8.1 SOLUTIONS

CHAPTER EIGHT

457

Solutions for Section 8.1

Exercises
1. Each strip isarectangle of length 3 and width Az, so

Areaof strip = 3Az, <0
5
= 15.

5
Areaof region :/ 3dr = 3x
0 0

Check: Thisarea can also be computed using Length x Width =5 -3 = 15.
2. Using similar triangles, the height, y, of the strip is given by

y_z -z
376 P YTy
Thus, .
Areaof strip =~ yAz = EA:I;’,
S0
6 .T2 6
Areaof region :/ L de =0.
o 4

Check: This area can also be computed using the formula$ Base - Height = 1 -6-3 = 9.
3. By similar triangles, if w isthe length of the strip at height h, we have

%:ﬂ so fw=3(1—ﬁ).

5 5
Thus,
Areaof strip ~ wAh =3 (1 — —) Ah.
Areaof region :/53(1—%) dh = < 3h — ﬁ)
0
Check: Thisarea can aso be computed using the formula Base - Height =3 -3-5= 75

4. Suppose the length of the strip shown isw. Then the Pythagorean theorem glves
- 2 -
h2+(%) =3 0 w=2/32-h2
Thus

Areaof strip ~ wAh =2 h2Ah,
3
Areaof region = / 24/32 — h2 dh.

-3
Using VI-30 in the Table of Integrals, we have

3

Area = (h 32 — h2 + 3% arcsin (g))

= 9(arcsin 1 — arcsin(—1)) = 97.
-3

Check: This area can also be computed using the formulawr? = 9.
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5. The strip haswidth Ay, so the variable of integration is y. The length of the stripisz. Since z2 + y? = 10 and the region
isin the first quadrant, solving for  givesz = /10 — y2. Thus

Areaof strip ~ zAy = /10 — y2 dy.

The region stretchesfromy = 0 toy = v/10, so

V10
Areaof region :/ £/ 10 — y2 dy.
0

Evaluating using V1-30 from the Table of Integrals, we have

1 . Y
Area = = 10 — y2 + 10 arcsin | —=—
5

Check: This area can also be computed using the formula : 7r® = 27 (1/10)* = 27.

6. Thestrip haswidth Ay, so the variable of integration isy. The length of the stripis 2z for z > 0. For positive z, we have
x = y. Thus,

V10 5
= 5(arcsin 1 — arcsin 0) = 3™

0

Areaof strip ~ 2zAy = 2yAy.
Since theregion extendsfromy = 0toy = 4,
4

= 16.

4
Areaof region :/ 2ydy = y°
0 0

Check: The area of the region can be computed by + Base - Height = £ - 8-4 = 16.
7. Thewidth of the strip is Ay, so the variable of integration isy. Since the graphs are z = y and = = 4/, the length of the
stripisy — y2, and
Areacf strip = (y — y”)Ay.
The curves cross at the points (0, 0) and (1,1), so

9 1

1 3
Areaof region :/ (y—yz)dy:y__y_ -
o 2 3|,

8. Thewidth of the strip is Az, so the variable of integration is z. The line has equation y = 6 — 3x. The length of the strip
is6 — 3z — (2% —4) = 10 — 3z — 2. (Since 2> — 4 is negative where the graph is below the z-axis, subtracting > — 4
there adds the length below the x-axis.) Thus

Areaof strip = (10 — 3z — z°)Az.
Both graphs cross the z-axiswhere z = 2, so

2 3 2
Areaof region = / (10 — 3z — %) dz = 10z — Spp_r| 3
; 2" T3, 73

9. Each dliceisacircular disk with radiusr = 2 cm.
Volume of disk = nr’Az = 4rAz cm®.
Summing over al disks, we have
Total volume ~ Z 4w Az cm?.
Taking alimitas Az — 0, we get

Az—0

9
Total volume = lim drAzx = / 47 dz cm®.
0

Evaluating gives
9

= 367 cm’.
0
Check: The volume of the cylinder can also be calculated using the formula V' = w2 h = 722 - 9 = 367 cm®.

Total volume = 4nx
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Each dliceis a circular disk. Since the radius of the cone is 2 cm and the length is 6 cm, the radius is one-third of the
distance from the vertex. Thus, theradius at  isr = /3 cm. See Figure 8.1.

2
. < wr
Volume of dice ~ nr’Az = TAx cm?.

Summing over al disks, we have
2

Total volume =~ Z W%Am cm?.
Taking alimit as Az — 0, we get

1‘2 6 1'2
Total volume = lim r—Az= | == dzrcm’.
Az—0 9 0 9
Evaluating, we get
Total volume = ma’ ' _r. ¢ =8rcm’
93|, 9 3 '

Check: The volume of the cone can also be calculated using the formula V' = 2ar’h = 172° - 6 = 87 cm®.

T 2cm
z/3 l
¥ T
| T i
6cm
Figure 8.1

Each dliceisacircular disk. From Figure 8.2, we see that the radius at height y isr = %y cm. Thus

2
Volume of disk = mr’Ay = (%y) Ay = %ﬂ'ysz cm®.

Summing over al disks, we have
~ dr » 3
Total volume =~ Z 55 Y Ay cm”.
Taking the limit as Ay — 0, we get
4 > 4r
T lume = li —y’Ay= [ —y° °.
otal volume A;TOZ 55 Y Ay /0 55 Y dy cm
Evaluating gives

Total volume =

25 3|,

Check: The volume of the cone can also be calculated using the formulaV = tar®h = £2° . 5 = 2 2

mTeme.

[
“lS

—2—

Figure 8.2
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12. Eachdiceisarectangular dab of length 10 m and width that decreases with height. See Figure 8.3. At height v, the length

x isgiven by the Pythagorean Theorem
2 2 52

y +t =7

Solving gives x = /72 — y2 m. Thusthe width of thedabis2x = 2,/7%2 — y2 and
Volume of slab = Length - Width - Height = 10 - 2/72 — y2 - Ay = 20/72 — y2Ay m°.
Summing over all slabs, we have
Total volume =~ Z 204/72 — y2Ay m’.
Taking alimit as Ay — 0, we get
7
Total volume = Alimoz:ZO\N2 —y2Ay = / 204/72 — y2 dy m>.
y— 0
7
To evaluate, we use the table of integrals or the fact that / v/ 7% — y? dy represents the area of a quarter circle of radius
0

7,50

7

Total volume = / 204/72 — y2dy = 20 - iw72 = 2457 m°.
0

Check: the volume of a half cylinder can also be calculated using the formulaV = S7r®h = $77% - 10 = 2457 m®.

Figure 8.3

13. Each dliceisacircular disk. See Figure 8.4. The radius of the sphereis5 mm, and the radius r at height y is given by the

Pythagorean Theorem

y> +1° =5

Solving givesr = /52 — y2 mm. Thus,
Volume of disk = 7r’Ay = n(5° — y*)Ay mm?.

Summing over al disks, we have
Total volume = Zw(52 —y*) Ay mm?.

Taking the limit as Ay — 0, we get

5
Total volume = lim (5% —y°)Ay = / (5% — y°) dy mm®.
Ay—0 0

Evaluating gives

250 3
= ——mmm".

0 3

y3
Total volume = 7 <Z5y — §>

Check: The volume of a hemisphere can be calculated using theformulaV = 27r® = 275° = 227 mm®.

)

Figure 8.4
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14. Each dliceisasqguare; the side length decreases as we go up the pyramid. See Figure 8.5. Since the base of the pyramid is
equd toitsvertical height, the slice at distance y from the base, or (2 — y) from the top, has side (2 — y). Thus

Volume of slice = (2 — y)>Ay m®.

Summing over al dlices, we get
Total volume = 2(2 —y)’Aym®.

@—yfAyz/Xz—wwyw.

Total volume = lim
Ay—0

Evaluating, we find

2
Total volume = / (4—dy+y°)dy = <4y — 27 + %
0

Check: The volume of the pyramid can also be calculated using the formulaV =

(2-y9)
2m
e—(2 — y)—>
y
2m
Figure 8.5
Problems
15. The area beneath the curve in Figure 42.1 is given by
_4vadt? 21" a?

/andx:/OQ(\/_—\/E)Qda:: az 3 7| =

The area of the squareis a® so the area above the curve is 5a> /6. Thus, theratio of the areasis5to 1.

<

Figure 8.6: The curve

Vit i=Va



462 Chapter Eight /SOLUTIONS

16. Thecurvesy =z andy = z" crossatz =0andz = 1. For 0 < = < 1,thecurvey = x isabovey = z™. Thusthe

areaisgiven by ) )
2 n+1
An:/($—$n)d$:|:$——$ :| :1— 1 —)l
0 0

2 n+1 2 n+1 2

Sincez™ — 0for0 < z < 1,asn — oo, the area between the curves approaches the area under the liney = =
betweenz =0 and z = 1.

17. Triangle of base and height 1 and 3. See Figure 8.7. (Either 1 or 3 can be the base. A non-right triangle is also possible.)

3
H—Z’—H_H—
Az
f——— 11—
Figure 8.7
18. Semicircle of radiusr = 9. See Figure 8.8.
T > e
Az
fe——9—»
Figure 8.8
19. Quarter circle of radiusr = +/15. See Figure 8.9.
y
\\ V15 — h?

——h—
Ah

Figure 8.9
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20. Triangle of base and height 7 and 5. See Figure 8.10. (Either 7 or 5 can be the base. A non-right triangleis also possible.)

|

5

|

e—— h—>bte
Ah
7
Figure 8.10
21. Hemisphere with radius 12. See Figure 8.11.

h
2 VI R?
T
I; 12

Figure 8.11

22. Conewith height 12 and radius 12/3 = 4. See Figure 8.12.

T——» 12
Figure 8.12
23. Cone with height 6 and radius 3. See Figure 8.13.
Yy

6
3—y/2

Y

3

Figure 8.13
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24. Hemisphere with radius 2. See Figure 8.14.

22 —(2—-y)?

Figure 8.14

We dlice up the sphere in planes perpen-
dicular to the z-axis. Each dliceisacir-
cle, with radius y = /r? — z2; that's
the radius because 2> + y> = 2 when
z = 0. Thenthe volumeis

V= Zﬂ(yQ) Az = Zw(rz—xz) Az.

Therefore, as Az tends to zero, we get

V= / a(r’ — z°) dz

=—r

= 2/ a(r’ — z°) du
=0

3\ |”
-9 2, _ T
(m" x 3

. 47rd

]
Thisconeiswhat you get when you rotatethelinez = r(h—
y)/h about the y—axis. So slicing perpendicular to the y—axis
yields

y=h h _ 2
V:/ 7r;c2dy:7r/ (M) dy
- h
y=0 0

,r_2

h
= nﬁ/o (h> —2hy +y°) dy

2 37 |
_m {h2y—hy2+y—]

0

26.

wr’h
—5

h? 3

0

27. (a) A vertical slice hasatriangular shape and thickness Az. See Figure 8.15.
Volume of dice = Areaof triangle - Az = % Base - Height - Az = % -2.3Az = 3Az cm®.

Thus,
4
=12 cm?.

4
Total volume = lim Z 3Axr = / 3dxr =3z
Az—0 0 0
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X,

3cm

Figure 8.15

(b) A horizontal slice has arectangular shape and thickness Ah. See Figure 8.16. Using similar triangles, we see that

Ei_.3__h
2 37
0 2 2
w=3B-h 3
Thus 5 g
Volume of dlice ~ 4wAh = 4 (2 — §h) Ah = (8 - §h) Ah.
So,

3
=12cm®.
0

3 2
Total volume = lim (8 _ §h) Ah = (8 _ §h) dh = (sn - 4
Ah—0 3 o 3 3

— —

3cm

Ah

Figure 8.16

28. We dlice the water into horizontal slices, each of which is arectangle. See Figure 8.17.
Volume of slice ~ 150wAh km?.

To find w in terms of h, we use the similar trianglesin Figure 8.18:

w h

So
Volume of dice ~ 150 - 15h AL = 2250hAh km?.

Summing over all slices and letting Ak — 0 gives

0.2
Total volume = lim Z 2250hAh = / 2250h dh km®.
Ah—0 0
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Evaluating the integral gives

0.2
Total volume = 2250 | = 45 km®.
0
3 km— 3km
S

w

0.2 km f Ah
|
Figure 8.17 Figure 8.18

29. To calculate the volume of material, we slice the dam horizontally. See Figure 8.19. The slices are rectangular, so

Volume of dice ~ 1400wAh m3.

Since w is alinear function of h, and w = 160 when h = 0, and w = 10 when h = 150, this function has slope

(10 — 160)/150 = —1. Thus

w = 160 — h meters,

S0
Volume of slice ~ 1400(160

Summing over al slices and taking the limit as Ah — 0 gives

T | =1 1400(160 — h)Ah =
otal volume ngloz 00(160 — h)Ah

Evaluating the integral gives

2
Total volume = 1400 (160h — %)
10m
e—>

150 m

N

=—160 m—H/

Figure 8.19

— h)AR M.
150
/ 1400(160 — h) dh m®.
0
150

=1.785-10" m°.

=10 m—

>

e— —>

t 160 m |

Figure 8.20

Solutions for Section 8.2

Exercises

1. Thevolumeisgiven by

1 1
/ Tryzda: = /
0 0

4 xr
mr dr = m—

51

SIE
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2. Thevolumeisgiven by

2 2 5
Vz/ 7ry2dm=/ 7r(x+1)4dx=7r(x;_1)
1 1

3. Thevolumeisgiven by

1 1 1
V= / wy’ de = / n(e”)’ dz = / me?* dr = Ze2*
—1 -1 —1 2

5. Thevolumeisgiven by

’ 2y ° 8a® 5
V:/ 7r(4—a:2)2dx:7r/ (16—8x2+a:4)dx=7r<16x—T+ >

2 -2

6. Thevolumeisgiven by

1 . 1
1 2 dx —1

7. Thevolumeisgiven by
/2 /2
\% :/ 7ry2dm :/ 7 cos® z d.
0 0

/2

Integration by parts gives

V =

2
Z .

v 3

(coszsinz + x)

0
8. Sincethe graph of y = 2 is below the graph of y = « for 0 < z < 1, the volume is given by

1 1 . 1 . 1’3 1’5
V:/ szdm—/ 7r(x2)2dm=7r/ (> —2Y)de =7 | = — =
0 0 0 3 5

9. Sincethe graph of y = ¢3® isabove the graph of y = e for 0 < z < 1, the volumeis given by

1 1 ) 1 ez 2o\ | e 2
V:/ W(egm)zdx—/ W(Em)zdl':/ (e —e*)dr =7 | — — — =r|—=——-=+4=
o o o 6 2 2

0 6 3

1
2w

o 15

467

10. Thisis aone-quarter of the circumference of a circle of radius 2. That circumference is 2 - 2 = 4, S0 the length is

L
2 =T.

11. Note that this function is actually z>/2 in disguise. So

2 3 2 r=2 9
L= 1+[—a: } dxz/ 1+ -xdx
V 2 o0 \/ 4

0
4 (=7

= —/ w%dw
9 w=1

3w
Y

=

o]

|

)
oo
N
N
l\.'>| =
N——"
e

|

—
~

Q

w

o

)

NE

—

wherewesetw =1+ 2z, s0dz = 2dw.
12. Thelengthis

2 2
/ \/(x’(t))2 + (¥ ()2 + (2/(¢))2dt = / 52 442 4+ (—1)2dt = V42,
! 1
Thisisthe length of a straight line from the point (8, 5, 2) to (13,9, 1).
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13. We have

D = / \/(—et sin(e?))? + (ef cos(et))? dt

1 1
= / Ve?t dt:/ et dt
0 0

=e—1.

This is the length of the arc of a unit circle from the point (cos 1,sin 1) to (cos e, sin e)—in other words between the
angles = 1 and 6 = e. Thelength of thisarcis (e — 1).

14. We have

27
D = / \/(—?,sin?,if)2 + (5 cos 5t)? dt.
0
We cannot find thisintegral symbolically, but numerical methods show D = 24.6.

Problems

15. (&) Slicing the region perpendicular to the z-axis gives disks of radius y. See Figure 8.21.
Volume of slice = 7wy’ Az = n(z® — 1)Ax.

Thus,

3 3
T 2 _ 2 _ -
Total volume = AI;IBO Z m(z® —1)Azx /2 m(z®—1)de == ( 3 x)

rfo-a-(3-9) - 25

Yy
22 —y?=1
Y
Y
x
1 3
\
+ >l
Ax Ax
Figure 8.21

(b) Thearc length, L, of thecurvey = f(z) isgivenby L = fab v/1+ (f'(x))?dz. In this problem y is an implicit
function of z. Solving for y givesy = /22 — 1 asthe equation of the top half of the hyperbola. Differentiating gives

dy 1, 5 —1/2 z
7p = @ — 177 (2) =

lenath : T ’ ’ x? P fox2 -1
rc lengt /2 +<\/x2——1> dx /2 +m2_1dx /2 m2_1dx 8

Thus
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= %ﬂab2
17. . . We dlice the region perpendicular to the z—axis. The Rie-
Radius = 1 + @ mann sum we get is >~ (2 + 1)?Az. So the volume V' is
the integral
(y= 1
V= / m(z® +1)° d
—1
1
z =7r/ (% + 22 + 1) dz
-1
$7 $4 !
=7 (7 + 5 + :c) »
= (16/7)r =~ 7.18.
18. We dlice the region perpendicular to the y—axis. The Rie-
N mann sumwe getis Y 7(1 — z)?Ay = > m(1 — y?)*Ay.
So the volume V' isthe integral
1
Radus =1 — Vv =/ m(1—y*)’dy
0
1
Y =7r/(1—2y2+y4)dy
0
1
_ 2y3 y5
v -7 (y 3 75 ),
= (8/15)m =~ 1.68.
19. We take slices perpendicular to the z—axis. The Riemann
z sum for approximating the volume is Y msin® zAz. The
y volumeisthe integral corresponding to that sum, namely

Radius = sin x

™
.2
V=/ msin” z dx
0

[ 1s' cos +1]7r i
=x|—=sinz T+ —x
2 2

s
= — &~ 4.935.
2

0

469
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20. Thisisthe volume of revolution gotten from the rotating the
curvey = e®. Take dlices perpendicular to the z-axis. They
will be circles with radius e”, so

=1 1
V=/ 7ry2dm:7r/ e* dx
T =0 0

2z 1 2
_me _met=1)
== = 5 = 10.036.
0
21. We dlice the volume with planes perpendicular to the liney =

—3. Thisdivides the curve into thin washers, asin Example 3 on
page 354 of the text, whose volumes are

Tout = €7 Tronsdt — mrinds = 7(3 + y) do — n3°du.

