 1_554 = —32ft/sec.

The balloon’s average velocity is 32 ft/sec downward.
(c) First, we must find the time when h(t) = 6. Solving the equation —16t> + 40t + 30 = 6, we get

6 = —16t> + 40t + 30
0 = —16t> + 40t + 24
0=2t>-5t—3
0=(2t+1)(t — 3).
Thus, t = —1/2 ort = 3. Sincet = —1/2 makes no physical sense, we use ¢ = 3 to calculate the balloon’s

velocity. At ¢t = 3, we have avelocity of v(3) = —32(3) + 40 = —56 ft/sec. So the balloon’s velocity is 56 ft/sec
downward at the time of impact.

15. Sincethe car’s acceleration is constant, a graph of its velocity against timet islinear, as shown below.

v (mph)

80

t (seconds)

The acceleration is just the slope of thisline:

do _80-0mph _ 40 _ 45 55mon
dt 6 sec 3 Sec
To convert our unitsinto ft/sec?,
40 mph 5280 ft 1 hour _ 19 55i
3 sec 1mile3600sec sec?

16. Sincethe acceleration a = dv/dt, where v isthe velocity of the car, we have

dv
— = —0.6t + 4.
dt +

Integrating gives
2
v = —0.6% + 4t + C.
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The car startsfromrest, sov = 0 when ¢ = 0, and therefore C' = 0. If z isthe distance from the starting point, v = dz/dt

and d
xr 2
== 0.3t2 4+ 4t
dt +ah
S0 0.3 4
T = —?t?’ + §t2 +C =—0.1t* + 2t + C.

Sincex = 0whent = 0,wehaveC = 0, s0
= —0.1¢% + 2¢°.

We want to solve for ¢ when z = 100:
100 = —0.1¢% + 2¢°.

This equation can be rewritten as
0.1#% — 2t + 100 = 0
t> — 20t> + 1000 = 0.
The equation can be solved numerically, or by tracing along a graph, or by factoring
(t — 10)(t* — 10t — 100) = 0.

The solutions are ¢ = 10 and ¢ = 105500 = 618 16.18. Sincewe aretold 0 < ¢ < 12, the solution we want is
t = 10 sec.
17. (a) v
80 ft/sec
v(t)
A
t
5 sec

(b) Thetotal distanceis represented by the shaded region A, the area under the graph of v(t).
(c) Thearea A, atriangle, isgiven by

A= %(base)(height) = %(5 sec) (80 ft/sec) = 200 ft.

(d) Using integration and the Fundamental Theorem of Calculus, we have A = f05 v(t)dt or A = s(5) — s(0), where
s(t) isan antiderivative of v(t).

We havethat a(t), the acceleration, isconstant: a(t) = k for some constant k. Thereforev(t) = kt+C for some
constant C. Wehave 80 = v(0) = k(0)+C = C, sothat v(t) = kt+80. Puttingint = 5,0 = v(5) = (k)(5) + 80,
or k= —80/5 = —16.

Thus v(t) = —16t + 80, and an antiderivative for v(t) is s(t) = —8t> + 80t + C. Since the total distance
traveled at ¢ = 0 is 0, we have s(0) = 0 which means C = 0. Finaly, A = f05v(t) dt = s(5) — s(0) =
(—8(5)% + (80)(5)) — (—8(0)* + (80)(0)) = 200 ft, which agrees with the previous part.

18. Sincethe acceleration is constant, agraph of the velocity versus time looks like this:
v (mph)
200mph F————————————————

t (sec)
30
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The distance traveled in 30 seconds, which is how long the runway must be, is equal to the area represented by A.
Wehave A = 1 (base)(height). First we convert the required velocity into miles per second.

200 mph =

200 miles ( 1 hour ) ( 1 minute )

hour 60 minutes 60 seconds
_ 200 miles
" 3600 second

1 .
18 miles/second.

Therefore A = 1(30 sec)(200 mph) = (30 sec) (1—18 miles/sec) = 2 miles.
(a) Sincethevelocity is constantly decreasing, and v(6) = 0, the car stops after 6 seconds.

t (sec) 0105 1| 15]|2]|25|3]|35]|4[45|5([55]|6
v(t) (ft/sec) || 30 [ 27.5| 25| 22.5|20| 175 | 15[ 12510 |75 |5(25(0

(b) Over theinterval a < t < a + 3, theleft-hand velocity is v(a), and the right-hand velocity is v(a + 3). Since we
are considering half-second intervals, At = 1, and n = 12. Theleft sumis 97.5 ft., and the right sum is 82.5 ft.
(c) Area A inthe figure below represents distance travel ed.

A= %(base)(height) = % -6-30 =90 ft.
velocity (ft/sec)

30
Deceleration

=5 ft/sec?

t (seconds)

(d) The velocity is constantly decreasing at arate of 5 ft/sec per second, i.e. after each second the velocity has dropped
by 5 units. Therefore v(t) = 30 — 5¢.

An antiderivative for v(t) is s(t), where s(t) = 30t — 2¢*. Thus by the Fundamental Theorem of Calculus,
the distance traveled = s(6) — s(0) = (30(6) — 2(6)?) — (30(0) — 2(0)*) = 90 ft. Since v(t) is decreasing, the
left-hand sum in part (b) overestimates the distance traveled, while the right-hand sum underestimates it.

The area A is equal to the average of the left-hand and right-hand sums: 90 ft = 1(97.5 ft + 82.5 ft). The
left-hand sum is an overestimate of A; the right-hand sum is an underestimate.

(@) o
160
A highest point ground
¢ (sec)
5 10
—160

(b) The highest pointisat t = 5 seconds. The object hits the ground at t = 10 seconds, since by symmetry if the object
takes 5 seconds to go up, it takes 5 seconds to come back down.

(c) Themaximum height isthe distance traveled when going up, which is represented by the area A of the triangle above
the time axis.

Area = %(160 ft/sec) (5 sec) = 400 feet.

(d) Theslopeof thelineis —32, sov(t) = —32t + 160. Antidifferentiating, we get s(t) = —16t> 4 160t + so. so = 0,
S0 s(t) = —16t> +160t. Att = 5, 5(t) = —400 + 800 = 400 ft.
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The equation of motionisy = —§+vot+yo = —16¢2+128t+320. Taking thefirst derivative, we get v = —32t+128.
The second derivative givesusa = —32.
(a) Atitshighest point, the stone’s velocity is zero:
v=0=-32t+128,s0t =4.
(b) Att =4, theheightisy = —16(4)% 4 128(4) + 320 = 576 ft
(c) When the stone hits the beach,

y=0=—16t> + 128t + 320
0= —t>+8t+20 = (10 — t)(2 + t).
Sot = 10 seconds.

(d) Impactisat¢ = 10. Thevelocity, v, at thistimeisv(10) = —32(10) + 128 = —192 ft/sec. Upon impact, the stone’s
velocity is 192 ft/sec downward.

(@ a(t) =1.6,s0v(t) = 1.6t + vo = 1.6¢, sincetheinitial velocity isO.

(b) s(t) = 0.8t + so, where s isthe rock’sinitial height.

(@) s = wvot— 16t2, where vy = initia velocity, and v = s’ = vo — 32¢. At the maximum height, v = 0, SOvp = 32¢max.
Plugging into the distance equation yields 100 = 32tnax — 16tmax = 16tmax, SO tmax = 2 seconds, from which we
getvo = 32 (2) = 80 ft/sec.

(b) Thistime g = 5 ft/sec?, S0 s = vot — 2.5t = 80t — 2.5¢%, and v = s’ = 80 — 5¢. At the highest point, v = 0, S0
tmax = % = 16 seconds. Plugging into the distance equation yields s = 80(16) — 2.5(16)? = 640 ft.

The height of an object above the ground which begins at rest and falls for ¢ secondsis

s(t) = —16t° + K,

where K isthe initial height. Here the flower pot falls from 200 ft, so K = 200. To see when the pot hits the ground,
solve —16¢> + 200 = 0. The solution is
200
=4/—~3.54 .
t 16 3.54 seconds.

Now, velocity isgiven by s'(t) = v(t) = —32t. So, the velocity when the pot hits the ground is
v(3.54) ~ —113.1 ft/sec,

which is approximately 77 mph downwards.

The first thing we should do is convert our units. We'll bring everything into feet and seconds. Thus, the initial speed of
thecaris

hour 3600 sec 1mile
We assume that the acceleration is constant as the car comes to a stop. A graph of its velocity versus time is given in
Figure 6.9. We know that the area under the curve represents the distance that the car travels before it comes to a stop,
157 feet. But thisareaisatriangle, soitis easy to find ¢, the time the car comes to rest. We solve

70 mllas< 1 hour > (5280“36‘) ~ 102.7 ft/sec.

1
5(102.7)ty = 157,

which gives
to = 3.06 sec.
Since acceleration isthe rate of change of velocity, the car’s acceleration is given by the slope of thelinein Figure 6.9.

Thus, the acceleration, k, is given by
102.7 -0

- ~— 2
k= 0—3.06 33.56 ft/sec”.
Notice that & is negative because the car is slowing down.
y
102.7 fi/lsec
y=v(t)
t
to

Figure 6.9: Graph of velocity versustime
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Solutions for Section 6.4

Exercises

1

By the Fundamental Theorem, f(z) = F'(zx). Since f is positive and increasing, F is increasing and concave up.
Since F(0) = foo f(t)dt = 0, the graph of F' must start from the origin.

2. F(z)

T
Since f is adways poditive, F is aways increasing. F' has an inflection point where f = 0. Since F(0) =
foo f(t)dt = 0, F goes through the origin.
3. F(z)

T

Since f isaways non-negative, F' isincreasing. F' isconcave up where f isincreasing and concave down where f is
decreasing; F’ has inflection points at the critical points of f. Since F'(0) = f 00 f(t)dt = 0, the graph of F' goes through
the origin.

Table 6.3

z |0 05 1 15 2
I(z) [0|050| 109|203 | 3.65

5. Using the Fundamental Theorem, we know that the change in F between x = 0 and z = 0.5 isgiven by
0.5
F(0.5) — F(0) = / sintcostdt = 0.115.
0

Since F(0) = 1.0, we have F/(0.5) ~ 1.115. The other values are found similarly, and are given in Table 6.4.

Table 6.4

b 0 0.5 1 1.5 2 2.5 3
F(b) 1] 1.11492 | 1.35404 | 1.4975 | 1.41341 | 1.17908 | 1.00996

6. (a) Againusing 0.00001 as the lower limit, because the integral isimproper, gives Si(4) = 1.76, Si(5) = 1.55.
(b) Si(z) decreases when the integrand is negative, which occurswhen « < z < 2.
7. If f'(x) = sin(2?), then f(z) is of theform
flx)=C+ / sin(t?) dt.
Since f(0) = 7, wetakea = 0 and C = 7, giving

flz)=7 +/ sin(t?) dt.
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sin x

If f/(z) =

. ,then f(z) isof theform

f(m):C+/ SlTntdt.
Since f(1) = 5, wetakea = 1 and C = 5, giving

f(a:):5+/ %ntdt.
1

If f'(z) = Si(z), then f(z) isof theform
flx)y=C +/ Si(t) dt.
Since f(0) = 2, wetakea = 0 and C = 2, giving

fle)=2+ / Si(t) dt.

Problems

10.

11

12.

20

10

710 -

We know that F'(z) increases for z < 50 because the derivative of F is positive there. See figure above. Similarly,
F(x) decreases for z > 50. Therefore, the graph of F risesuntil z = 50, and then it begins to fall. Thus, the maximum
value attained by F' is F'(50). To evaluate F'(50), we use the Fundamental Theorem:

50

F(50) — F(20) = / F'(z)dz,

20

which gives

50 50

F(50) = F(20) +/ F'(z)dz = 150 +/ F'(z)dz.

20 20
The definite integra equals the area of the shaded region under the graph of F, which is roughly 350. Therefore, the
greatest value attained by F'is F'(50) ~ 150 + 350 = 500.

Since F'(z) = e and F(0) = 2, wehave

F(z) = F(0) + / et dt =2 +/ e~ dt.
0 0

Subsgtituting x = 1 and evaluating the integral numerically gives

1
F(1)=2+ / e~ dt = 2.747.
0
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14.
15.
16.

17.

18.

10.