Tin = 3

(y=-3) So the integral we get from adding all these washersup is
=1
V= / (3 +y)° — 73°] dx

zvr/ol[(?,+e")2 —9]dx

2z 1

1
= 7r/ [ 4 6e”|dz = 71'[67 + 6e”]
0

= r[(e?/2 4 6e) — (1/2 + 6)] ~ 42.42.

22. This problem can be done by dlicing the volume into washers
N with planes perpendicular to the axis of rotation, y = 7, just like
Vi in Example 3. This time the outside radius of a washer is 7, and
l’ \ y theinsideradiusis 7 — e*. Therefore, thevolume V' is
o =7 — v | \ A z=1 1
" 1 V= / [77° — 7(7 — €")’]dz = 7r/ (14e” — e**) dx
rout =7 ——2p?  —— (y=17) =0 0
T 1
— [1469” - 16“] —r [146 N (14 - 1)]
\ 7 2 o 2 2
‘\‘ ~ 65.54.

23. We now dlice perpendicular to the z-axis. As stated in the prob-
lem, the cross-sections obtained thereby will be squares, with
base length e”. The volume of one square dlice is (e”)? de.
(Look at the picture.) Adding up the volumes of the dicesyields

z=1 1
Volume = / y®de = / e* dx
=0 0

1
e? -1

= ~ 3.195.
0

62:1:
2
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24, We dlice perpendicular to the z-axis. As stated in the problem,
the cross-sections obtained thereby will be semicircles, with ra-

dius <. The volume of one semicircular sliceis i (%)” dz.
(Look at the picture.) Adding up the volumes of the dicesyields
\ =1
N = y2 ™ ! 2x
W Volume = /_0 Ly de = g/o e’ dx
T — r=
) 2z |1 2
e \ / _retl _mle =) s
r= S 16 |, 16

y

25. (a) We can begin by dlicing the pie into horizontal slabs of thickness Ah located at height h. To find the radius of each
dlice, we note that radius increases linearly with height. Sincer = 4.5 when h = 3 and r = 3.5 when h = 0, we
should have r = 3.5 + h/3. Then the volume of each slab will be 7r* Ah = 7(3.5 + h/3)? Ah. To find the total
volume of the pie, we integrate thisfromh = 0to h = 3:

3 h 2
V:ﬂ'/ (3.5+—) dh
; 3

{h?’ 7h? 49h] ‘3
BT

27 6 4
kG I O] P
I YA 4 |7 '

(b) Weuse 1.5 in asarough estimate of the radius of an apple. This gives us avolume of (4/3)7(1.5)® ~ 10in®. Since
152/10 =~ 15, we would need about 15 apples to make a pie.

26. (a) The volume can be computed by several methods, not all of them requiring integration. We will slice horizontally,
forming rectangular slabs of length 100 cm, height Ay, width w and integrate. See Figure 8.22.

Ay%

5cm

Figure 8.22 Figure 8.23

From the right triangle, we see

% = tan60° = V/3
0 Y
d= ——.
V3
Thus

2y
w=5+2d=5+——.
V3
The volume of thedab is
2y
AV =~ 100wAy =100 | 5 + == | Ay,



472 Chapter Eight /SOLUTIONS

so thetotal volumeis given by

T T 2y
Vqume—AI;rEOZAV—Al;IEO 100 <5+ \/§> Ay

" 2y al P2\ s
= 100 {5+ —= ) dy =100 | by + —= =100 { 5h+ — | cm".

(b) The maximum value of hish = 5sin 60° = 51/3/2 cm = 4.33 cm.
(¢) The maximum volume of water that the guiter can hold is given by substituting b = 5v/3/2 into the volume:

2
Maximum volume = 100 (5 - % + <¥> /\/§> = @(2@4_ V/3) = 1875V/3 = 3247.6 cm”.

(d) Because the gutter is narrower at the bottom than the top, if it is filled with half the maximum possible volume of
water, the gutter will be filled to a depth of more than half of 4.33 cm.
(e) Wewant to solve for the value of h such that

h? 1 1
Volume =100 ( 5h + —= | = = 1875v3 = 5 Vima

V3
h2
5h + — = 16.238.
V3
Solving givesh = 2.52 and h = —11.18. Since only positive values of h are meaningful, h = 2.52 cm.
27. y
777777 H Y= ax?
\ {Ay

We divide the interior of the boat into flat slabs of thickness Ay and width 2z = 24/y/a. (See above.) We have

Volume of sab ~ 2z LAy = 2L\/gAy.
a

We areinterested in the total volume of theregion0 <y < H, so

. y\ (/2 " y) (/2
Total volume = lim 2L (—) Ay = 2L (—) dy
a 0 a

Ay—0
o " g, ALEH G/
va Jy Wa

If L and H arein meters,
40,000LH /2
3va
28. We can find the volume of the tree by dlicing it into a series of thin horizontal cylinders of height dh and circumference
C'. The volume of each cylindrical disk will then be

Buoyancy force = newtons.

2 2
V:rrr2dh:7r(£) dh:c dh
2T 47
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Summing al such cylinders, we have the total volume of the tree as
1 120
Total volume = — / C” dh.
ar J,

We can estimate this volume using atrapezoidal approximation to the integral with Ah = 20:

. 1 : : . : . 1
LEFT estimate = 4—[20(312 +28” + 217 +17° +12° + 8%)] = 1 (53660).
™ ™
RIGHT estimate = %[20(282 +217 +17° +12° + 8% +27)] = %(34520).
iy ™

TRAP = %(44090) ~ 3509 cubic inches.
m

29. (&) Thevolume, V, contained in the bowl when the surface has height & is

h -
V= / nz’ dy.
0

However, sincey = z*, we have 2> = | /y so that

h
V:/ W\/gdyzgrrhgﬂ.
0

Differentiating gives dV/dh = wh'/* = nv/h. We are given that dV/dt = —6+/h, where the negative sign reflects
the fact that V" is decreasing. Using the chain rule we have

dh dh dV 1 dv 1 6
Fr R e TRl ey U D b

Thus, dh/dt = —6 /7, a constant.
(b) Sincedh/dt = —6/m we know that h = —6t/x + C. However, whent = 0, h = 1, thereforeh = 1 — 6¢/7. The
bowl isempty when h = 0, that iswhen ¢ = 7/6 units.

30. The problem appears complicated, because we are now working in three dimensions. However, if we take one dimension
at atime, we will see that the solution is not too difficult. For example, let’s just work at a constant depth, say 0. We
apply the trapezoid rule to find the approximate area along the length of the boat. For example, by the trapezoid rule the
approximate area at depth 0 from the front of the boat to 10 feet toward the back is M = 50. Overall, at depth 0 we
have that the area for each length span is as follows:

Table 8.1
length span: 0-10 10-20 20-30 3040 40-50 50-60
depth 0 | 50 105 145 165 165 130

We can fill in the whole chart the same way:

Table 8.2

length span: 0-10 10-20 20-30 3040 40-50 50-60
50 105 145 165 165 130
25 60 90 105 105 90
15 35 50 65 65 50
5 15 25 35 35 25
0 5 10 10 10 10

depth

o o M~MDNO

Now, to find the volume, we just apply the trapezoid rule to the depths and areas. For example, according to the
trapezoid rule the approximate volume as the depth goes from 0 to 2 and the length goes from 0 to 10 is% = T75.
Again, wefill in achart:
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Table 8.3

length span: 0-10 10-20 20-30 3040 40-50 50-60
02| 75 165 235 270 270 220

depth 24| 40 95 140 170 170 140

span 46| 20 50 75 100 100 75
6-8 5 20 35 45 45 35

Adding all this up, we find the volume is approximately 2595 cubic feet.

You might wonder what would have happened if we had done our trapezoids along the depth axis first instead of
along the length axis. If you try this, you'd find that you come up with the same answers in the volume chart! For the
trapezoid rule, it doesn’t matter which axis you choose first.

31. (a) Theequation of acircleof radiusr around theoriginisz? +y* = r2. Thismeansthat 4> = r* —2?2, s0 2y(dy/dz) =
—2z, and dy/dx = —x/y. Since the circle is symmetric about both axes, its arc length is 4 times the arc length in

the first quadrant, namely
r 2 r 2
4/ \/1+(d—y) da::4/ ,/1+<—5> de.
0 dzx 0 Y

(b) Evaluating thisintegral yields

/1/ _z da;_4/ \/7@;_4/ \/7
/ 1/ _xz arcsm(x/r))
Thisisthe expected answer.

32. Ascan be seen in Figure 8.24, the region has three straight sides and one curved one. The lengths of the straight sides are
1,1, and e. The curved side is given by the equation y = f(z) = ¢”. We can find itslength by the formula

1 1 1
/ 14 f(x)?de = / 14 (e*)2dx = / 1+ e2edx.
0 0 0

Evaluating the integral numerically gives 2.0035. The total length, therefore, isabout 1 + 1 + e + 2.0035 =~ 6.722.

= 27r.
0

Figure 8.24

33. Sincey = (e* +e *)/2,y = (e® — e~ *)/2. Thelength of the catenary is

1 1 B 1 > -
er —e~?® e?r 1 e—2¢
1 )2 1 - 1 _Z
[1\/ + (v')2dx [1 +[ 3 ]da: \/+4 2+ 1 dz
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34. Since the ellipse is symmetric about its axes, we can just find its arc length in the first quadrant and multiply that by 4.
To determine the arc length of this section, we first solve for y in terms of x: since 2°/4 + y* = 1 is the equation for
theellipse wehavey® =1 —z?/4,50y = /1 — 22/4. We also need to find dy/dzx; we can do this by differentiating
y? = 1 — x?/4 implicitly, obtaining 2ydy/dx = —x/2 Whencedy/dx = —z/(4y). We now set up the integral:

Circumference of ellipse
in first quadrant / 1+ - dm—/
x 16 — 3z2
_/0 \/1+16—4x2dx_/0 16— 4z2

This is an improper integral, since 16 — 42> = 0 for z = 2. Hence, integrating it numerically is somewhat tricky.
However, we can integrate numerically from 0 to 1.999, and then use a vertical line to approximate the last section. The
upper point of the lineis (1.999, 0.016); the lower point is (2, 0). The length of the line connecting these two points is
\/(2 —1.999)2 4+ (0 — 0.016)% =~ 0.016. Approximating the integral from 0 to 1.999 gives 2.391; hence the total arc
length of the first quadrant is approximately 2.391 + 0.016 = 2.407. So the arc length of the whole ellipse is about
4-2.407 = 9.63.

35. Here are many functions which “work.”

e Any linear function y = ma + b “works.” This follows because j—z = m isconstant for such functions. So

1+ dy de= [ V1+m2dz=(b—a)\/1+m?
[V (@) e[

e Thefunctiony = % > “works’: % = 1(2* — 1/2°)

/Ww— W

e One more function that “works” isy = In(cos ); we have 3 dy = —sinz/ cos z. Hence

/ 14 dx _ / smm / sin? z .
da: cos T cos2
[sin® x 4 cos? x
T cos2z cos2
1
= de = =1
/ cosx v 2 n

where the last integral comes from IV-22 of theintegral tables.
36. (a) If f(= fo g 1 dt, then, by the Fundamental Theorem of Calculus, f'(z) = /g’ 1. Sothe arc

length of ffrom0 to xis

[ TR [

:/\/mdt

sinz + 1

C,
sin x—1‘+

(b) If g isthe arc length of any function f, then by the Fundamental Theorem of Calculus, ¢ (z) = /1 + f'(z)2 > 1.
Soif g’ (z) < 1, g cannot be the arc length of afunction.
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(c) Wefind afunction f whose arc length from 0 to z is g(x) = 2z. Using part (a), we see that

f(:c)=/m (g’(t))2—1dt:/m\/22—1dt:\/?_,g;,

Thisisthe equation of aline. Does it make sense to you that the arc length of aline segment depends linearly on its
right endpoint?

Solutions for Section 8.3

Exercises

1. Since density ise™* gm/cm,

10

=1—e " gm

10 10
Mass = / e dr=—e"
0 0

2. Strips perpendicular to the z-axis have length 3, area3Az, and mass 5 - 3Az gm. Thus

2 2
MaSS:/ 5-3dx=/ 15dzx.
0 0

Strips perpendicular to the y-axis have length 2, area 2Ay, and mass 5 - 2Ay gm. Thus

3 3
Mass:/ 5-2dy=/ 10 dy.
0 0

3. (a) Supposewechooseanz,0 < z < 2. If Az isasmall fraction of ameter, then the density of the rod is approximately
d(x) anywhere from z to x + Ax meters from the left end of the rod (see below). The mass of the rod from z to
x + Az metersistherefore approximately 6(z) Az = (2+6x)Az. If wedicetherod into IV pieces, then a Riemann

N
sumis Y (2 + 6zi)As.

i=1

(b) Thedefiniteintegra is
2

= 16 grams.
0

M:/025(z)dz:/02(2+6x)dz:(2x+3x2)

4. We have

2 2

Moment =/ xé(z)dmz/ z(2 + 6z) dz
0 0

2

= 20 gram-meters.
0

2
= (62° + 2z) dx = (22° + %)

0
Now, using this and Problem 3 (b), we have

Center of mass = Moment = 20 gram-meters = g meters (from its left end).

Mass 16 grams
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Figure 8.25 shows a graph of the density function.

900

300

20

Figure 8.25

Suppose we choose an z, 0 < = < 20. We approximate the density of the number of the cars between z and z + Ax
miles as () cars per mile. Therefore, the number of cars between z and x + Az is approximately §(z)Az. If we
dlice the 20 mile strip into IV slices, we get that the total number of carsis

N N
Ca d(x)Az =Y [600+300sin(4v/z; +0.15)] Az,
i=1 i=1
N-1
where Az = 20/N. (Thisisaright-hand approximation; the corresponding left-hand approximation isz d(xs)Ax.)

=0
As N — oo, the Riemann sum above approaches the integral

20
C= / (600 + 300 sin 4v/z + 0.15) dzx.
0

If we calculate the integral numerically, wefind C' =~ 11513. We can also find the integral exactly as follows:

20
CZ/ (600 4+ 300 sin 4v/z + 0.15) dx
0
20 20
:/ 600dm+/ 300sin 4vx + 0.15 dx
0 0

20
= 12000+300/ sin4v/z + 0.15 dzx.
0

Letw = +/z +0.15, 50z = w? — 0.15 and dz = 2w dw. Then

=20 w=+/20.15
/ sindvx 4+ 0.15dx = 2 / w sin 4w dw, (using integral table 111-15)
=0 w=+/0.15
V20.15
1 1 .
=2 [—Zw cos 4w + 6 sm4w]
V0.15

~ —1.624.

Using this, we have C' = 12000 + 300(—1.624) ~ 11513, which matches our numerical approximation.

Orient the rectangle in the coordinate plane in such away that the side referred to in the problem—call it S—lieson
the y-axisfromy = 0 toy = 5, as shown in Figure 8.26. We may subdivide the rectangle into strips of width Az
and length 5. If the left side of a given strip is adistance « away from S (i.e., the y-axis), its density 2is1/(1 + z*).
If Az issmall enough, the density of the strip is approximately constant—i.e., the density of the whole strip is about
1/(1 + z*). The mass of the strip is just its density timesits area, or 5Az /(1 4+ =*). Thus the mass of the whole
rectangle is approximated by the Riemann sum

5Ax
14z’
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Figure 8.26

(b) The exact mass of the rectangle is obtained by letting Az — 0 in the Riemann sums above, giving us the integral

/3 5dx
0 1+ x4

Since it is not easy to find an antiderivative of 5/(1 + z*), we evaluate thisintegral numerically, getting 5.5.

7. Thetotal massis7 grams. The center of massisgiven by

2(—3) + 5(4)
7

T = = 2 cmto right of origin.

8. Thetota massis9 gm, and so the center of massislocaedatz = ¢ (—10-5+1-3+2-1) = —5.

1
9
Problems

9. Since the density varies with z, the region must be sliced perpendicular to the z-axis. This has the effect of making the
density approximately constant on each strip. See Figure 8.27. Since astrip is of height y, itsareais approximately yAx.
The density on the stripisé(z) = 1 4+ = gm/cm?. Thus

Mass of strip &~ Density - Area = (1 + z)yAx gm.
Because the tops of the strips end on two different lines, one for z > 0 and the other for z < 0, the massis calculated as
the sum of two integrals. See Figure 8.27. For the |eft part of theregion, y = x + 1, S0

0
Mass of left part = Alirgoz(l + z)yAx = / (I+z)(x+1)dx

-1

_ [ (@4 1)
—/_l(l—l—x) dz = 3

0

lam
_3g B

—1

From Figure 8.27, we see that for the right part of theregion, y = —z + 1, so

1
Mass of right part = lim (1+m)yAx:/ (I+z)(—z+1)dr
0

Az—0

1 31

. 2
2/ (1—:1:2)dx:x—$— =-gm

0 3 3

0

1 2
Totalmass:§+§:1gm.
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-1 > b 1
Ax Ax
Figure 8.27

10. (@) Partition [0, 10,000] into N subintervals of width Ar. The areain thei*® subinterval is ~ 27r; Ar. So the total mass
intheslick = M ~ Y 2mr; (£22-) Ar.