20.

21.
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Since G' (z) = cos(z?) and G(0) = —3, we have
G(z) = G(0) + /’” cos(t?) dt = —3 + /E cos(t?) dt.
Substituting x = —1 and evaluating the integral m;)merically gives ’

—1
G(-1)=-3 +/ cos(t”) dt = —3.905.
0

cos(z?).
(1 + )2,

arctan(z?).

4 Wcos(ZS)dz 4 tcos(ZS)dz = —cos(t?)
dt S dt i B '

t

1 T
i lnt‘dt:i — Intdt | = —Inzx.
dx - dx L

Considering Si(z?) as the composition of Si(u) and u(z) = =*, we may apply the chain rule to obtain
d _ d(Si(u)) du

dx du dx
_ sin u 9
U
2sin(z?)

x

(@) The definition of g gives g(0) = [ f(t) dt = 0.
(b) The Fundamental Theorem gives g'(1) = f(1) = —2.

335

(c) The function g is concave upward where ¢ is positive. Since g” = f', we see that g is concave up where f is

increasing. Thisoccursontheinterval 1 < z < 6.

(d) The function g decreases from x = 0 to z = 3 and increases for 3 < = < 8, and the magnitude of the increase is

more than the magnitude of the decrease. Thus g takes its maximum value at = = 8.

(@ since L (cos(2t)) = —2sin(2t), we have F(r) = / sin(26) dt = — = cos(2t)| = —2(1—1) = 0.
dt 2 0 2

™

(b) F(mw) = (Areaabovet-axis) — (Areabelow t-axis) :00. (The two areas are equal.)

1 sin 2t

-1

(¢) F(z) > 0 everywhere. F(z) = 0 only at integer multiples of «. This can be seen for x > 0 by noting F(z) =
(Areaabove t-axis) — (Areabelow ¢-axis), which is aways non-negative and only equals zero when z is an integer

multiple of . For z > 0

F(—z) = / sin 2t dt
0

0
= —/ sin 2t dt

= / sin 2t dt = F(z),
0

since the areafrom —z to 0 is the negative of the areafrom 0 to z. Sowe have F'(z) > 0 for al z.
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(@ F'(z) = ﬁ by the Construction Theorem.

(b) Forz > 2, F'(z) > 0, s0 F(z) isincreasing. Since F''(z) = — (11 E < 0 forz > 2, the graph of F(z) is
r\mnx
concave down.
© ;
F(z)

2

1
1 1 1 1 1 xT

%[z orf(z)] = erf(a:)%(x) + z%[erf(x)]

B d 2 [T _p
—erf(a:)—l—xdm (\/7?/0 e dt>

22

=erf(z) + 11'67

NG

If welet f(z) = erf(z) and g(z) = \/z, then we are looking for -L[f(g(z))]. By the chain rule, this is the same as

g'(x)f'(g(x)). Since
/ d 2 ’ —t2
2 22

e~

and ¢'(z) = ——=, we have

and so

d
LVl = 5 e T = e

If we let f(z) = [] e~ dt and g(z) = 2, then we use the chain rule because we are looking for L f(g(x)) =
F'(g(2)) - ¢'(x).Since f'(z) = e, we have

a(f

3
We split the integral f; e~ dt into two pieces, say at t = 1 (though it could be at any other point):

6

et dt) = f'(z®) - 32” = e~ 347 = 337",

3 3 3

v 2 v 2 1 2 v 2 v 2
/ et dt:/ et dt+/ et dt:/ et dt—/ e ¥ dt.
T 1 T 1 1

We have used the fact that [ =" dt = — [" ¢~ dt. Differentiating gives

3 3
d (" g d ([ eeg)_d ([
e (/x e dt) =7 (/1 e dt) e (/1 e dt>

For the first integral, we use the chain rule with g(z) = = asthe inside function, so the final answer is

3
d S _ _ _ _
da (/ € tzdt> — e (7 352 _ 7" —35% " _ 7
dx -



6.5 SOLUTIONS 337

Solutions for Section 6.5

Exercises

1. (a) Theobject isthrown from an initial height of y = 1.5 meters.
(b) The velocity is obtained by differentiating, which givesv = —9.8t + 7 m/sec. The initial velocity isv = 7 m/sec
upward.
(c) The acceleration due to gravity is obtained by differentiating again, giving g = —9.8 m/sec?, or 9.8 m/sec® down-
ward.

2. Since height is measured upward, theinitial position of the stoneish(0) = 250 metersand theinitial velocity isv = —20
m/sec. The acceleration due to gravity isg = —9.8 m/sec?. Thus, the height at time t is given by h(t) = —4.9t* — 20t +
250 meters.

Problems

3. The velocity as afunction of time is given by: v = vy + at. Since the object starts from rest, vo = 0, and the velocity
is just the acceleration times time: v = —32¢. Integrating this, we get position as a function of time: y = —16t> + yo,
where the last term, yo, is the initial position at the top of the tower, so yo = 400 feet. Thus we have a function giving
position as afunction of time: y = —16¢> 4 400.

To find at what time the object hits the ground, we find ¢ when y = 0. We solve 0 = —16t> + 400 for ¢, getting
t> = 400/16 = 25, s0t = 5. Therefore the object hits the ground after 5 seconds. At this time it is moving with a
velocity v = —32(5) = —160 feet/second.

4. In Problem 3 we used the equation 0 = —16t> + 400 to learn that the object hits the ground after 5 seconds. In a more
genera form thisisthe equation y = —:‘thz + vot + yo, and we know that vo = 0, yo = 400 ft. So the moment the object
hits the ground is given by 0 = —%tZ + 400. In Problem 3 we used g = 32 ft/sec?, but in this case we want to find a g
that results in the object hitting the ground after only 5/2 seconds. We put in 5/2 for ¢ and solve for g:

2(400) _ >
573y — 128U

g 2
0==5(3) +400, 09 =

N | Ot

5. a(t) = —32. Since v(t) is the antiderivative of a(t), v(t) = —32t + vo. But vo = 0, SO v(t) = —32¢t. Since s(t) is
the antiderivative of v(t), s(t) = —16t> + so, where s isthe height of the building. Since the ball hits the ground in 5
seconds, s(5) = 0 = —400 + so. Hence so = 400 feet, so the window is 400 feet high.