1+4+r;
10,000
(b) M = / 1007
0

" dr.WemayraNrite%as“”— L =1- -1, sothat
T r

1+ T+r 147 T+r
10,000)
0
() Wewishtofind an R such that

R r 1 10,000 r
/ 1007w dr == / 1007w dr =~ 1.57 x 10°.
o 1+r 2 o 14+r

10,000 1
Mz/ 100m(1 — ——)dr =1007 | r —In |1 + 7|
o 1+r

= 1007(10,000 — In(10,001)) = 3.14 x 10° kg.

S01007(R — In|R + 1]) = 1.57 x 105, R — In |R + 1| ~ 5000. By trial and error, wefind R ~ 5009 meters.

11. (a) We form a Riemann sum by dlicing the region into concentric rings of radius r» and width Ar. Then the volume
deposited on one ring will be the height H (r) multiplied by the area of thering. A ring of width Ar will have an area
given by

Area= n(r + Ar)? — x(r?)
= 7r(7"2 + 2rAr + (Ar)2 - 7"2)
= 1(2rAr + (Ar)?).

Since Ar is approaching zero, we can approximate
Areaof ring = w(2rAr +0) = 2rrAr.

From this, we have
AV = H(r) - 2zrAr.

Thus, summing the contributions from all rings we have
V= Z H(r)-2nrAr.

Taking the limit as Ar — 0, we get
5
v :/ 27r (0.115¢ ") dr.
0

(b) We useintegration by parts:

5
V= 0.237r/ (redr) dr
0

re—?r 6—27‘
=0.2 -
0.237 < — 1 i

~ 0.181(millimeters) - (kilometers)® = 0.181 - 10™% - 10° meters® = 181 cubic meters,

5
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12. Patitiona < z < b into N subintervals of width Az = (b—
strip on the ith subinterval is approximately m; = d(x;)[f(x;:) —

approximation for the total massis

N b
Zé(ml)[f(ml) — g(z;)]Az, and the exact massis M = / 0(x)[f(z) — g(x)]dz.

13. (a) Usetheformulafor the volume of acylinder:

Sinceit isonly ahalf cylinder

(b) Set up the axes as shown in Figure 8.28. The density can be defined as

Volume of shed = %m*zl.

a);a=x0<x1<~~~<:1:N:b.Themassofthe

g(z:)]Az. If we use a right-hand Riemann sum, the

Volume = 7r’l.

Density = ky.

Now dlice the sawdust horizontally into slabs of thickness Ay as shown in Figure 8.29, and calculate

Volume of dab ~ 2zIAy = 21(\/r? — y2)Ay.

Mass of dab = Density - Volume = 2kly+/r2 — y2Ay.
Finally, we compute the total mass of sawdust:

Total mass of sawdust = / 2kly+\/r2 —y2dy = —%kl(r2 —y)*?

0

|

[

\
—r T T

Figure 8.28

T

0

7

— /\
9@\

T okir®

3

Ay

14. First we rewritethe chart, listing the density with the corresponding distance from the center of the earth (x km below the
surface is equivalent to 6370 — = km from the center):
This gives us spherical shells whose volumes are %W(ri —r¥, ) for any two consecutive distances from the origin.

We will assume that the density of the earth is increasing with depth. Therefore, the average density of the i*® shell is
between D; and D; 1, the densities at top and bottom of shell i. So 3w Dit1 (rf —r}, ;) and 37 D;(r? —r}, ;) are upper

and lower bounds for the mass of the shell.

3

Table 8.4
i z; | r; = 6370 — x; D;
0 0 6370 | 3.3
1 | 1000 5370 | 45
2| 2000 4370 | 5.1
3] 2900 3470 | 5.6
4] 3000 3370 | 10.1
5] 4000 2370 | 11.4
6 | 5000 1370 | 12.6
7 | 6000 370 | 13.0
816370 0| 130
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To get arough approximation of the mass of the earth, we don’t need to use all the data. Let’s just use the densities
at z = 0, 2900, 5000 and 6370 km. Calculating an upper bound on the mass,

My = §W[13.0(13703 —0%) +12.6(3470° — 1370%) + 5.6(6370° — 3470°)] - 10" ~ 7.29 x 10°" g.

The factor of 10'® may appear unusual. Remember the radiusis given in kilometers and the density is given in g/cn, so

we must convert kilometers to centimeters; 1 km = 10° cm, so 1 km® = 10*° cm?.

The lower bound is
My, = %«[12.6(13703 —0%) 4 5.6(3470% — 1370%) + 3.3(6370% — 3470%)] - 10"® =~ 4.05 x 107 g.

Here, our upper bound is just under 2 times our lower bound.
Using al our data, we can find a more accurate estimate. The upper and lower bounds are

7
4
MU = EWZO:Di+1(T? — T'?+1) . 1015 g

and ,
Mg = %WZDi(rf —rly)-10% g
i=0
We have
My = %71'[4.5(63703 — 5370°) + 5.1(5370° — 4370°) + 5.6(4370° — 3470°)
+ 10.1(3470% — 3370%) + 11.4(3370® — 2370%) + 12.6(2370% — 1370%)
+ 13.0(1370% — 370%) + 13.0(370°> — 0°)] - 10*° g
~6.50 x 10°" g
and
4
My = §Tr[3.3(63703 — 5370%) + 4.5(5370° — 4370%) + 5.1(4370% — 3470°)

+ 5.6(3470° — 3370%) + 10.1(3370% — 2370%) + 11.4(2370* — 1370°)
+ 12.6(1370° — 370%) + 13.0(370° — 0%)] - 10*° g
~ 5.46 x 10°" g.

We dlice time into small intervals. Since ¢ is given in seconds, we convert the minute to 60 seconds. We consider water
loss over thetimeinterval 0 < ¢ < 60. We also need to convert inches into feet since the velocity is given in ft/sec. Since
linch=1/12 foot, the square hole has area 1 /144 square feet. For water flowing through a hole with constant velocity v,
the amount of water which has passed through in some time, At, can be pictured as the rectangular solid in Figure 8.30,
which has volume

Area- Height = Area- Velocity - Time.

Height = g(t)At —» /]
\Ad}

Figure 8.30: Volume of water passing
through hole
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Over a small time interval of length At, starting at time ¢, water flows with a nearly constant velocity v = g(t)

through ahole 1/144 square feet in area. In A¢ seconds, we know that
~ L 2 _ L 3
Water lost ~ (144 ft ) (g(t) ft/sec) (At sec) = (144) g(t) At ft2.

Adding the water from all subintervals gives
Total water lost = Z ﬁg(t) At ft3,

As At — 0, the sum tends to the definite integral:

1

- 3
g9 dt e,

60
Total water lost = /
0

(a) Divide the atmosphere into spherical shells of thickness Ah. See Figure 8.31. The density on atypica shell, p(h), is
approximately constant. The volume of the shell is approximately the surface area of a sphere of radiusr. + h meters
times Ah, wherer. = 6.4 - 10° metersisthe radius of the earth,

Volume of Shell = 4n(re + hi)>Ah.
A Riemann sum for the total massis

Mass & » 4m(re +h)* x 1.28¢~" 00124 Al kg.

Figure 8.31

(b) This Riemann sum becomes the integral

100
Mass = 47r/ (re + h)2 . 1.98¢~0-000124h g7
0

100
= 47r/ (6.4 - 10% + h)2 . 1.98¢0-000124h 47
0

Evaluating the integral using numerical methods gives M = 6.5 - 10*® kg.

We need the numerator of z, to be zero, i.e. E x;m; = 0. Since al of the masses are the same, we can factor them out
and write4 >~ z; = 0. Thus the fourth mass needs to be placed so that all of the positions sum to zero. The first three
positionssumto (—6 + 1 + 3) = —2, so the fourth mass needs to be placed at z = 2.

We have 3

= 12 grams.

0

3 3
Total mass of therod = / (1+2°)de = {x + ’%}
0

In addition,

3 5 z2 ! 99
Moment = / z(1+27)de = |=—+ = = gram-meters.
0

Thus, the center of massis at the position z = 2222 = 2.06 meters.
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19. The center of massis

fo z(2+sinz)dr

fo (2+sinz)de
=n?4+n.

0

T =

The numerator is foﬂ(Za: +zsinz)dr = (z*> — zcosz + sin )

™

The denominator is [" (2 + sinz) dz = (2z — cosx)| = 2w + 2. So the center of massisat

E_7T2+7T_7T(7T+1) o
= = =3

2r+2  2(r+1)

20. (a) Wefind that

1
=-+ Z gram-meters,

! 9 z2  kz*
M = 1 == 4+ 2=
oment /0 z(1 4+ kz”)dz <2 + 1 > 5

and that
! ke | k
Total mass :/ (1 +kz®)de = <m+ T) =1+ 3 grams.
0
Thus, the center of massis
s+5 324k
r=2_1=-"C meters.
TIFE T (3 +k)
(b) Let f(k) = 2 (gi’;) Then f'(k) = 2 ((3+1k)2), which is always positive, so f is an increasing function of k.
Since f(0) = 0.5, thlSlsthesmaIIeﬂ valueof f. Ask — oo, f(k) = 3/4 = 0.75. So f(k) is aways between 0.5
and 0.75.

21. (a) Thedensity isminimum at z = —1 and increases as x increases, so more of the mass of therod isin the right half of
the rod. We thus expect the balancing point to be to the right of the origin.
(b) We need to compute

1 1
/ z(3—e ") dr = gxz +ze ¥+ e_m) (using integration by parts)

1

-1

N|w /N

- - 2
+e ' te 1—(§—el+el)=—.
2 e

We must divide this result by the total mass, which is given by

1

/_1 (3—e *)dr=(3z+e ")

1 -1

We therefore have
2/e _ 2
6 —c+(1/e) 14 6e—e?

22. (a) Sincethe density isconstant, the mass isthe product of the area of the plate and its density.

T = ~ 0.2.

1
1 1 1
Areaof the plate :/ e?de = =z®| == cm’.
; 37 1, 3

Thus the mass of the plateis2 - 1/3 = 2/3 gm.
(b) SeeFigure 8.32. Since theregion is“fatter” closer tox = 1, z is greater than 1/2.
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- e 1
Azx

Figure 8.32

(c) Tofind the center of mass along the z-axis, we dlice the region into vertical strips of width Az. See Figure 8.32. Then
Areacf strip = A, (z)Ax = z° Az

Then, since the density is 2 gm/cm?, we have

2/3
Thisisgreater than 1/2, as predicted in part (b).
23. (a) Sincethe density isconstant, the mass isthe product of the area of the plate and its density.

o2

1
Areaof the plate :/ Vrde = %:1:3/2 = gcmz.
0

0

Thus the mass of the plateis 5 - 2/3 = 10/3 gm.
(b) Tofind z, we dicetheregion into vertical strips of width Az. See Figure 8.33. Then

Areacf strip = A, (z)Az ~ /zAz cm’.
Then, since the density is 5 gm/cmz, we have

[ w6 A, (z) d _ fol 52%/2 dz 3 2:135/2|1 _3 om
= o= 5 M.

Mass 10/3 10
To find g, we dlice the region into horizontal strips of width Ay
Areaof horizontal strip = A, (y)Ay =~ (1 — z)Ay = (1 — y*) Ay cm?.

Then, since the density is 5 gm/cm?, we have

1 -
__JwAwdy o 5—vNdy 3y |3 5 _3
Y= Mass 10/3 Tw0°\2 7 4)|, 10018

Y
N
i
> - 1

Az

Figure 8.33
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24. Thetriangleis symmetric about the z axis, so y = 0.
To find z, we first calculate the density. The area of the triangle is ab/2, so it has density 2m/(ab) where m isthe
total mass of the triangle. We need to find the mass of a small strip of width Az located at x; (see Figure 8.34).

Areaof the small strip ~ A, (z)Az = 2 - b("2— ) Az,
a

Multiplying by the density 2m/(ab) gives

Mass of the strip = 2m (a _,)x) Az.
p

We then sum the product of these masses with z;, and take the limit as Az — 0 to get

“ 2mz(a — ) om (az® &\ |° 2m [(a® d° ma
Moment = - e = - =2 ) = .
/0 a? PP 2 3 a® \ 2 3

Finaly, we divide by the total mass m to get the desired result z = a/3, which isindependent of the length of the base b.

[NlS

|

(e —2)

o

a

3

X
Az

[NlS

Figure 8.34

Stand the cone with the base horizontal, with center at the origin. Symmetry gives usthat £ = § = 0. Since the cone is

25.
fatter near its base we expect the center of mass to be nearer to the base.
Slice the cone into disks parallel to the zy-plane.

Aswe saw in Example 2 on page 347, adisk of thickness Az at height z above the base has
Volume of disk = A.(z)Az ~ (5 — z)°Az cm®.

Thus, since the density is 4,
[ 20A.(2)d= . f05 z-0m(5 —2)*dz -

= Mass o Mass
To evaluate the integral in the numerator, we factor out the constant density § and = to get
5 5 2 3 4\ |°
/ z-éﬂ'(5—z)2dz=5ﬂ'/ 2(25 — 10z + 2°) dz = 0w 2527 _ 102 Z = 8%
0 0 2 3 T 4)|, 12
We divide this result by the total mass of the cone, which is (175 - 5) &
255r 5
—_ 12 92 _
z= %71'536 =1 1.25cm.

As predicted, the center of massis closer to the base of the cone than its top.
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26. Since the density is constant, the total mass of the solid is the product of the volume of the solid and its density: d7 (1 —
e~?)/2. By symmetry, § = 0. To find Z, we dlice the solid into disks of width Az, perpendicular to the z-axis. See
Figure8.35. A disk at = hasradiusy = e *, s0

Volume of disk = A, (z)Az = my’Az = me™ " Ax.

Since the density is d, we have

1 —2z 1 —2z 1
r-ome” Fdxr  Om [ xe” Tdx )
fo fo / ze” " d.
0

YT T Todmass on(l—e—2)/2 T1-e2

Theintegral [ ze™>* dz canbedoneby parts: letw = z and o' = ¢~ >*. Thenv' = landv = e " /(—2). So

—2z —2z —2z —2z
o ze e ze e

dz = - dx = -

/m v / 2 T 1

P e e _(0_1)_£
- —2 4 4) 4 ’

0

and then

Thefinal resultis: .

2 1-3e? 1-3e?
1—e~2 4 2-2e2
Notice that Z islessthat 1/2, aswe would expect from the fact that the solid is wider near the origin.

~ 0.343.

T =

Radius = y

Figure 8.35

27. (a) Position the pyramid so that the center of its base lies at the origin on the zy-plane. Slice the pyramid into square
slabs parallel to its base. We compute the mass of the pyramid by adding the masses of the slabs.
The mass of adab isits volume multiplied by the density 4. To compute the volume of a slab, we need to get an
expression for the side s of the slab in terms of its height z. Using the similar triangles in Figure 8.36, we see that

s (10—2)

40 10
Thus s = 4(10 — z). Since the area of the square slab'sface is s?,

Volume of thedlab =~ A.(z)Az = s>Az = 16(10 — 2)°Az.

Mass of slab = 166(10 — 2)*Az.
The mass of the pyramid can be found by summing all of the masses of the dlabs, and letting the thickness Az
approach zero:

—165(10 — 2)* |'* 160000
= gm

3 0 3

10
Total mass = lim 166(10 — 2)°Az = / 166(10 — 2)* dz =
0

z—0
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10 — 2z

10 cm

f 40 cm {
Figure 8.36

(b) From symmetry, we have = § = 0. Since the pyramid is fatter near its base we expect the center of mass to be
nearer to the base. Since
Volume of slab = A.(2)Az = 16(10 — z)*Az,
[)°2-165(10 - 2)* dz
Total mass
To evaluate the integral in the numerator, we factor out the constant 166 and expand the integrand to get

Zz =

400000
3

10 -20z°  2* 10
166/ (100z — 202° + 2%) dz = 166 (50z2 +—+ Z) =
0 0

We divide this result by the total mass 160004 /3 of the pyramid

400005/3 _ 40000

- —2.50m.
160006/3 _ 16000 _ 20 O™

Zz =

As predicted, the center of massis closer to the base of the pyramid than its top.

Solutions for Section 8.4

Exercises

1. Thework doneisgiven by

2 2
W = 3rdr = §m2 = 9 joules.
. 2 2
1
2. Thework doneisgiven by
3 3
W = 3rdr = §:1:2 - joules.
o 2 2
0
3. (a) For compressionfromz =0tox =1,
! 3, 3
Work = [ 3zdx=2z?| =2 =1.5]oules
0 2 2
0
For compression fromz = 4 tox = 5,
’ 27

’ 3
Work :/ 3rdr = 22
4 2

N |

(25 —16) = 5 = 13.5 joules.
4

(b) The second answer is larger. Since the force increases with z, for a given displacement, the work done is larger for
larger x values. Thus, we expect more work to be done in moving fromz = 4toz = 5 thanfromz = 0tox = 1.
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4. Sincethe gravitational forceis

1nl4
F = 4 120 newtons
r
and r varies between 6.4 - 10° and 7.4 - 10° meters,
7.4-10° 14 7.4-10°
Work done = / 4 120 dr = —410" L

6.4-106 r r 6.4-106
:4-1014( L __1 ):84~106joul$
6.4 -106 7.4 -108 ’ )

5. The force exerted on the satellite by the earth (and vice versal) is G Mm/r?, where r is the distance from the center of
the earth to the center of the satellite, m is the mass of the satellite, M isthe mass of the earth, and G isthe gravitational
constant. So the total work doneis

8.4-10° 8.4-10°
/ Fdr = / G]\/im dr = (—GMm)
6 6 r r

.4-106 .4-106

8.4-10°
~ 1.489 - 10'? joules.
6.4-106

Problems

6. Let z be the distance from ground to the bucket of cement.
At height «, if the bucket is lifted by Az, the work done is
500Az+5(756—z)Az. The500Az term is dueto the bucket wi 1
of cement; the 5(75 — x)Az term is due to the remaining
cable. So the total work required to lift the bucket is

30 30
W= / 500dx +/ 5(75 — z)dx
0 0

height

30 [
= (500)(30) + 5(75(30) — 1302)
2 z + [500
= 24000 ft-Ib.
0 L

7. Tolifttheweight an additional height Ah off the ground from aheight of i, we must do work on the weight and the amount
of rope not yet pulled onto the roof. Since the roof is 30 ft off the ground, there will be 30 — & feet remaining of rope, for
aweight of 4(30 — h). So the work required to raise the weight and the rope a height Ah will be AR(1000 + 4(30 — h)).
To find the total work, we integrate this quantity fromh = 0to h = 10:

10
Work = / (1000 + 4(30 — h)) dh
0

10

:/ (1120 — 4h) dh
0

10

= (1120h — 2h°)

0
= 11,200 — 200

= 11,000 ft-Ibs.

8. The bucket moves upward at 40/10 = 4 meters/minute. If timeisin minutes, at time ¢ the bucket isat aheight of x = 4¢
meters above the ground. See Figure 8.37.
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Platform

vi— Ground

Figure 8.37

The water drips out at arate of 5/10 = 0.5 kg/minute. Initially there is 20 kg of water in the bucket, so at time ¢
minutes, the mass of water remaining is

m = 20 — 0.5¢ kg.

Consider the time interval between ¢ and ¢ + At. During this time the bucket moves a distance Ax = 4At meters. So,
during thisinterval,

Work done ~ mgAz = (20 — 0.5¢)g4At joules.

10
Total work done = lim " (20 — 0.5t)g4A¢ = dg / (20 — 0.5t) dt
0

t—0

10
= 49(20t — 0.25t7)

= 7009 = 700(9.8) = 6860 joules.

0

9. Consider lifting arectangular slab of water h feet from the top up to the top. The area of such adlab is (10)(20) = 200
square feet; if the thickness is dh, then the volume of such a slab is 200 dh cubic feet. This much water weighs 62.4
pounds per ft*, so the weight of such adabis (200 dh)(62.4) = 12480 dh pounds. To lift that much water h feet requires
12480h dh foot-pounds of work. To lift the whole tank, we lift one plate at atime; integrating over the slabs yields

N 10
h N\
; A
v
dh =
15
v
—_— e Q) e =

15 2 |15 C1R2
/ 12480h dh = 1242% = 1248(; 15 = 1,404,000 foot-pounds.
0 0
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10. Let z be the distance measured from the bottom
the tank. To pump a layer of water of thickness 6

Az at x feet from the bottom, the work needed is T
(62.4)76% (20 — ) Az.
Therefore, the total work is 20—z

10 /
W :/ 36 - (62.4)7(20 — z)dz 2000
o 10
1 10

=36 (62.4)7(20z — 59[;2)
0

= 36 - (62.4)r(200 — 50)
~ 1,058,591.1 ft-Ib.

Volume of Slice = 7(6%)Ax

11. Let x be the distance from the bottom of
the tank. To pump a layer of water of
thickness Az at = feet from the bottom to
10 feet above the tank, the work done is
(62.4)7w6% (30 — ) Az. Thus the total work

is P
20 - T
/ 36 - (62.4)w(30 — x)dx

10’

1 20 30 —x
=36-(62.4)7 (SOx - 51‘2)
0

20/
— 36 - (62.4)7(30(20) — %202) S e

~ 2,822,909.50 ft-Ib,

Volume of Slice = 762 Az

12. We begin by dlicing the oil into dlabs at a distance h below the surface with thickness Ah. We can then calculate the
volume of the slab and the work needed to raise this slab to the surface, a distance of h.

Volume of Ak disk = > Ah = 257 AR
Weight of Ak disk = (257)(50)Ah
Distancetoraise = h
Work to raise = (257)(50)(h)Ah.

Integrating the work over al such dabs, we have

Work = / 25(50)(2577)@) dh

= 6257h?>

19

= 390,6257 — 225,625
~ 518,363 ft-lbs.

A diagram of this tank is shown in Figure 8.38.
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Figure 8.38
13. i I N
. surface | 10 ' |
g N T ¥ ! |
/ T . /Q I 14
/ \ 14 |
| 14 —h 4 ] ! Ah |
| | ‘
\ / v
\ /
N ///

Let h represent distance below the surface in feet. We slice the tank up into horizontal slabs of thickness Ah. From
looking at the figure, we can see that the slabs will be rectangular. The length of any dab is 12 feet. The width w of a

dab h units below the ground will equal 2z, where (14 — k) + 2 = 16, S0 w = 2,/42 — (14 — h)2. The volume of
such adlab istherefore 12w Ah = 244/16 — (14 — h)? Ah cubic feet; the labweighs 42 - 24, /16 — (14 — h)2 Ah =
1008/16 — (14 — h)? Ah pounds. So the total work done in pumping out al the gasolineis

1

18 8
/ 10087+/16 — (14 — h)2 dh = 1008/ h+/16 — (14 — h)? dh.
1

0 10

Subgtitute s = 14 — h, ds = —dh. We get

18 —4
1008/ h\/16 — (14 — h)2 dh = —1008/ (14 — 5)1/16 — 52 ds
1

0 4

4 4
:1008-14/ 16—s2ds—1008/ sy/16 — s2 ds.
—4 —4

Thefirst integral represents the area of asemicircle of radius 4, which is8x. The second istheintegral of an odd function,
over theinterval —4 < s < 4, and istherefore 0. Hence, the total work is 1008 - 14 - 87 ~ 354,673 foot-pounds.

14. Divide the muddy water into horizontal slabs of thickness Ah. See Figure 8.39. Then for atypical slab

Volume of slab = 7(0.5)* Ah m®
Mass of slab & d(h)7(0.5)° Ah = 0.257(1 4 kh)Ah kg

The water in this slab is moved a distance of h + 0.3 metersto the rim of the barrel. Now
Work done = Mass - g - Distance moved,
and work is measured in newtons if massisin kilograms and distance isin meters, so

Work done in moving slab = 0.257(1 + kh)g(h + 0.3)Ah joules.
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Sincethe dicesrunfromh = 0to h = 1.5, we have

1.5
Total work done = / 0.257(1 + kh)g(h + 0.3) dh
0

= 0.366(k + 1.077) g~ joules

Top of water
0.3m /

h

g

Ah
1.8m

1.5m

L

Figure 8.39

15. (a) Divide the wall into N horizontal strips, each

of which is of height Ah. The area of each 1000
strip is 1000A R, and the pressure at depth h; is
62.4h;, SO we approximate the force on the strip 50
as 1000(62.4h; ) Ah. Ah
Therefore,
N-1
Force on the Dam = Z 1000(62.4h;)Ah.
=0

(b) As N — oo, the Riemann sum becomes the integral, so the force on the dam is

50 o 50
/ (1000)(62.4h) dh = 624007 = 78,000,000 pounds.
0 0
16. *
T 10
h k.
dh — 1
15

@O°@£

20

e Bottom: The bottom of the tank is at constant depth 15 feet, and therefore is under constant pressure, 15 - 62.4 =
936 |b/ft?. The area of the base is 200 ft* and so the total forceis 200 ft? - 936 Ib/ft? = 187200 Ib.
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e 15 x 10 side: The area of a horizontal strip of width dh is 10 dh square feet, and the pressure at height h is 62.4h
pounds per square foot. Therefore, the force on such a strip is 62.4h(10 dh) pounds. Hence, the total force on this

sideis
15 B2 15
/ (62.4h)(10) dh = 6247 = 70200 Ibs.
0 0
e 15 x 20 side: Similarly, the total force on thissideis
15 B2 15
/ (62.4h)(20) dh = 1248=-| = 140400 Ibs.
0 0

17. Bottom:
Water force = 62.4(2)(12) = 1497.6 Ibs.
Front and back:
2 1 2
Water force = (62.4)(4)/ (2 —x) dov = (62.4)(4)(2x — E91:2)
0 0
= (62.4)(4)(2) = 499.2 lbs.

Both sides: ,
Water force = (62.4)(3) / (2 — z) de = (62.4)(3)(2) = 374.4 |bs.

18. (a) Since the density of water is§ = 1000 kg/m?, at the base of the dam, water pressure §gh = 1000 - 9.8 - 180 =
1.76 - 105 nt/m?.
(b) To set up a definite integral giving the force, we divide the dam into horizontal strips. We use horizontal strips
because the pressure along each strip is approximately constant, since each part is at approximately the same depth.
See Figure 8.40.
Areacf strip = 2000Ah m®.

Pressure at depth of h meters = §gh = 9800A nt/m?. Thus,
Forceon strip ~ Pressure x Area = 9800% - 2000Ah = 1.96 - 10° hAR nt.

Summing over al strips and letting Ak — 0 gives:

180
Total force = lim 21.96-107hAh =1.96-107 / h dh newtons.
Ah—0 0

Evaluating gives
B2 180
Total force = 1.96 - 1077 =3.2- 10" newtons.
0
= 2000 m |
I
180m T Ah
Figure 8.40

19. (a) Atadepth of 350 feet,
Pressure = 62.4 - 350 = 21,840 Ib/ft’.

To imagine this pressure, we convert to pounds per square inch, giving a pressure of 21,840/144 = 151.7 Ib/ir?.
(b) (i) When the squareis held horizontally, the pressure is constant at 21,840 |bs/ft?, so

Force = Pressure - Area = 21,840 - 5> = 546,000 pounds.
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(ii) When the square is held vertically, only the bottom is at 350 feet. Dividing into horizontal strips, as in Fig-
ure 8.41, we have
Areacf strip = 5Ah ft*.

Since the pressure on astrip at adepth of b feet is 62.4h |b/ft?,
Forceon strip = 62.4h - 5Ah = 312hAh pounds.

Summing over al strips and taking the limit as Ah — 0 gives a definite integral. The strips vary between a
depth of 350 feet and 345 feet, so

350

Total force = lim ZSI%Ah:/ 312h dh pounds.
Ah—0 345

Evaluating gives
350

= 156(350% — 345”) = 542,100 pounds.
345

2

Total force = 3127

F 51t !
Depth = 345 ft I

o

Depth = 350 ft

N\

Bottom of sea

Figure 8.41

20. (a) Sincewater has density 62.4 Ib/ft®, at a depth of 12,500 feet,
Pressure = Density x Depth = 62.4 - 12,500 = 780,000 |b/square foot.

To imagine this pressure, observe that it is equivalent to 780,000/144 ~ 5400 pounds per square inch.
(b) To calculate the pressure on the porthole (window), we slice it into horizontal strips, as the pressure remains approx-
imately constant along each one. See Figure 8.42. Since each strip is approximately rectangular

Areaof strip a 2rAh ft%.
To calculate r in terms of h, we use the Pythagorean Theorem:
rP+h*=9
r=1+/9—h2,
so
Areaof strip ~ 21/9 — h2Ah ft°.

The center of the porthole is at a depth of 12,500 feet below the surface, so the strip shown in Figure 8.42 isat a
depth of (12,500 — h) feet. Thus, pressure on the strip is 62.4(12,500 — h) Ib/ft?, so

Forceonstrip = Pressure x Area = 62.4(12,500 — h)24/9 — h2Ah |b

= 124.8(12,500 — h)+/9 — h2Ah Ib.

To get the total force, we sum over all strips and take the limit as Ah — 0. Since h ranges from —3 to 3, we get the
integral

Total force = lim 124.8(12,500 — h)\/9 — h2Ah
Ah—0

3
124.8/ (12,500 — h)\/9 — h2 dh Ib.
-3
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Evaluating the integral numerically, we obtain atotal force of 2.2 - 107 pounds.

Figure 8.42: Center of circleis 12,500 ft below
the surface of ocean

21. We divide the dam into horizontal strips since the pressure isthen approximately constant on each one. See Figure 8.43.
Areaof strip &~ wAh m?.

Since w is alinear function of h, and w = 3600 when h = 0, and w = 3000 when h = 100, the function has slope
(3000 — 3600)/100 = —6. Thus,
w = 3600 — 6h,
)
Areaof strip = (3600 — 6h)Ah m”.
The density of water isé = 1000 kg/m®, so the pressure at depth k meters = §gh = 1000 - 9.8k = 9800k nt/m?. Thus,

100
Total force = lim " 9800/(3600 — 6h)Ah = 9800 / h(3600 — 6h) dh newtons.
Ah—0 0

Evaluating the integral gives
100

Total force = 9800(1800h”> — 2h*)| = 1.6 - 10! newtons.

0

3600 m |
i
h
100 m C i

——3000 m—>

Figure 8.43

22. We need to divide the disk up into circular rings of charge and integrate their contributions to the potentia (at P) from 0
to a. These rings, however, are not uniformly distant from the point P. A ring of radius z isv/ R? + z2 away from point
P (see below).
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Thering has area 27wz Az, and charge 2wzo Az. The potential of the ring is then 2m20 Ai and the total potential

] ] VR?+ 2z
at point P is
 2nzodz I “ 2zdz
o VRZ+ 22 o VRZF22
We make the substitution w = z2. Then du = 2z dz. We obtain

a2

2
' 2zdz “ du
o — =170 ———— =n0(2v/ R +u
/0 VR + 2?2 /0 VR? +u ( )0
=no(2v/ R? + 2?)| =2wo(\/R?>+a® —R).
0

(The substitution v = R? + 2? or v/R? + 22 works aso.)

23. Thedensity of therodis10 kg/6 m = 2 X2 Allit-
tlepiece, dz m, of therod thushasmass 5/3 dx kg.

If this piece has an angular velocity of 2 rad/sec, ﬂi\\

then its actual velocity is 2|z| m/sec. This is be- NN
cause aradian angle sweeps out an arc length equal 3 | . \\ )

to the radius of the circle, and in this case the lit- s .‘:|
tle piece moves in circles about the origin of ra- dx

dius |z|. The kinetic energy of the little piece is
mv®/2 = (5/3dx)(2|z|)?/2 = Lz” dx.

Therefore,

3 2 37 13
Total Kinetic Energy = / 1027 20 {x_}
_3 3 3|3

=60 kg - m”/sec® = 60 joules.
0

24. We dlice the record into rings in such a way that every
point has approximately the same speed: use concentric
circles around the hole. We assume the record is a flat
disk of uniform density: since its mass is 50 grams and
its area is 7(10cm)? = 100w cm?, the record has density
o = ;- &3 So aring of width dr, having area about
27 dr cm?, has mass approximately (27r dr)(1/2m) =
rdr gm. At radius r, the velocity of theringis

i rev 1lmin 27rcm  107mr cm

3min 60sec 1rev 9 sec

The kinetic energy of thering is

1 1
§m112 = 5(7" dr grams) (

107r c_m) 2 50m%r®dr gram - cm?®
9 sec/ 81 sec?

So the kinetic energy of the record, summing the energies of all theserings, is

10

~ 1523

| gram - cm?

10 2.3 2,4
/ 50m°r dr 2577 _ = 15231 ergs.
; ec

81 162
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25. f— @ —>4 1 y

The density of the rod, in mass per unit length, is M /1 (see above). So aslice of size dr has mass

Mdr 1t pulls the

small mass m with force Gm *L4- /r* = SmILdr Sp thetotal gravitational attraction between the rod and point is
“H GmM dr _ GmM (_1) ot
u Ir? o r
_ GmM (l 1 )
- l a a+l1
GmM l _ GmM

I ala+1)  ala+1)

26.

Thistime, Iet’ssplit the second rod into small dlices of length dr. Each slice is of mass ﬂ dr, since the density of

the second rod is 22, Since the slice is small, we can treat it as a particle at distance r away from the end of thefirst rod,
asin Problem 25. By that problem, the force of attraction between the first rod and particleis

GM. 2 dr
(r(r+h)’
So the total force of attraction between therodsis

/“*’2 GM, 52 dr GMlM /“*’2 dr

M +h) w+m

GMIM /““2 1 1 )
= - — dr
r r—+1

a+lo

_ GM1M>
RS
G M, M:
= =S nla+lo| ~Inja+ 0l + 1] —Infa| +1nja+ 1]
162

N G M1 M (a+l1)(a+l2)
l1l2 a(a + ll + l2)

(In |r| = In|r + 1))

a

This result is symmetric: if you switch I, and I> or M; and M>, you get the same answer. That means it’s not important
which rod is“first,” and which is “second.”

27.

Figure 8.44

In Figure 8.44, consider asmall piece of the ring of length Al and mass

AIM

AM = .
2mwa
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The gravitational force exerted by the small piece of the ring is along the line QP. As we sum over al pieces of the
ring, the components perpendicular to the line OP cancel. The components of the force toward the point O are al in the
same direction, so the net force isin this direction. The small piece of length Al and mass AlM /2wa is at adistance of
a? + y? fromP, so
G5%m GMmAl

2ma

(Jar+yp)?  2mala® +47)

Gravitational force from small piece = AF =

Thus the force toward O exerted by the small piece is given by
AF cos = AF y = GM.mAl. y = Gl\{lmyél .
Vaz+y?  2ma(@® +y?) |\ [e2 442 2ma(a® +y?)3/?