6. Lettimet = 0 be the moment when the astronaut jumps up. If acceleration due to gravity is 5 ft/sec® and initia velocity
is 10 ft/sec, then the velocity of the astronaut is described by

v(t) = 10 — 5t.

Suppose y(t) describes his distance from the surface of the moon. By the Fundamental Theorem,

y(t) —y(0) = / (10 — bz) dx
1.
y(t) = 10t — S5¢°.

since y(0) = 0 (assuming the astronaut jumps off the surface of the moon).
The astronaut reaches the maximum height when his velocity is0, i.e. when

dy _

dt
Solving for ¢, we get t = 2 sec asthe time at which he reaches the maximum height from the surface of the moon. At this
timehisheight is

v(t) =10 — 5t = 0.

y(2) =10(2) — %5(2)2 =10 ft.
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When the astronaut is at height y = 0, he either just landed or is about to jump. To find how long it is before he comes
back down, we find when heisat height y = 0. Set y(¢) = 0 to get

1._ .
0:10t—§5tz
0 = 20¢ — 5¢°
0 =4t — ¢
0 =t(t—4).

So we havet = 0 sec (when he jumps off) and ¢t = 4 sec (when he lands, which gives the time he spent in the air).

Let the acceleration due to gravity equal —k meters/sec?, for some positive constant %, and suppose the object falls from
aninitia height of s(0) meters. We have a(t) = dv/dt = —k, so that

v(t) = —kt + vo.

Since theinitial velocity is zero, we have

which means v = 0. Our formula becomes

This means 5
—kt
(t) = 5 + so
Since R
—k(0
50) = 20 4 g,
we have so = s(0), and our formula becomes
—kt?
s(t) = 5t 5(0).

Suppose that the object falls for ¢ seconds. Assuming it hasn't hit the ground, its height is

_ —kt?
)

s(t) + s(0),

so that the distance traveled is

2

s(0) — s(t) = '% meters,
which is proportional to 2.

a) t = L, where t is the time it takes for an object to travel the distance s, starting from rest with uniform
L, ) g
5 max

acceleration a. vmax 1S the highest velocity the object reaches. Since itsinitial velocity is 0, the mean of its highest
velocity and initial velocity iS 3 vUmasx-

(b) By Problem7, s = %gtz,whereg isthe acceleration dueto gravity, so it takes 4 /200/32 = 5/2 seconds for the body
to hit the ground. Since v = gt, vmax = 32(2) = 80 ft/sec. Galileo's statement predicts (100 ft) /(40 ft/sec) = 5/2
seconds, and so Galileo's result is verified.

(c) If the acceleration is aconstant a, then s = Lat?, and vmax = at. Thus

at®

= =t.

1 1
§Umax §at

=

S

9. (a) Sinces(t) = —1gt? thedistance abody falsin thefirst second is

1 .
5(1)=—5.g-12=——.

<

In the second second, the body travels
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In the third second, the body travels

s(3) —s(2) = —% (9-3°-g-2°) = —%(99—49) = _57!;7

and in the fourth second, the body travels

5(9) = 5(3) = —5 (947 = 9 3) = 3 (169 — 9g) = ~ L.

(b) Galileo seems to have been correct. His observation follows from the fact that the differences between consecutive
squares are consecutive odd numbers. For, if n is any number, then n® — (n— 1)2 = 2n — 1, which isthe n*" odd
number (where 1 isthefirst).

10. If r isthe distance from the center of the earth,

GM

9g9=——75
r2’

SO at 2 meters

GM
98 = (6.4 x 105 4 2)2°

At 100 meters above the ground,
GM

Inew = 6.4 x 106 + 100)2

Ggnew GM / GM

98 (6.4 x 105 +100)2 / (6.4 x 106 + 2)2

2
(6,400,002 " ,
Gnew = 9.8 <6, 200, 100> =9.79969 ... m/sec”.

Thus, to the first decimal place, the acceleration due to gravity is still 9.8 m/sec® at 100 m above the ground.
At 100,000 meters above the ground,

2
6,400,002 _ 2
Jnew — 9.8 <m> = 9.5m/sec .

Solutions for Chapter 6 Review,

Exercises
1. %:1:2 + 7z +C

2. /(4t+%)dt:2t2+ln|t|+0
3. /(2+cost)dt:2t+sint+0
4./7ezdm:7ez+0
5. /(36m+2sinm)dx:3ez—2cosm—+-C
2 2 z’ 2
6. /(:1:+3) dx:/(a: +6:1:+9)dx=?+3:1: +9zx+C

7. /%dx:16x1/2+0

8. 3ln|t|+%+C

9. " +5x+C

10. 227 —2In|z|+ C
11. tanz +C
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12 Lo, smcedd( ®) = (In2) -2

In2
13, /(a:+1) dz @w_

Another way to work the problem isto expand (z + 1)* to 2> + 2z + 1 asfollows:

3
/(a:+1)2dx:/(a:2+2x+1)dx=%+a:2+a:+0.

) 13 3 2 1 3 1 . ) 3
These two answers are the same, since (x—; ) —_— +3e +3r+ :x—+a:2+a:+§,wh|ch|s% + 2% + =z,

3 3
plus a constant.
14, /(x+1) dz ﬂ+g,

4
Another way to work the problem isto expand (z + 1)® to 2 4 322 + 3z + 1:

4

/(x+1)3dm:/(x3+3x2+3x+1)dm=%+x3+gm2+m+0.

4
It can be shown that these answers are the same by expanding (w+1) .

15 S+ 1) +C
r+1

16. Since f(z) = =1+ l,theindefiniteintegral ist+In|z|+C

17. Since f(z )_z+1+ , theindefinite integral is = x *+r+nfz|+C

18. 3sint + 2t*% + C
19. 3sinz + 7Tcosxz + C
20. 2ln|z| —mcosz + C
21. 2e¢® —8sinx + C

2. P(t):/%dt:ln|t|+0

23. F(z):/cosxda::sinx—l—c

1 1
25. G(z) = /sma:da:——cosa3+0
26. F(w):/5em dz =5e" +C
5
27. H(t):/;dt 5In|t| +C
1 t?
28, F(t) = (t+—) =L i+
t 2
29. F(z):/(ex—l)dx:ez—x—l—c

3 3
30. F(:p):/f(x)dx:/dex:%+C.IfF(0):4,thenF(0):0+C:4andthusC:4.SoF(x):%+4.

4 4
31. Wehave F(z) = % +22° — 42+ C.Since F(0) = 4,wehave4 =0+ C,s0C = 4. S0 F(z) = % +22° — 4z +4.

32, F(m):/ﬁdm:§m3/2+0. IfF(O):4,thenF(0):0+C:4andthUSC:4.SoF(z):§x3/2+4.

33. F(:z:):/e’”dm:ew+C.IfF(0):4,thenF(0):1+C:4andthusC:3.SoF(:z:):e’”+3.
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34. F(z):/sina:da::—cosa:—l—C. If F(0) =4,then F(0) = -1+ C =4andthusC = 5. S0 F(z) = —cosx + 5.

35. F(z):/cosa:da::sinx—l—C.lfF(O):4,thenF(0):0+C’:4andthusC:4.SoF(x):sinx—|—4.

36. We have N
/ (62° + 8z + 5)dx = (2z° + 42° +5a:)|? = (54+36+15) — (2+4+5) = 94.
1

Problems
3
=9-0=09.

3 1'3
37./a:2dx:—
0 3 0

38. Sincey = z® —z = z(x — 1)(z + 1), the graph crosses the axis at the three points shown in Figure 6.10. The two regions
have the same area (by symmetry). Since the graph isbelow the axisfor 0 < = < 1, we have

Area :2<—/01 (z* — ) da:>

_ x_“_x_”__Q(z_z)_z
- 4 2 0_ 4 2) 2

y

Figure 6.10

39. The areawe want (the shaded areain Figure 6.11) is symmetric about the y-axis and so is given by

/3 2
1
Area = 2/ (cosx - = (ia:) > dx
o 2 \m
/3 /3 9
=2 cosxdx — —2x2 dx
0 o T

/3

@l
@[y

Yy =Ccosx

Figure 6.11
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40. Sincey < 0fromz =0toxz =1andy > 0 fromz = 1tox = 3, we have

1 3
Area = —/ (32> —3) dx +/ (32% —3) da
0 1

1 3

= — (x3 —Sx) + (m3 —31‘)

1

—(—2-0)+ ?18 —(-2)) =2+20 =22

41. (a) SeeFigure6.12. Since f(z) > 0for0 < z < 2and f(z) < 0for2 < z < 5, we have

Area= /f da:—/f

2/ (x® — 72” +10a:)dx—/ («® — 72® + 10z) dx

0 2

Y 5 ? Y 5
_<Z_T+5‘” TN\T )|,
[(4—5—;+20)—(0—0+0)] - [(@—ﬁjtlﬁ) (4—?+20)]

4 3
253
12°

5

5
T
2 v

Figure 6.12: Graph of f(z) = 2 — 72 + 10z

() Calculating fo ) dx gives

5 5
f(z)dz = / («® — 72 +10z) dz
0

z? Tz® ’
= (z R
B (625 875

229 219 41 195) — (0 —
T 5) (0—0+0)

125
12

This integral measures the difference between the area above the z-axis and the area below the z-axis. Since the
definite integral is negative, the graph of f(x) lies more below the z-axis than above it. Since the function crosses

theaxisat x = 2,
5 2 5
16 63 —125
/Of(f)df—/of(m)d$+/2 f(ﬂf)dﬂf—?—z—T;

2 5
16 64 253
Area —/0 f(x)dx—/2 f(z)dz = 3 +Z =13

42. Sincethe area under the curveis 6, we have

b ,
— dx = 2z1/*
/1 NG

0

whereas

b
=2b"/% — 2(1) = 6.

1

Thusb'/? = 4 and b = 16.
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43. Thegraph of y = ¢(1 — z?) has z-intercepts of = = +1. See Figure 6.13. Sinceit is symmetric about the y-axis, we have

We want the areato be 1, so

44. The curvesintersect at (0, 0) and (r,

Thusthetotal areais

Another approach isto notice that the area between the two curvesis (area A) + (areaB).

AreaB

™
AreaA :/ sinxdr = —cosx
0

3
Thusthe areais2 + %

1 1
Area = c(1 —2°)de = 20/ (1—2%)dz
0

a:3> ! 4c
= 2c <m—— = —
3 o 3
@_1 iving ¢= -
Y
c
xr
-1 1
y=c(l—2?)
Figure 6.13

Y height= sinz — x(z — )

/

/[Sinm—x(x—rr / (sinz — 2* + 7z) de
0 0

< cosm———f-TrTgUz) ’
(59) o
=2

6

= —/ z(z — m) dr sincethe functionisnegativeon 0 < z < =«
0

7r 3 3 3

r_T_T.
2 3

(2 _ma?
3 2

0
™

=2
0

0). At any z-coordinate the “height” between the two curvesissinz — z(z — 7).
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45. SeeFigure 6.14. The average value of f(x) isgiven by

1 [° 1(2 4
A _ . de = = | 243/2
verage 9_0/0\/595 5|37

fl@)=vz

2 Average value

Figure 6.14

46. Thetotal amount of dischargeisthe integral of the discharge ratefromt = 0tot = 3:

47. (a)

(b)

(©

48. (a)

3
Total discharge = / (> — 14t 4+ 49) dt
0

= ﬁ—7t2+49t
“\3

=(9—-63+4147) -0
= 93 cubic meters.

3

0

Since f'(t) is positive on the interval 0 < ¢ < 2 and negative on the interval 2 < ¢t < 5, the function f(¢) is
increasingon 0 < ¢ < 2 and decreasingon 2 < t < 5. Thus f(t) attains its maximum at ¢ = 2. Since the area
under the t-axis is greater than the area above the ¢-axis, the function f(t) decreases more than it increases. Thus, the
minimumisatt = 5.

To estimate the value of f at ¢ = 2, we see that the area under f'(t) betweent = 0 and ¢ = 2 isabout 1 box, which
has area 5. Thus,

f(2) = £(0) + / f'(t)dt =~ 50 + 5 = 55.