Thetotal forcetoward O isgivenby F' ~ > AF cosf, so

Fe G Mmy - Total length _ GMmy2ra GMmy

2ﬂ'a(a2+y2)3/2 - 27‘ra(a2+y2)3/2 - (a2 +y2)3/2'

28. Dividethedisk into rings of radius r, width Ar, as shown in Figure 8.45.

p
y

QLT
Ar
Figure 8.45

Then
Areaof ring = 2rrAr.

Sincetotal area of disk iswa?,
2wrAr 2r M
M = —
ma? a?
Thus, calculating the gravitational force due to the ring, we have
Gravitational force ( 2rM A ) my 2GMmyr
(

onmduetoring a?

Ar.

Mass of ring ~

r2 4+ y2)3/2 - (12(7‘2 + y2)3/2 T.
Summing over all rings, we get
Total gravitational force 2GMmyr
>

on m due to disk a2(r2 +y2)3 2
As Ar — 0, we get
Gravitational force  [“  2GMmyr _ 2GMmy -1 “
onmduetodisk [ a2(r>+y?)3/2 "= a? ’ (r? + y2)1/2 .

_2GMmy (1 1
- a2 y (a2 +y2)/2 )"

Solutions for Section 8.5

Exercises

1. Atanytimet, in atimeinterval At, an amount of 1000A¢ is deposited into the account. This amount earns interest for
(10 — ¢) years giving a future value of 1000¢(*-°(1°~*)  symming all such deposits, we have

10
Futurevalue:/ 1000 %%1°=1 gt = $15,319.30.
0
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15 15
Future Value = / 3000e°-°(15=1) gt — 3000e°-° / e 006 gy
0 0

15

= 3000e°° ( 1L 00y Leo)
. . .

_ 0.9 1 —0.06t)
= 3000e (——0.066

~ $72,980.16

15
Present Value = [ 3000e*°**dt = 3000 (—_1 ) e 0:00¢

o

~ $29,671.52.

There's aquicker way to calculate the present value of the income stream, since the future value of the income stream is
(as we've shown) $72,980.16, the present value of the income stream must be the present value of $72,980.16. Thus,

Present Value = $72,980.16(e~ ")
~ $29,671.52,

which iswhat we got before.
3. We compute the future value first: we have

5
Futurevalue:/ 20005~ gt = $12, 295.62.
0

We can compute the present value using an integral and the income stream or using the future value. We compute the
present value, P, from the future value:

12295.62 = P’ %) s P = 8242.00.

The future value of thisincome stream is $12, 295.62 and the present value of thisincome stream is $8, 242.00.
4. (a) We compute the future value of thisincome stream:

20
Future value = / 1000e%°7(30=0 g4 — $43, 645.71.
0

After 20 years, the account will contain $43, 645.71.
(b) The person has deposited $1000 every year for 20 years, for atotal of $20, 000.
(c) Thetota interest earned is $43,645.71 — $20, 000 = $23, 645.71.

Problems

S. $iyear

1

t (years from present)

The graph reaches a peak each summer, and a trough each winter. The graph shows sunscreen sales increasing from
cycle to cycle. This gradual increase may be due in part to inflation and to population growth.

6. (a) Thelump sum payment has a present value of 104 million dollars . We compute the present value of the other option
in each case. An award of $197 million paid out continuously over 26 years works out to an income stream of
7.576923 million dollars per year.

If the interest rate is 6%, compounded continuously, we have

26
Present value at 6% = / 7.576923¢ %% gt = 99.75.
0
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The present value of this option is about 99.75 million dollars. Since thisis less than the lump sum payment of 104
million dollars, the lump sum payment is preferable if the interest rate is 6%.
If the interest rate is 5%, we have

26
Present value at 5% = / 7.576923¢ %% dt = 110.24.
0

The present value of this option is about 110.24 million dollars. Since thisis greater than the lump sum payment of
104 million dollars, taking payments continuously over 26 years isthe better option if the interest rate is 5%.
(b) Since the winner chose the lump sum option, she was assuming that interest rates would be high (above about 5.5%).

7. (a) Solvefor P(t) = P.

10 10
100000 = / Peo'w(m*t)dt — Pe/ o010t 74
0 0

10

Pe _
€ 7010 = Pe(—3.678 + 10)

= 2010°
— P.17.183.

So, P =~ $5820 per year.
(b) To answer this, we'll calculate the present value of $100,000:

100000 = Pel1000)
P ~ $36,787.94.

8. (@) Let L bethe number of yearsfor the balance to reach $10,000. Since our income stream is $1000 per year, the future
value of thisincome stream should equal (in L years) $10,000. Thus

L L
10000 :/ 100020 ¢ = 100060-0“/ e 005t gy
0 0

L
— 1000e%-05L ( 1 ) e 005t | _ 90000e%05E (1 . 670.0514)

7 0.05 .
= 20000e°-°°" — 20000
3
0.05L
S0 =-
¢ 2

L =20In (g) = 8.11 years.

(b) Wewant

L
10000 = 2000 %" + / 1000~ gt
0
The first term on the right hand side is the future value of our initial balance. The second term is the future value of

our income stream. We want this sum to equal $10,000 in L years. We solve for L:
L
10000 = 2000e”°** + 1000e* %" / e =005t gy
0

—0.05¢

= 2000e% %% + 100095 (

—0.05)
— 200060.05L + 2000060.05L (1 _ 6—0.05L)
= 2000¢° %L + 20000e%°5% — 20000.

22000¢°-°°" = 30000
L0.05 _ 30000

T 22000
15
L=20In o7~ 6.203 years.
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You should choose the payment which gives you the highest present value. The immediate lump-sum payment of $2800
obviously has a present value of exactly $2800, since you are getting it now. We can calculate the present value of the
installment plan as:

PV = 1000e ™% 4 1000e~%%*™") 4+ 1000e ™06
~ $2828.68.

Since the installment payments offer a (slightly) higher present value, you should accept this option.
(@) We calculate the future values of the two options:

v, = 60 1(3) + 92£0-1(2) + 90-1(1) + 9£0-1(0)
~ 8.099 + 2.443 + 2.210 + 2
= $14.752 million.

FV, = o0-1(3) + 2£0-1(2) +460.1(1) +660.1(0)
1.350 + 2.443 + 4.421 + 6
= $14.214 million.

Q

Aswe can see, the first option gives a higher future value, so he should choose Option 1.
(b) From the future value we can easily derive the present value using the formulaPV = FVe™"¢. So the present value is

Option 1: PV = 14.752¢%*"®) ~ $10.929 million.

Option 2: PV = 14.214e°*"® ~ $10.530 million.

At any time ¢, the company receives income of s(t) per year. It will then invest this money for alength of 2 — ¢ years
at 6% interest, giving it future value of s(t)e(%-%9 =% from thisincome. If we sum all such incomes over the two-year
period, we can find the total value of the sales:

2 2
Value:/ s(t)e(o'%)@_t) dt:/ [506_te(0'06)(2_t)] dt
0 0

2 2
0.12—1.06t —53.1838
:/0 [50e ] dt = (461_0% )

= $46,800.
0

Pricein future = P(1 + 20V/).

The present value V of price satisfies V' = P(1 + 20v/t)e ™%,

We want to maximize V. To do so, we find the critical points of V' (¢) for ¢ > 0. (Recall that V/t is nondifferentiable at
t=20)

Cﬁl_‘t/ =P {22—\%6—0-0“ +(1+ 20\/5)(—0.056‘0-0“)}
_ 10
=Pe % | = —0.05 — Vil .
Vit

Setting Cﬁl_‘t/ =0 giv&% —0.05 — v/t = 0. Using a calculator, wefind ¢ = 10 years. Since V' (¢) > 0 for 0 < ¢ < 10

and V' (t) < 0 fort > 10, we confirm that this is a maximum. Thus, the best time to sell the wineisin 10 years.
(a) Suppose the ail extracted over the time period [0, M] is S. (See Figure 8.46.) Since ¢(t) isthe rate of oil extraction,

we have:
M M M
S =/ q(t)dt :/ (a —bt)dt :/ (10 — 0.1¢) dt.
0 0 0

To calculate the time at which the oil is exhausted, set S = 100 and try different values of M. Wefind M = 10.6
gives

10.6
/ (10 — 0.1¢) dt = 100,
0
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so the oil is exhausted in 10.6 years.

Extraction Curve
r'e

q(t

Area below ®
the extraction curve .
is the total oil extracted "

0 M
Figure 8.46

(b) Suppose p isthe ail price, C isthe extraction cost per barrel, and r is the interest rate. We have the present value of
the profit as

M
Present value of profit :/ (p— C)q(t)e™""dt
0

10.6
= / (20 — 10)(10 — 0.1¢)e " dt
0
= 624.9 million dollars.

14. One good way to approach the problem is in terms of present values. In 1980, the present value of Germany’s |oan was
20 billion DM. Now let’s figure out the rate that the Soviet Union would have to give money to Germany to pay off 10%
interest on the loan by using the formula for the present value of a continuous stream. Since the Soviet Union sends gas
at a constant rate, the rate of deposit, P(t), isa constant c. Since they don’t start sending the gas until after 5 years have
passed, the present value of the loan is given by:

Present Value = / P(t)e " dt.
5
We want to find ¢ so that

20,000,000,000 :/ ce*”dt:c/ e "tdt
5 5

b
— ¢ lim (_10670.1&) —0.10(5)
b—o0

= ce
5

~ 6.065c¢.

Dividing, we see that ¢ should be about 3.3 billion DM per year. At 0.10 DM per m® of natural gas, the Soviet Union
must deliver gas at the constant, continuous rate of about 33 billion m® per year.

15. price
(1000s of dollars/car)

1050 (50, 980)

Demand

,,,,,,,,,,,,,,,,, (350, 560)

quantity
(number of cars)

Measuring money in thousands of dollars, the equation of the line representing the demand curve passes through (50,
980) and (350, 560). So the equation isy — 560 = 2% (z — 350), i.e.y — 560 = — Lz + 490.

—300
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The consumer surplusisthus

350

350
/ (—%m + 1050) dz — (350)(560) = —1—701‘2 +1050z|  — 196000
0 0
= 85750.

(Note that 85750 = % - 490 - 350, the area of the triangle in the diagram. We thus could have avoided the formula for
consumer surplusin solving the problem.)
Recalling that our unit measure for the price axis is $1000/car, the consumer surplusis $85,750,000.

Price

Quantity
Ag Aq Agq q*

The supply curve, S(q), represents the minimum price p per unit that the suppliers will be willing to supply some
quantity ¢ of the good for. If the suppliers have ¢* of the good and ¢* is divided into subintervals of size Ag, then if the
consumers could offer the suppliers for each Aq apriceincrease just sufficient to induce the suppliersto sell an additional
Aq of the good, the consumers’ total expenditure on ¢* goods would be

PIAG+PAG+- =Y pilg.

q* q
As Aq — 0 the Riemann sum becomes the integral S(q) dg. Thus S(q) dq isthe amount the consumers would

pay if suppliers could be forced to sell at the lowest pOrice they would be v3i|ling to accept.

* * *

/Oq (p*—S(q))dQZ/Oq p*dq—/oq S(q)dq

*

q
=p*q*—/ S(q) dg.
0

Using Problem 16, thisintegral isthe extra amount consumers pay (i.e., suppliers earn over and above the minimum they
would be willing to accept for supplying the good). It results from charging the equilibrium price.

(@) p"q* = thetotal amount paid for ¢™ of the good at equilibrium.

price

Supply : S(q)

Demand : D(q)
quantity

*

q

(b) f 0"* D(q) dq = the maximum consumers would be willing to pay if they had to pay the highest price acceptable to
them for each additional unit of the good.
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price

Supply : S(q)

Demand : D(q)
quantity

(© foq* S(q) dg = the minimum suppliers would be willing to accept if they were paid the minimum price acceptable to
them for each additional unit of the good.

price

Supply : S(q)
p*
Demand : D(q)
quantity
q*
() [y D(q)dq—p“q" = consumer surplus.
price
Supply : S(q)
p*
Demand : D(q)
quantity
q*
(e p'q" — foq* S(q) dgq = producer surplus.
price
Supply : S(q)

Demand : D(q)
quantity

() f Oq* (D(q) — S(q)) dq = producer surplus and consumer surplus.
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price

Supply : S(q)

Demand : D(q)
quantity

19. p (price/unit)

¢ (quantity)
Figure 8.47: What effect does the artificially high price, p™, have?

(@) A graph of possible demand and supply curves for the milk industry is given in Figure 8.47, with the equilibrium
price and quantity labeled p* and ¢* respectively. Suppose that the price isfixed at the artificially high price labeled
p* in Figure 8.47. Recall that the consumer surplus is the difference between the amount the consumers did pay
(p™) and the amount they would have been willing to pay (given on the demand curve). This is the area shaded in

Figure 8.48(i). Notice that this consumer surplus is clearly less than the consumer surplus at the equilibrium price,
shown in Figure 8.48(ii).

(i) Artificial price (i) Equilibrium price
P (price/unit) p (price/unit)
consumer consumer
surplus pt = surplus
o I
p T
|
¢ (quantity) ‘ q (quantity)
¢t

Figure 8.48: Consumer surplus for the milk industry

(o) Atapriceof p*, the quantity sold, g™, isless than it would have been at the equilibrium price. The producer surplus
is the area between p™ and the supply curve at this reduced demand. This areaiis shaded in Figure 8.49(i). Compare
this producer surplus (at the artificially high price) to the producer surplusin Figure 8.49(ii) (at the equilibrium price).

It appears that in this case, producer surplus is greater at the artificial price than at the equilibrium price. (Different
supply and demand curves might have led to a different answer.)

(i)  Artificial price (i) Equilibrium price
p (price/unit) p (price/unit)
producer
surplus producer
surplus
p+ p+ L
p* N | p* X1
ul |
. ¢ (quantity) ‘ q (quantity)
gt ¢ ¢t

Figure 8.49: Producer surplus for the milk industry
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(c) Thetotal gainsfrom trade (Consumer surplus + Producer surplus) at the artificially high price of p™ isthe area shaded
in Figure 8.50(i). The total gains from trade at the equilibrium price of p* is the area shaded in Figure 8.50(ii). It is
clear that, under artificial price conditions, total gains from trade go down. The total financial effect of the artificially
high price on all producers and consumers combined is a negative one.

(i) Artificial price
p (price/unit)

N
p* l>

*

gt q

(i) Equilibrium price
P (price/unit)

q (quantity)

Figure 8.50: Total gains from trade

20. price

Consumer surplus —

Producer surplus —

quantity

(a) The producer surplus is the area on the graph between p~ and the supply function. Lowering the price also lowers

the producer surplus.

(b) Note that the consumer surplus—the area between the line p~ and the supply curve—increases or decreases depend-
ing on the functions describing the supply and demand and on the lowered price. (For example, the consumer surplus
seems to be increased in the graph above, but if the price were brought down to $0 then the consumer surplus would
be zero, and hence clearly less than the consumer surplus at equilibrium.)

(c) The graph above shows that the total gains from the trade are decreased.

Solutions for Section 8.6

Exercises
1. % of population
per dollar of income
income
Figure 8.51: Density function
2. % of population

per dollar of income

income

Figure 8.53: Density function

% of population having
at least this income

income
Figure 8.52: Cumulative distribution function

% of population having
at least this income

income

Figure 8.54: Cumulative distribution function
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% of population % of population having
per dollar of income at least this income

income

income

Figure 8.55: Density function Figure 8.56: Cumulative distribution function

4. Since the function takes on the value of 4, it cannot be a cdf (whose maximum value is 1). In addition, the function

decreases for x > ¢, which means that it is not a cdf. Thus, this function is a pdf. The areaunder apdf is1,so4c =1
givingc = . Thepdf isp(z) = 4 for 0 < z < 1, so the cdf isgiven in Figure 857 by

0 for z<0

P(z)={ 4z for 0<z<

1 for ac>1

4

NI

P(z)

|
1
4

Figure 8.57

5. Sincethe function is decreasing, it cannot be a cdf (whose values never decrease). Thus, the function is a pdf.
The areaunder apdf is 1, so, using the formula for the area of atriangle, we have

1 - 1
§4c:1, giving c=5-

The pdf is
p(x)z%—éa: for 0<z <4,
so the cdf isgiven in Figure 8.58 by
0 for <0
2
Pl)y=¢ L_X ¢ <z<4
(z) 5~ 15 o 0<a<
1 for = > 4.
P(x)
1
! T
4

Figure 8.58
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6. Sincethefunction levels off at the value of ¢, the area under the graph isnot finite, soitisnot 1. Thus, this function cannot
be a pdf.

Itisacdf and ¢ = 1. The cdf isgiven by

for <0

P(x) = for 0<z<5

o8

for z >5.
The pdf in Figure 8.59 is given by

0 for z<0
plx)=4¢ 1/5 for 0<z<5
0 for = >5.

15 b

|
|
|
|
|
|
|
|
|
1
5

Figure 8.59

7. This function decreases, so it cannot be a cdf. Since the graph must represent a pdf, the area under it is 1. The region
consists of two rectangles, each of base 0.5, and one of height 2¢ and one of height ¢, so

Area= 2¢(0.5) +¢(0.5) =1

_ 1 _2
=153

The pdf istherefore
0 for <0
4/3 for 0<z<0.5
p(x) = 2/3 for 05<z<1
0 for = >1.
The cdf P(z) isthe antiderivative of this function with P(0) = 0. See Figure 8.60. The formulafor P(z) is

0 for =<0
Pla) = 4x/3 for 0<x<0.5
) 2/34+(2/3)(x —05) for 05<z<1
1 for x>1.
P(x)
1
2L
3
| | xT
0.5 1

Figure 8.60
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8. Thisfunction increases and levels off to c. The area under the curve is not finite, so it isnot 1. Thus, the function must be
acdf, not apdf,and 3¢ = 1,s0¢ = 1/3.
The pdf, p(z) isthe derivative, or slope, of the function shown, so, using ¢ = 1/3,

for <0
(1/3-0)/(2-0)=1/6 for 0<x <2
(1-1/3)/(4-2)=1/3 for 2<z<4
for = > 4.

p(z) =

o

See Figure 8.61.

wl—=

=

Figure 8.61

9. Thisfunction does not level off to 1, and it is not always increasing. Thus, the function is a pdf. Since the area under the
curve must be 1, using the formula for the area of atriangle,

% cc-1l=1 s0 c=2.
Thus, the pdf is given by
0 for <0
4x for 0<z2<0.5
p(r) = _
2—-4(x—-05)=4—4x for 05<z<1
0 for x>0.