The maximum value attained by the function is f(2) ~ 55.
The area between f'(¢) and the t-axis between ¢t = 2 and ¢t = 5 is about 3 boxes, each of which has an area of
5. Thus

f(5) = f(2) +/ f'(t)dt = 55 + (—15) = 40.

The minimum value attained by the function is f(5) = 40.
Using part (b), we have f(5) — f(0) = 40 — 50 = —10. Alternately, we can use the Fundamental Theorem:

5
f(5) — £(0) = / f(t)dt ~5—15 = —10.
0
Starting at * = 3, we are given that f(3) = 0. Moving to the left on theinterval 2 < = < 3, we have f'(z) = —1,
50 £(2) = f(3) — (1)(=1) = 1. Ontheinterval 0 < z < 2, wehave f'(z) = 1,50

f0)=F2)+1(-2) = -1

Moving to theright from z = 3, weknow that f'(z) = 20n3 < z < 4. So f(4) = f(3) + 2 = 2. On the interval
4<z<6, f'(r)=-2%
f(6) =f(4) +2(-2) = -2.

Ontheinterval 6 < =z < 7, wehave f'(z) = 1, s0
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|
T T 1
_IA/1234567

-2 +

(b) Inpart () Wefound that f(0) = —1and f(7) = —1.

(c) Theintegral fo x) dz isgiven by the sum
/ f'(z (D©2) + (=1)(1) +(2)(1) + (=2)(2) + (1)(1) = 0.
Alternatively, knowing f(7) and f(0) and using the Fundamental Theorem of Calculus, we have
/f (1) = £(0) = ~1 - (~1) = 0.
49, Point of
inflection
l f(2)
1 1 1 T
1 T2 3 T4

50. Inflection point

Local max

! f(=)

Local min \

!

1 T2 X3 T4

Inflection
point

51. F(zx) represents the net area between (sint)/t and the t-axisfrom¢ = 7 tot = x, with area counted as negative for
(sint)/t below the t-axis. As long as the integrand is positive F'(z) is increasing. Therefore, the global maximum of
F(x) occurs at « = m and is given by the area

A /7T sin ¢ dt
1= .
/2 t

Atz = r/2, F(z) = 0. Figure 6.15 shows that the area A, islarger than thearea A». Thus F((z) > 0 for 2 < z < 2F.
Therefore the global minimumis F(5) = 0.

Figure 6.15
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52. Since B isthe graph of adecreasing function, the graph of its derivative should fall below the z-axis. Thus, f could be C
and f could be B. Since the graph of B isabove the z-axis and represents a decreasing function, the function f 0‘” f@t)dt
should be increasing and concave down. Thus, A could be the graph of f 0’” f(¢)dt.

53. A function whose derivative ise®” is of the form

flz)=C+ / e’ dt  for somevalueof C.

(a) To ensure that the function goes through the point (0, 3), wetakea = 0 and C = 3:

f(z) =3+/zet2dt.
0

(b) To ensure that the function goes through (—1,5), wetakea = —1 and C' = 5:

f(z) :5+/“” e’ dt.

1

54. We know the height is given by
s = —25¢% 4+ 72t + 40,

so the velocity is given by
v = —50t + 72

and the acceleration is given by
a = —50.

The acceleration due to gravity is —50 ft/sec> downward. Since v(0) = 72, the object was thrown at 72 ft/sec. Since
s(0) = 40, the object was thrown from a height of 40 ft.

55. The graph of h(t) must slope downwards most steeply when /' (t) has its minimum. The graph of h(t) should have its
minimum about two-thirds of the way through the time interval (when the graph of ' (¢) intersects the z-axis), and have
itsfinal value about half-way between its maximum and minimum values. A possible graph of h(t) isgivenin Figure 6.16.
The placement of the horizontal axis below the graph is arbitrary.

Figure 6.16

56. Let v bethe velocity and s be the position of the particle at time ¢. We know that a = dv/dt, so acceleration is the slope
of the velocity graph. Similarly, velocity is the slope of the position graph. Graphs of v and s are shown in Figures 6.17
and 6.18, respectively.

Figure 6.17: Velocity against time Figure 6.18: Position against time
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57. (a) Since6 sec=1/10 min,

(b)

58. (a)

(b)

(©

59. (a)

(b)
(©

(d)

2500 — 1100
1/10

We know angular acceleration is the derivative of angular velocity. Since

Angular acceleration = = 14,000 revs/min®.

Angular acceleration = 14,000,

we have
Angular velocity = 14,000t + C.

Measuring time from the moment at which the angular velocity is 1100 revg/min, we have C' = 1100. Thus,
Angular velocity = 14,000¢ + 1100.

Thus the total number of revolutions performed during the period from¢ = 0 to¢ = 1/10 min isgiven by

Number of 1/10 . 110 .
. = / (14000t + 1100)dt = 7000¢> + 1100t = 180 revolutions.
revolutions o o
Since the rotor is slowing down at a constant rate,
. 260 — .
Angular acceleration = 60175350 = —60 revs/min®.

Units are revolutions per minute per minute, or revs/min?.
To decrease from 350 to 0 revs/min at a deceleration of 60 revs/min?,

Time needed = % =~ 5.83 min.

We know angular acceleration is the derivative of angular velocity. Since
Angular acceleration = —60 revs/min®,

we have
Angular velocity = —60t + C.

Measuring time from the moment when angular velocity is 350 revs/min, we get C' = 350. Thus

Angular velocity = —60t + 350.

347

So, the total number of revolutions made between the time the angular speed is 350 reve/min and stopping is given

by:
5.83
Number of revolutions = / (Angular velocity) dt
0
5.83 5.83
:(/ﬁ (—60t + 350)dt = —30t> + 350t
0 0
= 1020.83 revolutions.
Using g = —32 ft/sec?, we have

t (se0) o[l1]2] 3 [ 4 | 5
v(t) (fisec) | 80 | 48] 16 | —16 | —48 | —80

The object reaches its highest point when v = 0, which appearsto be at ¢ = 2.5 seconds. By symmetry, the object

should hit the ground again at ¢ = 5 seconds.

Left sum = 80(1) +48(1) + 16(%) = 136 ft , which is an overestimate.

Right sum = 48(1) + 16(1) + (—16)(%) = 56 ft, which is an underestimate.
Note that we used a smaller third rectangle of width 1/2 to end our sum at ¢t = 2.5.
We have v(t) = 80 — 32t, so antidifferentiation yields s(t) = 80t — 16t> + sq.
But so = 0, S0 s(¢) = 80t — 16t°.

Att = 2.5, s(t) = 100 ft., so 100 ft. is the highest point.
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60. The velocity of the car decreases at a constant rate, so we can write: dv/dt = —a. Integrating thisgivesv = —at + C.
The constant of integration C' isthe velocity when ¢t = 0, so C' = 60 mph = 88 ft/sec, and v = —at + 88. From this
equation we can see the car comesto rest at timet = 88/a.

Integrating the expression for velocity we get s = —%¢* + 88t + C, where C istheinitial position, so C' = 0. We
can use fact that the car comesto rest at time ¢ = 88/a after traveling 200 feet. Start with

s= —%tQ + 88t,

and substitute t = 88/a and s = 200:

2 2
200 = — 2 (ﬁ) +88 (ﬁ) -5
2 \a a 2a

882

= 19.36 ft/sec?
2(200) 9.36 ft/sec

61. (a) Inthebeginning, both birth and death rates are small; thisis consistent with avery small population. Both rates begin
climbing, the birth rate faster than the death rate, which is consistent with agrowing population. The birth rateisthen
high, but it begins to decrease as the population increases.

(b) bacteria’hour
bacteria/hour

~6 10 15 20 ~6 10 15

time (hours) ! ! = time (hours)
20
Figure 6.19: Difference between B and D isgreatest at ¢t ~ 6

The bacteria population is growing most quickly when B — D, the rate of change of population, is maximal;
that happens when B isfarthest above D, which isat a point where the slopes of both graphs are equal. That point is
t = 6 hours.
(c) Total number born by time¢ isthe area under the B graph from ¢ = 0 up to time ¢. See Figure 6.20.
Total number alive at time ¢ is the number born minus the number that have died, which is the area under the B
graph minus the area under the D graph, up to time ¢. See Figure 6.21.

bacteria
bacteria
B
D
‘ ‘ ‘ L time (hours) time (hours)
5 10 15 20 5 ~ 11 15 20
Figure 6.20: Number born by timet is Figure 6.21: Number alive at timet is
[, B(x) dx [1(B(z) — D()) do

From Figure 6.21, we see that the population is at amaximum when B = D, that is, after about 11 hours. This
stands to reason, because B — D isthe rate of change of population, so population is maximized when B — D = 0,
that is, when B = D.



SOLUTIONS to Review Problems for Chapter Six 349

/

‘ ‘ ‘ t (time)
t1 2t ts

62. H (height)

Suppose t; isthe timeto fill the left side to the top of the middle ridge. Since the container gets wider as you go up,
the rate dH /d¢ decreases with time. Therefore, for 0 < ¢ < ¢,, graph is concave down.

Att = t;, water startsto spill over to right side and so depth of left side doesn’t change. It takes as long for the right
sidetofill to theridge as the |eft side, namely ¢;. Thusthe graph is horizontal for t; <t < 2¢;.

For ¢t > 2t,, water level is above the central ridge. The graph is climbing because the depth is increasing, but at a
slower rate than for ¢t < ¢; because the container is wider. The graph is concave down because width is increasing with
depth. Time ¢3 represents the time when container isfull.

63. e For[0,t1], the acceleration is constant and positive and the velocity is positive so the displacement is positive. Thus,

the work done is positive.

e For [t1,t2], the acceleration, and therefore the force, is zero. Therefore, the work done is zero.

e For [t2,ts3], the acceleration is negative and thus the force is negative. The velocity, and thus the displacement, is
positive; therefore the work done is negative.

e For [ts,t4], the acceleration (and thus the force) and the velocity (and thus the displacement) are negative. Thus, the
work done is positive.

e For [t2,t4], the acceleration and thus the force is constant and negative. Velocity both positive and negative; total
displacement is 0. Since force is constant, work is 0.

CAS Challenge Problems

64. (a) Wehave Az = =9 andz; =a+i(Az)=a+i (b_—a),so, since f(z;) = =;*
n

Riemann sum :i:f(a:i)Aa:zi [a_'_i(b;a)]s(b;a).

i=1

3

(b) A CASgives

n n 4n?

zn: {a—i— i(b—a)]g(b—a) _ (a=b)(a®(n—1)% + (a’b + ab®)(n® — 1)+b3(n+1)3).

Taking the limit asn — oo gives

i 3o foei(557)] (t52) - -blepeter)

4 4 4
(c) The answer to part (b) simplifies to bz — az. Since di (’%) = z*, the Fundamental Theorem of Calculus says
X
that

b 4
3 T
dr = =

ll’l‘ 1

b

pt ot
T
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65. (@) A CASgives

. 1 . 1 1
/621 dil;' — 562z /63z d$ — 563z /e3z+5 d$ — 563z+5.

(b) Thethreeintegralsin part (a) obey the rule
/eaz+b d$ _ leaz+b.
a

(c) Checking the formula by calculating the derivative

d (1 1d
—_— (—ea“—b) = ——e‘“H'b by the constant multiple rule
dr \a adx

1 d
= —e”+b% (ax + b) by thechainrule

— eaz+b.

a
— leam+b ‘a
a

66. (a) A CASgives
. 1 . 1 . 1
/sm(?’m) dr = -3 cos(3z) /sm(4m) de = ~1 cos(4z) /sm(?’m —2)dr = -3 cos(3z — 2).
(b) Thethreeintegralsin part (a) obey the rule
/sin(ax +b)dr = 1 cos(ax +b).
a

(c) Checking the formula by calculating the derivative

d

— (—% cos(az + b))

1d .
] —=—cos(az + b) by theconstant multiple rule
x

a dx

1, . d !
_E(_ sin(az + b))% (ax + b) by thechainrule
= —%(— sin(ax + b)) - a = sin(ax +b).