To find the cdf, we integrate each part of the function separately, making sure that the constants of integration are arranged
so that the cdf is continuous.

Since [ 4zdz = 22 + C and P(0) = 0, wehave2(0)> + C =0s0C = 0. Thus P(z) = 22> on 0 < z < 0.5.
At z = 0.5, the cdf has value P(0.5) = 2(0.5)? = 0.5. Thus, we arrange that the integral of 4 — 4z goes through the
point (0.5,0.5). Since [ (4 — 4z) dz = 4z — 22” + C, we have

4(0.5) —2(0.5)> + C = 0.5 giving C = —1.

Thus
0 for <0
22> for 0<z<0.5
P(z) = 2 -
dr —2z°—1 for 05<x<1
1 for = >1.
See Figure 8.62.
P(z)
1 |-
0.5
L L T
0.5 1

Figure 8.62
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10. No. Though the density function has its maximum value at 50, this does not mean that a large fraction of the population
receives scores near 50. The value p(50) can not be interpreted as a probability. Probability corresponds to area under the
graph of adensity function. Most of the areaiin this case isin the broad hump covering therange 0 < z < 40, very little
in the peak around = 50. Most people scoreintherange 0 < z < 40.

11

12.

13.

14.

15.

@)

(b)

@)
(b)

Let P(x) be the cumulative distribution function of the heights of the unfertilized plants. As do all cumulative
distribution functions, P(x) rises from 0 to 1 as z increases. The greatest number of plants will have heights in the
range where P(x) rises the most. The steepest rise appears to occur at about x = 1 m. Reading from the graph we
seethat P(0.9) = 0.2 and P(1.1) = 0.8, so that approximately P(1.1) — P(0.9) = 0.8 — 0.2 = 0.6 = 60% of the
unfertilized plants grow to heights between 0.9 m and 1.1 m. Most of the plants grow to heightsin therange 0.9 mto
11m.

Let P4(x) be the cumulative distribution function of the plants that were fertilized with A. Since P4 (z) rises the
most in therange 0.7 m < z < 0.9 m, many of the plants fertilized with A will have heights in the range 0.7 m to
0.9 m. Reading from the graph of P4, we find that P4(0.7) = 0.2 and P4(0.9) = 0.8, S0 P4(0.9) — Pa(0.7) =~
0.8 —0.2 = 0.6 = 60% of the plants fertilized with A have heights between 0.7 m and 0.9 m. Fertilizer A had the
effect of stunting the growth of the plants.

On the other hand, the cumulative distribution function Pg () of the heights of the plants fertilized with B rises
themostintherange1.1 m < z < 1.3 m, so most of these plants have heightsin therange 1.1 m to 1.3 m. Fertilizer
B caused the plants to grow about 0.2 m taller than they would have with no fertilizer.

F(7) = 0.6 tellsusthat 60% of the treesin the forest have height 7 meters or less.
F(7) > F(6). There are more trees of height less than 7 meters than trees of height less than 6 meters because every
tree of height < 6 metersalso has height < 7 meters.

For asmall interval Az around 68, the fraction of the population of American men with heights in this interval is about
(0.2)Az. For example, taking Az = 0.1, we can say that approximately (0.2)(0.1) = 0.02 = 2% of American men
have heights between 68 and 68.1 inches.

We want to find the cumulative distribution function for the age density function. We seethat P(10) isequal to 0.15 since
the table shows that 15% of the population is between 0 and 10 years of age. Also,

and

Fraction of the population

P(20) =
(20) between 0 and 20 years old

=0.15+0.14 = 0.29

P(30) = 0.15 +0.14 4+ 0.14 = 0.43

Continuing in this way, we obtain the values for P(t) shown in Table 8.5.

Table 8.5 Cumulative distribution function of agesin the US

t 0| 10| 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
P(t)||0]015[ 029|043 | 0.60 | 0.74| 0.84 | 0.92 | 0.97 | 0.99 | 1.00

(@) Thetwo functions are shown below. The choiceis based on the fact that the cumulative distribution does not decrease.
(b) The cumulative distribution levels off to 1, so the top mark on the vertical scale must be 1.

0.8 <—— Cumulative
0.6
0.4 Density
0.2
‘ — <

2 4 6 8 10

Thetotal area under the density function must be 1. Since the area under the density function isabout 2.5 boxes,
each box must have area1/2.5 = 0.4. Since each box has a height of 0.2, the base must be 2.
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16. (a) Theareaunder thegraph of the height density function p(z) isconcentrated in two humps centered at 0.5 mand 1.1 m.
The plants can therefore be separated into two groups, those with heightsin the range 0.3 m to 0.7 m, corresponding
to thefirst hump, and those with heights in the range 0.9 m to 1.3 m, corresponding to the second hump. Thisgrouping
of the grasses according to height is probably close to the species grouping. Since the second hump contains more
areathan the first, there are more plants of the tall grass species in the meadow.

(b) Asdo al cumulative distribution functions, the cumulative distribution function P(z) of grass heights rises from 0
to 1 asx increases. Most of thisriseis achieved in two spurts, the first as z goes from 0.3 mto 0.7 m, and the second
as z goes from 0.9 m to 1.3 m. The plants can therefore be separated into two groups, those with heightsin the range
0.3 mto 0.7 m, corresponding to the first spurt, and those with heights in the range 0.9 m to 1.3 m, corresponding to
the second spurt. This grouping of the grasses according to height is the same as the grouping we made in part (a),
and is probably close to the species grouping.

(c) Thefraction of grasses with height less than 0.7 m equals P(0.7) = 0.25 = 25%. The remaining 75% are the tall
grasses.

17. (a) The percentage of callslasting from 1 to 2 minutesis given by the integral

2 2
/ p(z) dx/ 0.4e O dr =e % —e "% = 22.1%.
1 1

(b) A similar calculation (changing the limits of integration) gives the percentage of calls lasting 1 minute or less as

1 1
/ p(z)dr = / 0.4e O dx =1—e " = 33.0%.
0

0
(c) The percentage of calls lasting 3 minutes or more is given by the improper integral

b—o0 b— oo

oo b
/ p(z)dx = lim 0.4e " dz = lim (e "% — e ) = e 2 30.1%.
3 3

(d) The cumulative distribution function is the integral of the probability density; thus,

h h
C(h) = / p(m) dx = / 0.46*0-4m de=1— 6—0_4};.
0

0

18. (&) Thefraction of students passing is given by the area under the curve from 2 to 4 divided by the total area under the
curve. This appears to be about 2.
(b) The fraction with honor grades corresponds to the area under the curve from 3 to 4 divided by the total area. Thisis
about 1.
3
(c) The peak around 2 probably exists because many students work to get just a passing grade.

(d) fraction of students
1+

19. (a) Most of the earth’s surface is below sealevel. Much of the earth’s surface is either around 3 miles below sealevel or
exactly at sealevel. It appears that essentially all of the surface is between 4 miles below sealevel and 2 miles above
sealevel. Very little of the surface is around 1 mile below sealevel.

(b) Thefraction below sealevel corresponds to the area under the curve from —4 to O divided by the total area under the
curve. This appears to be about 2.

(oo}

20. (a) We must have / f(t)dt =1, for even though it is possible that any given person survives the disease, everyone

o0
/ cteFdt = 1.
0

eventualy dies. %herefore,
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Integrating by parts gives

b
/ cte Mdt = —Ete_kt
0 k

_ (—Etefkt _ ie*kt)
k k2

i_Ebe—kb_i —kb
K2k k2

Asb — oo, wesee

o0

/ cteiktdtzézl 0 c=k.
0

5
(b) Wearetold that/ f(t)dt = 0.4, s0 using the fact that ¢ = k* and the antiderivatives from part (a), we have
0

5 2 2
2, —kt E°, ke K ke
/0 k™ te dt = <—?t6 - ﬁe

=1-5ke™® —e%* =04

5

0

so
5ke™*F 47 = 0.6.
Since this equation cannot be solved exactly, we use a calculator or computer to find & = 0.275. Since ¢ = k%, we
have c = (0.275)? = 0.076.
(c) The cumulative death distribution function, C'(¢), represents the fraction of the population that have died up to time
t. Thus,
t
C(t) = / kK ze " dr = (—kxe_km - e_km) |t
0

0

=1— kte "t — k¢,

Solutions for Section 8.7

Exercises
1.

p(z)

0.24 |-

012 + A | As

0.08 +— B A,

2 T (tons of fish)

0 2 6 8

Splitting the figure into four pieces, we see that
Areaunder thecurve = A; + As + As + Ay
1 1
5(0.16)4 +4(0.08) + 5(0.12)2 +2(0.12)
=1.

[o%e}

We expect the area to be 1, since/ p(z)dz =1 for any probability density function, and p(z) is 0 except when

2<z<8.
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2. Recdll that the mean is/ zp(z) dz. In the fishing example, p(z) = 0 except when 2 < = < 8, sothemean is

8
/ zp(z)dz.
2
Using the equation for p(x) from the graph,

/28 op(z) dz = /:xp(a:) dw + /: zp(z) dz

6 8
= / z(0.04z) dz + / z(—0.06z + 0.6) dz
2 6

6 8

+ (—0.02z° + 0.32%)
2

_0.042°
-3

=~ 5.253 tons.

3. (a) [0} (i p(z)

(b) Recall that the mean isthe “balancing point.” In other words, if the area under the curve was made of cardboard, we'd
expect it to balance at the mean. All of the graphs are symmetric across the line z = p, so p isthe “baancing point”
and hence the mean.

Asthe graphs also show, increasing o flattens out the graph, in effect lessening the concentration of the data near the
mean. Thus, the smaller the o value, the more data is clustered around the mean.

Problems

4. (a) Sinced(e™")/dt = ce™", we have

6
c/ e dt = —e~ ¢! g =1-e%=01,
0

c= —% In0.9 = 0.0176.
(b) Similarly, with ¢ = 0.0176, we have

12 b
—et —ct
c/ e “dt = —e €
6
6

=e % — 712 = 0.9 - 0.81 = 0.09,

so the probability is 9%.
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5. (a) We can find the proportion of students by integrating the density p(x) between z = 1.5 and x = 2:

P(2) - P(15) = /2 %3 dx

_z
16 1.5
@' 05

= — - —"—=0.684
16 16 0684,

so that the proportion is0.684 : 1 or 68.4%.
(b) Wefind the mean by integrating = times the density over the relevant range:

2 1_3
Mean:/ x(—) dzr
o 4
2 4
2/ x—dm
o 4

$_5 2

20

25

= — = 1.6 hours.
20 6

(c) The median will be the time T such that exactly half of the students are finished by time 7', or in other words

0

1 zt T

27 16|,

1_7

2 16

T = +v/8 = 1.682 hours.

6. (a) Since/ p(z)dr = 1, we have
0

0 0.122°

Soa = 0.122.
(b)

0.122¢ %122 g4

0122t |: — ] _ 0122
(c) Median isthe z such that
P(z)=1—e 2" =0.5.
Soe 01222 = (5. Thus,

__ln0.5

~ 5. n
0122 5.68 seconds
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and

Mean :/ 2(0.122)e 1227 dy = —/ z (—0.122¢7*1%27) da.

0 0
We now use integration by parts. Let w = —z and v/ = —0.122¢7%'2%% Then v = —1,and v = ¢~ 21222,
Therefore,
9o | oo o 1
Mean = —ze *1227| 4 / e 0122 g = ——_ ~ 8.20 seconds.
o) 0.122
(d) T
0.122 P(x)
p(x)
xT xT

7. (a) Thecumulative distribution function

t
P(t) = / p(z)dz = Areaunder graph of density function p(z) for0 <z <t
0

= Fraction of population who survive ¢ years or less after treatment
= Fraction of population who survive up to ¢ years after treatment.

(b) The probability that a randomly selected person survives for at least ¢ years is the probability that he lives ¢ years or

longer, so

o0 b

S(t) =/ p(z)dr = lim Ce~ %t 4z
t b— oo ¢
b
= lim —e %t = lim —e~ % — (_e—Ct) _ 6_Ct,
b—oco b—oco

or equivaently,

¢
=1+ (% —1)=e"""
0

t ¢
S(t)zl—/p(a:)da:zl—/ Ce “'dr=1+e
0

0

(c) The probability of surviving at least two yearsis
5(2) = e “® =0.70

Ine “® =1n0.70
—2C =1n0.7
1
C=—5In0.7~0178.

8. (&) The probability you dropped the glove within a kilometer of home is given by

1 1
/ 26—2md1, — _B—Zz — —672 + 1~ 0.865.
0 0

(b) Since the probability that the glove was dropped within y km = foy p(z)de =1 —e %Y, wesolve

1—e 2 =095
e % =0.05
y=2005 1 5km.

-2
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9. (@ Sinceu =100 and o = 15:
(z) 1 -i(=®)°
r) = ——¢€ .
b 1527

(b) Thefraction of the population with IQ scores between 115 and 120 is (integrating numerically)

/120 ( )d /120 1 _ (2—100)2 i
plr)axr = —F€ 450 x
115 115 15V2m

120
1

C15v27 Jous
~ 0.067 = 6.7% of the population.

(z—100)2
e~ ~ 450 dx

10. (a) Thenormal distribution of car speeds with p = 58 and o = 4 is shown in Figure 8.63.

Figure 8.63

The probability that a randomly selected car is going between 60 and 65 is equal to the area under the curve
fromz = 60 toxz = 65,

65

. 1 20042

Probability = e~ (@587 (247 g2 ~ 0.2685.
y 4/ 2w /60

We obtain the value 0.2685 using a calculator or computer.
(b) To find the fraction of cars going under 52 km/hr, we evaluate the integral

52

. 1 C(2—58)2

Fraction = e~ ET8/32 10 2 0.067.
421 /0

Thus, approximately 6.7% of the cars are going less than 52 kmv/hr.
11. (a) First, wefind the critica points of p(x):

1 —2(z — _@=w)?
o) = @—p) |,
dx oV 2T 202
_ (z—p)2
_ (o) -
o3/ 21

Thisimpliesz = p isthe only critical point of p(z).

(2—m)®
To confirm that p(x) is maximized at x = p, we rely on the first derivative test. As — 3 L 5 e 3t s
g m
always negative, the sign of p'(z) isthe opposite of the sign of (z — p); thusp'(z) > Owhenz < p, and p'(z) < 0

when z > pu.
(b) To find the inflection points, we need to find where p” (z) changes sign; that will happen only when p” (z) = 0. As

d? 1 _mw? z—p)?
wp(x):—ag— %6 202 |:—(072M)+1 )
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p"'(z) changes sign when {— (96;72’”)2 + 1] does, since the sign of the other factor is always negative. This occurs
when
—(z —p)* = -0,
r—p = *o.

Thus,z = p+oorz = p—o.Sincep”’ (z) > 0forz < p—oandz > p+oandp’(z) < 0forp—o <z < p+o,
these arein fact points of inflection.

(c) u represents the mean of the distribution, while o is the standard deviation. In other words, o gives a measure of the
“spread” of the distribution, i.e., how tightly the observations are clustered about the mean. A small o tells us that
most of the data are close to the mean; alarge o tells usthat the datais spread out.

12. Thefraction of the population within one standard deviation of the mean is given by

. . 7 1 —22/(202)
Fraction within o of mean = —e dx.
_» V2mo

Let us substitute w = z so that dw = ldgc, and when z = +o0, w = +1. Then we have
ag a

o 1 1
. 1 22/(252 1 9 1 =
Fraction = e/ )dx:/ e v /2.o'dw:/ ——e 2 quw.
/,(, V2ro _1 V2mo V2

Thisintegral isindependent of o. Evaluating the integral numerically gives0.68, showing that about 68% of the population
lies within one standard deviation of the mean.

13. Itisnot (a) since a probability density must be a non-negative function; not (c) since the total integral of a probability
density must be 1; (b) and (d) are probability density functions, but (d) is not a good model. According to (d), the
probability that the next customer comes after 4 minutes is 0. In red life there should be a positive probability of not
having a customer in the next 4 minutes. So (b) isthe best answer.

14. (a) P isthecumulative distribution function, so the percentage of the population that made between $20,000 and $50,000
is

P(50) — P(20) = 99% — 75% = 24%.
Therefore = of the population made between $20,000 and $50,000.
(b) The median income is the income such that half the people made less than this amount. Looking at the chart, we see
that P(12.6) = 50%, so the median must be $12,600.

(c) The cumulative distribution function looks something like Figure 8.64. The density function is the derivative of the
cumulative distribution. Qualitatively it looks like Figure 8.65.

1k
P(z)
0.75
0-5 p(x)
0.25 -
0.1 F
) ) ) ) . Income x | | | ) Income
10 20 30 40 50 (in 1000s of dollars) 10 20 30 40 50 (in 1000s of dollars)
Figure 8.64: Cumulative distribution Figure 8.65: Density function

The density function has amaximum at about $8000. This means that more people have incomes around $8000
than around any other amount. On the density function, thisisthe highest point. On the cumulative distribution, this
isthe point of steepest Sope (because P’ = p), which is aso the point of inflection.
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15. (a) Let the p(r) be the density function. Then P(r) = forp(a:) dz, and from the Fundamental Theorem of Calculus,
p(r)=LP(r)=L(1 -2 +2r+1)e™>") = —(4r +2)e™ > +2(2r° + 2r + L)e=>", or p(r) = 4r’e™~"".
We havethat p'(r) = 8r(e™2") — 8re™?" = 72" . 8r(1 — r), which iszero when » = 0 or r = 1, negative
when r > 1, and positivewhen r < 1. Thusp(1) = 4e~2 & 0.54 isarelative maximum.
Here are sketches of p(r) and the cumulative position P(r):

0.5 - 0.5

(b) The median distance isthe distance r such that P(r) = 1 — (2r? +2r +1)e™?" = 0.5, or equivaently, (2r? 4 2r +
1)e=2" =0.5.
By experimentation with a calculator, we find that » ~ 1.33 Bohr radii isthe median distance.
The meen distance is equal to the value of the integra [ rp(r)dr = lim [ rp(r)dr. We have that
r— 00

Jy ro(r)dr = [ 4r®e™*" dr. Using theintegral table, we get

/ 4r3e ™ dr =
0

Taking the limit of this expression asz — oo, we see that all terms involving (powers of z or constants) - e~>* have
limit 0, and thus the mean distance is 1.5 Bohr radii.
The most likely distance is obtained by maximizing p(r) = 4r*e™>"; as we have aready seen this corresponds
tor = 1 Bohr unit.
(c) Becauseit isthe most likely distance of the electron from the nucleus.

(_%) 4r® — i(l?ﬂ) - %(241~) - %(24)] o2 @

| 0
g — [21‘3 +32% + 3z + g e 2,

Solutions for Chapter 8 Review,

Exercises

1. The limits of integration are 0 and b, and the rectangle represents the region under the curve f(z) = h between these

limits. Thus,
b

= hb.

b
Areaof rectangle:/ hdz = hx
0 0

2. Thecirclez® + y? = r? cannot be expressed as afunction y = f(z), since for every = with —r < = < r, there are two
corresponding y values on the circle. However, if we consider the top half of the circle only, as shown below, we have
2 +y? =72, or y? = r? — 2%, and taking the positive square root, we have that y = /r2 — z2 is the equation of the
top semicircle.
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Then
Areaof Circle = 2(Areaof semicircle) = 2/ \r2—z?dr

We evaluate this using integral table formula 30.

r=r r
1
2/ \/rz—mzdm=2[§ (m r2—m2+r2arcsin£)]‘
r
r=—7

= r”(arcsin 1 — arcsin(—1))
= (5-(3)) =
-T2 2)) ="
3. Namethedanted liney = f(x). Then the triangleisthe region under theline y = f(x) and between thelinesy = 0 and

z =b. Thus,
b
Area of triangle:/ f(z)dz.
0

Since f(z) isaline of slope h/b which passes through the origin, its equation is f(z) = hz/b. Thus,

T
0 2b 2

b 2
. hx hx
Areaof triangle = /0 > dr = 5

4. Vertical dicesarecircular. Horizonta slices would be similar to ellipsesin cross-section, or at least ovals (aword derived
from ovum, the Latin word for egg).

Figure 8.66

5. Each dliceisacircular disk. Theradius, r, of the disk increases with k and is given in the problem by r = v/A. Thus
Volume of slice ~ 7> Ah = whAh.

Summing over al dices, we have
Total volume =~ Z ThAh.

Taking alimitas Ah — 0, we get

12
Total volume = lim ThAh = / whdh.
Ah 0

—0

Evaluating gives
12

= 727.

2

Total volume = TS

0
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6. (a) Looking at the graph, it appears that the graph of B isabove F' = 10 betweent = 2.3 and ¢ = 4.2, or for about 1.9
seconds.

(b) Although the total impulse is defined as the integral from 0 to oo, the thrust is O after a certain time, so the integral
is actually not improper. From ¢ = 0 to ¢ = 2, the graph of A looks like a triangle with base 2 and height 12, for an
areaof 12. Fromt¢ = 2to ¢t = 4, the graph of A looks a trapezoid with base 2 and heights 13 and 6, for an area of
19. Fromt¢ = 4 tot = 16, A is approximately arectangle with height 5.8 and width 12, for an areaof 69.6. Finaly,
fromt =16tot = 17, A looks like atriangle with base 1 and height 5.8, for an area of 2.9. So, the total area under
the curve of A’sthrust, whichis A’stotal impulse, isabout 103.5 newton-seconds.

(c) Note that when we calculated theimpulse in part (b), we multiplied height, measured in newtons, by width, measured
in seconds. So the units of impulse are newton-seconds.

(d) Thegraph of B’sthrust lookslike atrianglewith base 6 and height 22, for atotal impulse of about 66 newton-seconds.
So rocket A, with total impulse 103.5 newton-seconds, has alarger total impulse than rocket B.

(e) Aswe can seefrom the graph, rocket B reaches a maximum thrust of 22, whereas A only reaches a maximum thrust
of 13. So rocket B has the largest maximum thrust.

7. Since f(z) = sinz, f'(z) = cos(z), SO

Arc Length = / V' 1+ cos? zdzx.
0

8. WE'll find the arc length of the top half of the ellipse, and multiply that by 2. In the top half of the ellipse, the equation

(z?/a®) + (y*/b) = 1 implies
2
y=+by/1- Z—Z

Differentiating (z*/a®) + (y*/b?) = 1 implicitly with respect to z gives us

2 iy _
a?  b2dx ’
w 2
dy _ o5 __b2:1:
de ~ %’21 T oay’

Substituting this into the arc length formula, we get

+

a 2\ 2
Arc Length:/ 1 <—bTx>
,a a’y
@ 4
at(b*)(1 = =)

@ b22
_/a\/1+ <m> dx.
Hence the arc length of the entire éllipse is

o[\ () e

dx
2
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Problems

9. (@

(b) Divide [0,1] into N subintervals of width Az = &. The volume of the i*" disc is 7(\/z;)’Az = wz;Az. So,
V Zjvzl i Azx.

(©)
10. (a) z
Tout = 1
T
(=
rin =1— \/5
Slice the figure perpendicular to the z—axis. One gets washers of inner radius 1 — /z and outer radius 1.
Therefore,

V= / (11'12 —7(l— \/5)2) dz

7r/ (1-[1—2Vr+2)de

4 3 121 5
—rl2e? 22| =28 xo62
”[3“” 2“”]0 6 6
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(b) P

— 2
Tin =Y

&>
Tout = 1 *—'/

T ' Y
Note that = y>. We now integrate over y instead of z, slicing perpendicular to the y—axis. This gives us
washers of inner radius z and outer radius 1. So

y=1
V= / (r1? — wa®) dy
y

0

Slice parallél to the base of the cone, or, equivalently, rotate
thelinez = (3 — y)/3 about the y—axis. (One can also slice
the other way.) The volume V' is given by

y=3 3 _ 2
V=/ 7m:2dy=/ W(s—y) dy
3
Yy 0

=0

3 2
2y |y

g . y2 y3 3
T‘ i =7r<y—?+2—7>

12. (a) Slicethe headlight into IV disks of height Az by cutting perpendicular to the z—axis. The radius of each disk is y;
the height is Az. The volume of each disk is wy? Az. Therefore, the Riemann sum approximating the volume of the

headlight is
N N o
20 T
E wy; Ax = E L Azx.
i=1 i=1

(b)
oz 9 ,|"
71'/0 dezﬂ'gat

13. (a) Theliney = ax must passthrough (I,b). Henceb = al, soa = b/I.
(b) Cutthe coneinto NV slices, slicing perpendicular to the z—axis. Each piece isamost a cylinder. The radius of the ith

11

Radius=1 — ¥

= T.
0

= 18.
0

cylinder isr(z;) = ? so the volume

V= Zﬂ' (b?i)QAx.

i=1

Therefore, as N — oo, we get

1
V:/ w2l 22 dx
0

2 37! 2 3
= 7rb— - 7rb— l— = 171'b2l.
213 0 2 3 3
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14. (a) If you slicethe apple perpendicular to the core, you expect that the cross section will be approximately acircle.

/:\ T~ (P/”\

\}

|~
—~
=

~ WAL

If f(h) isthe radius of the apple at height k above the bottom, and H is the height of the apple, then

H
Volume = / nf(h)? dh.
0

Ignoring the stem, H ~ 3.5. Although we do not have a formula for f(h), we can estimate it at various points.
(Remember, we measure here from the bottom of the apple, which is not quite the bottom of the graph.)

h |0|05(1(15]| 2 |25| 3 |35
f(h) 1512)21|23|22|18]|12

[y

Now let g(h) = mf(h)?, the area of the cross-section at height h. From our approximations above, we get the
following table.

g(h) | 3.14 | 7.07 [ 12.57 | 13.85 | 16.62 | 13.85 | 10.18 | 4.52

We can now take left- and right-hand sum approximations. Note that Ah = 0.5 inches. Thus

LEFT(9) = (3.14 + 7.07 + 12.57 + 13.85 + 16.62 + 13.85 + 10.18)(0.5) = 38.64.
RIGHT(9) = (7.07 + 12.57 + 13.85 + 16.62 + 13.85 + 10.18 + 4.52)(0.5) = 39.33.

Thus the volume of the appleis ~ 39 cu.in.
(b) The apple weighs0.03 x 39 ~ 1.17 pounds, so it costs about 94¢.

15. ? I‘f Tout = 3 + Yy

Figure 8.67: The Torus Figure 8.68: Slice of Torus
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As shown in Figure 8.68, we dlice the torus perpendicular to the liney = 3. We obtain washers with width dz, inner
radius rin = 3 — y, and outer radius rou, = 3 + y. Therefore, the area of the washer is rl,, — mr, = 7[(3 + y)* —
(3 — y)?] = 12my. Since y = v/1 — 22, the volume is gotten by summing up the volumes of the washers: we get

1 1
/ 127 1—x2dm=127r/ V1—z2dez.
-1 —1
But f_ll V1 — 2% dx isthe area of a semicircle of radius 1, which is 7. Sowe get 127 - § = 672 &~ 59.22. (Or, you

could use
/\/1 —x2dx = [m 1—z2+ arcsin(x)] ,

by VI-30 and VI-28.)
16. Thetotal massis 12 gm, so the center of massislocatedatz = ;5(—5-3—3-3+2-3+7-3) = 1.
17. (a) Sincethedensity is constant, the mass isthe product of the area of the plate and its density.
1 1 5

= -cm-.
o 3

1
Areaof the plate :/ (Vo — %) de = (%;,;3/2 _ %mﬁ)
0

Thus the mass of the plateis2 - 1/3 = 2/3 gm.
(b) SeeFigure 8.69. Since the region is“fatter” closer to the origin, z islessthan 1/2.

Yy
1 |-
xr
VT 2
-z
> 1
Az
Figure 8.69

(c) Tofind z, wedlicetheregion into vertical strips of width Az. See Figure 8.69.

Areaof strip = A, (z)Az = (Vo — z”) Az om’.

Then we have
1 2 1
0A.(z)d 2x(v/x —x”)dx . . 1
—_ Jwd A, (x)dx _ Jo 22(Va ) _3 2% — 2°) dx = 3 9 (21,5/2 _ 1204) _9 cm.
Mass 2/3 2 o 2 5 4 0 20

Thisislessthan 1/2, as predicted in part (b). Soz = § = 9/20 cm.
18. Let = be the height from ground to the weight. It followsthat 0 < 2 < 20. At height z, to lift the weight Az more, the
work needed is 200Az + 2(20 — z) Az = (240 — 2z)Az. So the total work is
20
W = / (240 — 2z)dx
0
20

= (240z — %)

0
= 240(20) — 20° = 4400 ft-Ib.
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Let z be the distance from the bucket to the surface of the water. It followsthat 0 < z < 40. At z feet, the bucket weighs

(30 — +z), where the 2z term is due to the leak. When the bucket is = feet from the surface of the water, the work done
by raising it Az feet is (30 — +z) Az. So the total work required to raise the bucket to the top is

40 1
W = / (30 — ~x)dz
o 4

= (30x - ém2)
0

= 30(40) — %402 = 1000 ft-Ib.

40

Figure 8.70

Let z be the depth of the water measured from the bottom of the tank. See Figure 8.70. It followsthat 0 < z < 15. Letr
be the radius of the section of the cone with height z. By similar triangles, £ = 12, so r = Zz. Then the work required

to pump a layer of water with thickness of Az at depth = over the top of the tank is 62.47 (%95)2 Az(18 — x). So the
total work done by pumping the water over the top of thetank is

15 9 \2
/ 62.4m (—x) (18 — z)dx
0 3

15
62.471'/ (18 — z)dx
0

w

Il
Ol Ol Ok

15
62.4m (6x3 - im“)

62.47(7593.75) ~ 661,619.41 ft-Ib.

21. Let h be height above the bottom of the dam. Then

25
Weter force :/ (62.4)(25 — h)(60) dh
0

= (62.4)(60) (25h - h;)
= (62.4)(60)(625 — 312.5)
= (62.4)(60)(312.5)

= 1,170,000 lbs.

0

22. (a)

20
Future Value :/ 10060.10(20_t)dt
0
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20
= 100/ eZe 010t gy
0

20

_ 100e” —0.10¢
~0.10
100e> _0.10¢:
= gqg (1 — e 01000 ~ $6389.06.

The present value of theincome stream is

20 1
100e "% gt = 100 ( ) —0.10¢
/0 ¢ —010/° |,

=1000 (1 —e™?) = $864.66.

20

Note that thisis also the present value of the sum $6389.06.
(b) Let T be the number of years for the balance to reach $5000. Then

T
5000 = / 1001070 g4
0

T
50 = 60.10T/ 6—0.10tdt
0

0.10T T

€ —0.10¢

—0.10 0
= 10e%107 (1 — ¢ 0107y — 10107 _ 19,

S0, 60 = 10e1°7  and T = 101n 6 =~ 17.92 years.

23. (a) Let'ssplit the timeinterval into n parts, each of length At. During the interval from ¢; to ¢;41, profit is earned at
arate of approximately (2 — 0.1¢;) thousand dollars per year, or (2000 — 100¢;) dollars per year. Thus during this
period, atotal profit of (2000 —100¢;) At dollarsisearned. Sincethis profitisearned ¢; yearsin the future, its present
valueis (2000 — 100¢;)Ate™ % dollars. Thus

n—1

Total present value ~ 2(2000 — 100¢;)e~ %"t A
=0
0 At M
I I I e |
to t1 to e t i t

(b) The Riemann sum corresponds to the integral:
M
Present value = / e~ 2192000 — 100¢) d¢.
0
(c) To find where the present value is maximized, we take the derivative of
M
P(M) = / e~ %1% (2000 — 100¢) dt,
0

with respect to M, and obtain
P'(M) = e "M (2000 — 100M1).
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Thisis 0 when 2000 — 100M = 0, that is, when M = 20 years. The value M = 20 maximizes P(M), since
P'(M) > 0for M < 20,and P'(M) < 0for M > 20. To determine what the maximum is, we evaluate the integral
representation for P(20) by 111-14 in the integral table:

20
P(20):/ e~ *1%(2000 — 100¢) dt
0

20

~ $11353.35.

0

_ [ (2000 — 100¢t)
- —0.10

6—0.10t + 100006—0.10t:|

24. We divide up time between 1971 and 1992 into intervals of length A¢, and calculate how much of the strontium-90
produced during that time interval is still around.
Strontium-90 decays exponentially, so if aquantity So was produced ¢ years ago, and S is the quantity around today,
S = Soe™*. Since the half-lifeis 28 years, 1 = e~**) giving k = —In(1/2)/28 = 0.025.
We measure ¢ in years from 1971, so that 1992 ist = 21.

Since strontium-90 is produced at arate of 3 kg/year, during the interval At, aquantity 3A¢ kg was produced. Since
thiswas (21 — t) years ago, the quantity remaining now is (3A¢)e~%°25(21=) Summing over all such intervals gives
. .. 21 —0.025(21— 21
Strontl.um remaining ~ 36-0:025(21—) g _ 3¢—0-025(21-1) _skg.
in 1992 o 0.025

0

[Note: Thisislike afuture value problem from economics, but with a negative interest rate.]
25. (a) Slicethe mountain horizontally into NV cylinders of height Ah. The sum of the volumes of the cylinders will be

3.5-10°
r°Ah =
zw z (2y
(b)
14400 5\ 2
3.5-10
Volume = T —— dh
/400 <\/h + 600>
14400 1
=1.23-10% — _dh
”/400 (h + 600)
14400

=1.23-10"" 7 In(h + 600) dh

400
=1.23-10""' 7 [In 15000 — In 1000]

=1.23- 10" 7 In(15000/1000)
=1.23-10"71ln 15 ~ 1.05 - 10** cubic feet.

26. Look at the disc-shaped dlab of water at height y and of thickness Ay. Therate at which water is flowing out when it isat
depth y isk,/y (Torricelli’s Law, with k constant). Then, if z = g(y), we have

. _ (Timeforwaterto ) _ Volume _ m(g()*Ay
~ \ drop by this amount Rate kyy
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If the rate at which the depth of the water is dropping is constant, then dy/dt is constant, so we want

m(9(y))*
kvy
0 g(y) = c+/y, for some constant c. Sincez = 1 wheny = 1, wehavec =landsoz = ¥y, or y = z*.
27. Every photon which falls a given distance from the center of the detector has the same probability of being detected. This

suggests that we divide the plate up into concentric rings of thickness Ar. Consider one such ring having inner radius
and outer radius r + Ar. For thisring,

= constant,

Number of photons hitting ring per unittime ~ N - Areaof ring =~ N - 2wrAr.
Then,
Number of photons detected on ring per unit time ~ Number hitting - S(r) = N - 2arAr - S(r).
Summing over al rings gives us
Total number of photons detected per unit time =~ Z 2 NrS(r)Ar.