67. (a) A CASgives

-2
/g: de = —Injz —1|
r—1

/x_3da:=a:—21n|a:—1|

r—1
/x_ldx=x+ln|m—2|
T —2

Although the absolute values are needed in the answer, some CASs may not include them.
(b) Thethreeintegralsin part (a) obey the rule

/$_adx:x+(b—a)ln|a:—b|.

r—>b
(c) Checking the formula by calculating the derivative

i(m+(b—a)ln|x—b|):1—+—(b—a)$ib

dz
:(a:—b)+(b—a) z—a

by the sum and constant multiple rules

—-b T xz—0b
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68. (a) A CASgives

1
/7@_1)@_3) dz = =(In|z — 3| — In|z — 1])

/m“:
/md‘”:

Although the absolute values are needed in the answer, some CASs may not include them.
(b) Thethreeintegralsin part (a) obey the rule

(Injz — 4| —lnjz —1])

(In]z + 3| —ln|z —1]).

e 2 L T

-l ap-t-lje—a
/(x—a)(x—b)dm_b—a(l o= b = In| -

(c) Checking the formula by calculating the derivative
d 1 1 1 1
dz (b_a(ln|x—b|—ln|m—a|)) T b-a (a:—b_a:—a)
1 (x—a) — (z—0b)
T b—a (x —a)(x — D)

1 ( b—a >_ 1
T b—a\(r—a)(z—b)) (xr—a)(x—10)

CHECK YOUR UNDERSTANDING

True. A function can have only one derivative.

True. Check by differentiating = (2(z + 1)*/?) =2 $(z + 1)"/? =3z + L.
True. Any antiderivative of 3z is obtained by adding a constant to z°.

True. Any antiderivative of 1/z is obtained by adding a constant to In |z|.

o c wDd e

False. Differentiating using the product and chain rules gives

d (=1 _,2 . 1 _.2 _g2?
dzx (er )_ c e

6. False. Itisnot true in general that [z f(z)de = z [ f(x)dz, so this statement is false for many functions f(x). For
example, if f(z) =1, then [z f(z)de = 2°/2+ C,butz [ f(z)de = z(z + O).
7. True. Adding a constant to an antiderivative gives another antiderivative.

8. True. If F(z) isan antiderivative of f(z), then F'(z) = f(z), sody/dz = f(z). Therefore, y = F(x) isasolution to
this differential equation.

9. True. If y = F(z) isasolution to the differential equation dy/dx = f(z), then F'(z) = f(x), so F(z) isan antideriva-
tiveof f(z).
10. True. If accelerationisa(t) = k for some constant k, k # 0, then we have

Velocity = v(t) = /a(t)dt = /kdt =kt + C1,

for some constant C'; . Weintegrate again to find position as a function of time:

2
Position = s(¢) :/v(t)dt: /(kt+01)dt: ’%+clt+cz,

for some constant C». Since k # 0, thisisaquadratic polynomial.
11. True, by the Second Fundamental Theorem of Calculus.



352

12.

13.
14.

15.

16.
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True. We see that

F(5)—F(3):/05 f(t)dt—/Osf(t)dt:/;f(t)dt.

Fase. If f ispositive then F' isincreasing, but if f is negative then F' is decreasing.

True. Since F and G are both antiderivatives of f, they must differ by a constant. In fact, we can see that the constant C
isequal to foz f(t)dt since

F(x):/z f(t)dt:/m f(t)dt+/ f(t)dt = G(z) + C.

False. Since F' and G are both antiderivatives of f, we know that they differ by a constant, but they are not necessarily
equal. For example, if f(t) = 1 then F(z) = [ 1dt =z but G(z) = [ 1dt =z —2.

True, since [ (f(t) +g(t))dt = [" f(t)dt + [ g(t)dt.

PROJECTS FOR CHAPTER SIX

1. (a) If the poorest p% of the population has exactly p% of the goods, then F'(z) = z.

(b)

(©

Any such F'isincreasing. For example, the poorest 50% of the population includes the poorest 40%, and
so the poorest 50% must own more than the poorest 40%. Thus F'(0.4) < F(0.5), and so, in general, F' is
increasing. In addition, it isclear that F/(0) = 0and F'(1) = 1.

The graph of F' is concave up by the following argument. Consider F'(0.05) — F'(0.04). Thisisthe
fraction of resources the fifth poorest percent of the population has. Similarly, F/(0.20) — F'(0.19) isthe
fraction of resources that the twentieth poorest percent of the population has. Since the twentieth poorest
percent owns more than the fifth poorest percent, we have

F(0.05) — F(0.04) < F(0.20) — F(0.19).
More generally, we can see that
F(z1 + Az) — F(x1) < F(z2 + Azx) — F(x2)

for any z; smaller than x5 and for any increment Az. Dividing thisinequality by Az and taking the limit
as Az — 0, we get
F'(xl) S F’(xg).

So, the derivative of F' isan increasing function, i.e. F' is concave up.

G istwice the shaded area below in the following figure. If the resourceis distributed evenly, then G is
zero. Thelarger GG is, the more unevenly the resource is distributed. The maximum possible value of G is
1.
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2. (a) InFigure6.22, theareaof theshadedregionis F'(M). Thus, F (M) = fOM y(t) dt and, by the Fundamental
Theorem, F'(M) = y(M).

y (annual yield)

t (time in years)
M

Figure 6.22

(b) Figure 6.23 is a graph of F'(M). Note that the graph of y looks like the graph of a quadratic function.
Thus, the graph of F' lookslike a cubic.

F’ (total yield)
20000

15000 -
10000 -
5000 r

: : ‘ ‘ — M (time in years)
10 20 30 40 50 60

Figure 6.23

() We have y
a(M) = %F(M) = %/0 y(t) dt.

(d) If thefunction a(A/) takes on its maximum at some point M, thena’(M) = 0. Since

differentiating using the quotient rule gives

_ MF'(M) — F(M)
= —

o MF'(M) = F(M).Since F'(M) = y(M), the condition for amaximum may be written as

a' (M) =0,

or as
y(M) = a(M).

To estimate the value of M which satisfies My(M) = F(M), use the graph of y(t). Notice that
F (M) isthe area under the curvefrom 0 to M, and that My(M) isthe area of arectangle of base A/ and
height y(M ). Thus, we want the area under the curve to be equal to the area of the rectangle, or A = B
in Figure 6.24. This happens when M = 50 years. In other words, the orchard should be cut down after
about 50 years.
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y (annual yield) Area B

Area A

A t (time in years)
50

Figure 6.24