Taking thelimit as Ar — 0 gives

R
Total number of photons detected per unit time = / 2 NrS(r)dr.
0

28. First we find the volume of the body up to the horizontal line through Q.
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We put the origin at P, the z-axis horizontal and the y-axis pointing upward, and compute the volume obtained by
rotating the curve y = 1 — 4x? around the y-axisup to Q. At Q, we have z = 0.1, s0

y1 =1—4(0.1%) = 0.96.

Slicing the body horizontally into disks of radius x, thickness Ay, we have

™

Volume of disk in body ~ mz?Ay = 71— Ay

Thus,
0.96

0.96 2
Volume of body upto Q = / %(1 —y)dy = % (y - %) = 0.3921.
0 0
To find the volume of the head, it is easiest to consider theorigin at S, the z-axis horizontal, and the y-axis pointed upward.
Then think of the head as the volume obtained by rotating the circle z® 4 3> = (0.2)? about the y-axis. We compute the

volume of the head down to the horizontal line through T, at which point z = 0.1. Thus

(0.1)% + 45> = (0.2)°.

So
y2 = —V0.03 = —-0.1732.

Slicing the head into circular disks, we have

Volume of disk in head = m2” Ay = 7(0.2> — y*)Ay.

Thus,
0.2 ‘ ‘ ‘ 3 (0.2
Volume of head downto T = / 7(0.2% — y?)dy = 7(0.2%y — L)
—0.1732 3 —0.1732
= 0.0331.

The neck is exactly cylindrical, with
Volume of neck = 7(0.1°)0.15 = 0.0047.
Thus,

Total volume = Vol body + Vol head + Vol neck
= 0.3921 + 0.0331 + 0.0047
= 0.4299 ~ 0.43m°.

29. (a) Divide the cross-section of the blood into rings of radius r, width Ar. See Figure 8.71.

-~y —>

Figure 8.71

Then
Areaof ring = 2xrAr.
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The velocity of the blood is approximately constant throughout the ring, so

Rate blood flows through ring =~ Velocity - Area
P

= 4_7]l(R2 —r?) - 2nrAr,

Thus, summing over all rings, we find the total blood flow:
. P 2 2
~ — — ) 2mrAr.
Rate blood flowing through blood vessel Z o (R” —ro)2mrAr

Taking the limit as Ar — 0, we get

R
Rate blood flowing through blood vessel = / ;T—:; (R’r — r*)dr
0

_ P (R o\ | _ «PR'
ool 2 4 Y
(b) Since

xPR*
8nl ’

Rate of blood flow =
if wetake k = wP/(8nl), then we have
Rate of blood flow = kR*,

that is, rate of blood flow is proportional to R*, in accordance with Poiseuille’s Law.
30. Pick asmall interval of time At which takes place at time . Fuel is consumed at a rate of (25 4 0.1v)~! gallons per
mile. In the time At¢, the car moves v At miles, so it consumes v A¢/(25 + 0.1v) gallons during the instant A¢. Since
v = 50-L, the car consumes

t+1°
oAt B0gz At 50tAr 10t At
254+0.1v ~ 25+40.1 (5()%) T 25(t+1)+5t  6t+5
gallons of gas, in terms of the time ¢ at which the instant occurs. To find the total gas consumed, sum up the instantsin an
integral:
> 10t
Gas consumed = ———dt ~ 1.25 gallons.
, 6t+5

31. (a) Slicing horizontally, as shown in Figure 8.72, we see that the volume of one disk-shaped slab is
AV ~ 1z’ Ay = %Ay.

Thus, the volume of the water is given by

h 2|k 2
h
V= Eydyzzy— =T .
0 @ a 2 0 2a
Yy
y = ax?

-~ T —»

r
L~

s

Figure 8.72



(b)

©

(d)

32. (a)

(b)
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The surface of the water is acircle of radius z. Since at the surface, y = h, we have h = az?. Thus, at the surface,
x = 4/ (h/a). Therefore the area of the surface of water is given by
A=mz’ = mh .
a

If the rate at which water is evaporating is proportional to the surface area, we have

v

— = —kA.

dt K

(The negative sign is included because the volume is decreasing.) By the chain rule, 4 = ¥ . 2 \We know

T odt dh
dh a a

mh dh = —kw—h giving dn = —k.
a dt a dt
Integrating gives
h = —kt + ho.
Solving for ¢t when h = 0 gives
;_ ho
P

The volume of water in the centrifugeisw(1%)-1 = « cubic meters. The centrifuge hastotal volume 27 cubic meters,

so the volume of the air in the centrifuge is = cubic meters. Now suppose the equation of the parabolaisy = h+ ba?.

We know that the volume of air in the centrifuge is the volume of the top part (a cylinder) plus the volume of the
middle part (shaped like abowl). See Figure 8.73.

2 — (h+b)

h+b

Figure 8.73: The Volume of Air

To find the volume of the cylinder of air, we find the maximum water depth. If x = 1, then y = h +b. Therefore
the height of the water at the edge of the bowl, 1 meter away from the center, ish + b. The volume of the cylinder of
aristherefore [2 — (h + b)] - 7 - (1)> = [2 — h — b].

To find the volume of the bow! of air, we note that the bow! is a volume of rotation with radius x at height y,
wherey = h + bx®. Solving for 22 gives 2> = (y — h)/b. Hence, dlicing horizontally as shown in the picture:

o [h+b

h+b h+b
Bow! Vqume:/ 7rm2dy=/ wybhdy:M :b_ﬁ,
h h

2b N 2

So the volume of both pieces together is[2 — h — bl + bnr/2 = (2 — h — b/2)x. But we know the volume of air
should be 7,50 (2 — h — b/2)7r = 7, hence h + b/2 = 1 and b = 2 — 2h. Therefore, the equation of the parabolic
cross-sectionisy = h + (2 — 2h) .

The water spills out thetop when h + b = h + (2 — 2h) = 2, or when h = 0. The bottom is exposed when h = 0.
Therefore, the two events happen simultaneously.
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33. Any small piece of mass A M on either of the two spheres has kinetic energy §U2AM. Since the angular velocity of the

two spheres isthe same, the actual velocity of the piece A M will depend on how far away it isfrom the axis of revolution.
The further away a piece isfrom the axis, the faster it must be moving and the larger its velocity v. Thisis because if A M
isat adistance r from the axis, in one revolution it must trace out a circular path of length 27 about the axis. Since every
piece in either sphere takes 1 minute to make 1 revolution, pieces farther from the axis must move faster, asthey travel a
greater distance.

Thus, since the thin spherical shell has more of its mass concentrated farther from the axis of rotation than does the
solid sphere, the bulk of it istraveling faster than the bulk of the solid sphere. So, it has the higher kinetic energy.

Any small piece of mass AM on either of the two hoops has kinetic energy %vQAM . Since the angular velocity of the
two hoops is the same, the actual velocity of the piece AM will depend on how far away it is from the axis of revolution.
The further away a piece isfrom the axis, the faster it must be moving and the larger itsvelocity v. Thisisbecause if A M
isat adistance r from the axis, in one revolution it must trace out a circular path of length 27 about the axis. Since every
piece in either hoop takes 1 minute to make 1 revolution, pieces farther from the axis must move faster, as they travel a
greater distance.

The hoop rotating about the cylindrical axis has al of its mass at adistance R from the axis, whereas the other hoop
has a good bit of its mass close (or on) the axis of rotation. So, since the bulk of the hoop rotating about the cylindrical
axisistraveling faster than the bulk of the other hoop, it must have the higher kinetic energy.

CAS Challenge Problems

35. (a) We need to check that the point with the given coordinates is on the curve, i.e., that

.2 asin®t
r=asn"t, y=

cost
satisfies the equation
xr3

y= :
a—T

This can be done by substituting into the computer algebra system and asking it to simplify the difference between
the two sides, or by hand calculation:

in2¢)3 3 qin6
Right-hand side = \/ (asin®t) _\/ (a sin® ¢t
a

a—asin®t 1 —sin?t)
/a3 sin® ¢ _[a? sin® ¢
acos?t cos2t
asin®t .

= =y = Left-hand side.
cost

We chose the positive square root because both sin ¢ and cos ¢ are nonnegativefor 0 < ¢ < /2. Thusthe point ways
lies on the curve. In addition, whent = 0, z = 0 and y = 0, so the point starts at = = 0. Ast approaches /2, the
value of z = a sin® ¢ approaches a and the value of y = a sin® ¢/ cos ¢ increases without bound (or approaches co),
so the point on the curve approaches the vertical asymptote at = = a.

(b) We calculate the volume using horizonta slices. See the graph of y = \/x3/(a — z) in Figure 8.74.

Y

r—a

T

|
|
|
|
|
|
|
|
|
|
|
|
a

Figure 8.74
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The dlice at y isadisk of thickness Ay and radius - — a, hence it has volume 7 (z — a)>Ay. So the volume is
given by the improper integral
Volume = / m(x —a)’ dy.
0

(c) We substitute
asin®t

22
r=asin" t, y=
cost

d (asin®t 5 sin? ¢
dy = — dt = 3sin” ¢t dt.
4 dt ( cost ) a( sinot cos?t

Sincet = 0 wherey = 0 and ¢t = 7/2 at the asymptote where y — oo, we get

and

/2 ; ; ; sintt
Volume = / n(asin®t —a)’a <3 sin® t + 3 ) dt
o cos®t

/2 2 ‘ 7r2a3
= 7a® / (3sin”t cos” ¢ + sin” t cos” t) dt = 5
0

You can use a CASto calculate thisintegral; it can aso be done using trigonometric identities.
36. (a) Theexpression for arc length in terms of a definite integral gives

¢ 5 .
A(t):/ \/H—4$2d$:2t\/1+4t Z—arcsmh(Qt).
0

The integral was evaluated using a computer algebra system; different systems may give the answer in different
forms. Here arcsinh is the inverse function of the hyperbolic sine function.
(b) Figure 8.75 shows that the graphs of A(t) and ¢* look very similar. This suggests that A(t) ~ t>.

100 2 100 1 A(t) 100 |y = 2

1 t 1 t 1 xT
10 10 10

Figure 8.75 Figure 8.76

(c) Thegraphin Figure 8.76 is approximately vertical and close to the y axis. Thus, if we measure the arc length up to a
certain y-value, the answer is approximately the same as if we had measured the length straight up the y-axis. Hence

Aty =y = f(t) =t

So
A(t) = t2.

37. (a) Theexpression for arc length in terms of a definite integral gives

A(t):/ \/@dw:2ﬂvl+4tzwc§nh(2ﬂ).

The integral was evaluated using a computer algebra system; different systems may give the answer in different
forms. Some may involve In instead of arcsinh, which isthe inverse function of the hyperbolic sine function.
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(b) Figure 8.78 shows that the graphs of A(t) and the graph of y = ¢ look very similar. This suggests that A(t) ~ t.

Y y Y
100 - 100 - 100 -

y=t A(?) y=7

10 10 100

Figure 8.77 Figure 8.78

(c) The graph in Figure 8.78 is approximately horizontal and close to the z-axis. Thus, if we measure the arc length up
to acertain z-value, the answer is approximately the same as if we had measured the length straight along the z-axis.
Hence

At) =z =t.

So
At) ~t.

38. (a) Slice the sphere at right angles to the axis of the cylinder. Consider a slice of thickness Az at distance z from
the center of the sphere. The cross-section is an annulus (ring) with internal radius r; = a and outer radius r, =

Vr?2 —x2. Thus
2 2 2 2 2 2 2
Areaof annulus = 7r,” — 7r; :7r( r2—m2) —ma” =7w(r’—z” —a”).

Volume of dlice = n(r? — 2% — a®)Ax.

The lower and upper limits of the integral are where the cylinder meets the sphere, i.e., where z°> + o> = =2, or

T = +vr? —a2. Thus
Vr2—a?

Volume of bead = / x(r? —z® — a®)de.
/e

(b) Using acomputer algebra system to evaluate the integral, we have

2

Volume of bead = 4% (r* - a‘)s/ )

CHECK YOUR UNDERSTANDING

1. True. Sincey = £+v/9 — z2 represent the top and bottom halves of the sphere, slicing disks perpendicular to the z-axis
gives

Volume of dlice ~ my° Az = 7(9 — ) Az

3
Volume = / (9 — z°) dx.

-3

2. False. Evaluating does not give the volume of a cone mr>h/3:

h 2\ |P 2
/ W(r—y)dyzﬂ'(ry—y—> :7r<rh——>.
; 2 )|, 2

Alternatively, you can show by dlicing that the integral representing this volume isfoh ar?(1 —y/h)* dy.
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False. Using the table of integrals (V1-28 and V1-30) or atrigonometric substitution gives
2 2.2

r T
/ m/r2 —y?dy = g (y r2 — y2 + r? arcsin (2)) ‘ = %(arcsinl —arcsin 0) = W4r .
r
0 0

The volume of ahemisphere is 2% /3.
Alternatively, you can show by slicing that the integral representing thisvolumeis [ m(r® — ) dy.

True. Horizontal dlicing gives rectangular slabs of length 7, thickness Ay, and width w = 24/r2 — y2. So the volume of
oneslabis2l\/r2 — y2Ay, and the integral isf_'"r 2l\/r2 — y2dy.
Fase. Volume is always positive, like area.

False. The population density needs to be approximately constant on each ring. Thisis only trueif the population density
isafunction of r, the distance from the center of the city.

7. Fase. Sincethe density varies with y, the region must be sliced perpendicular to the y-axis, aong the lines of constant y.

10.
11.
12.

13.

14.

15.

16.

17.
18.

False. Although the density is greater near the center, the area of the suburbs is much larger than the area of the inner city,
and population is determined by both area and density. In fact, the population of the inner city:

1 1
/ (10 — 3r)2nrdr = 2x(5r° — )| =8n
0 0
isless than the population of the suburbs:
2 2
/ (10 — 3r)2nrdr = 2r(5r° — )| = 167.
1 1

True. One way to look at it isthat the center of mass shouldn’t change if you change the units by which you measure the
masses. If you double the masses, that is no different than using as a new unit of mass half the old unit. Alternatively, let
the masses be m1, m2, and m3 located at 1, x>, and x3. Then the center of massis given by:

r1m1 + rama + r3ms

Tr =
m1 + m2 + ms3

Doubling the masses does not change the center of mass, since it doubles both the numerator and the denominator.
False. The center of mass of acircular ring (for example, acoin with aholeinit) is at the center.
True. The density of particles hitting the target is approximately constant on concentric rings.

False. If the density were constant thiswould be true, but suppose that all the mass on theleft half is concentrated at x = 0
and all the mass on theright side is concentrated at « = 3. In order for therod to balance at = 2, the weight on the |eft
side must be half the weight on the right side.

False. Work is the product of force and distance moved, so the work done in either case is 200 ft-1b.

True. Displacement in the same direction as the force gives positive work; displacement in the opposite direction as the
force gives negative work.

False. Since the water pressure increases with depth, the force on the lower half of the new dam is greater than the force
on the upper half of the new dam, which is the same as the force on the old dam. Thus the force on the new dam is more
than double the force on the old dam.

True. Since pressure increases with depth and we want the pressure to be approximately constant on each strip, we use
horizontal strips.

False. The pressure is positive and when integrated gives a positive force.
True. Although work is expressed in an integral, the average value is also expressed in an integral. We have:

4

Average value of the force = ﬁ F(z)dz.
- 1

Thus if we multiply the average force by 3, we get f 14 F(x)dx, which isthe work done.
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10.

20.
21.

22.

23.

24.

25.

26.

27.
28.

29.

30.
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True. For anincome stream P(t) fromt = 0tot = M, we have:
M
Present value = / P(t)e™"dt,
0

and
M
Futurevalue:/ P(t)e" ™=t
0

Since M and r are constant, we can factor out e”™ from the integral for the future value to get:

Future value = e" (Present value).

Sincer > 0 and M > 0, thismeanse™ > 1 so the future value s greater than the present value.
False. Since p(z) < 0 for z < 0, it cannot be a probability density function.

Fase. It istrue that p(x) > 0 for al z, but we also need f_°°oop(a:)d:c = 1. Since p(z) = 0 for z < 0, we need only
check theintegral from 0 to co. We have

[>S) o, 1 e
/ ze ¥ dr = lim (——e z)
0 b— o0 2

False. The volume also depends on how far away the region is from the axis of revolution. For example, let R be the
rectangle0 < x < 8,0 <y < 1andlet S betherectangle0 < z < 3,0 < y < 2. Then rectangle R has area greater
than rectangle S. However, when you revolve R about the z-axis you get a cylinder, lying on its side, of radius 1 and
length 8, which has volume 87. When you revolve .S about the z-axis, you get a cylinder of radius 2 and length 3, which
has volume 127r. Thus the second volume is larger, even though the region revolved has smaller area

False. Suppose that the graph of f starts at the point (0, 100) and then goes down to (1, 0) and from there on goes along
the z-axis. For example, if f(x) = 100(x — 1)* on the interval [0, 1] and f(z) = 0 on the interval [1, 10], then f is
differentiable on the interval [0, 10]. The arc length of the graph of f on the interval [0, 1] is at least 100, while the arc
length on theinterval [1, 10] is9.

True. Since f is concave up, f' is an increasing function, so f'(z) > f'(0) = 3/4 on the interval [0, 4]. Thus
V1+ (f(2))? > /1+9/16 = 5/4. Then we have:

b
1

0

4 4
Arclength:/ 1+ (f'(2))2de 2/ gda: _ 5.
0 0

False. Since f is concave down, this means that f'(z) is decreasing, so f'(z) < f'(0) = 3/4 on the interval [0, 4].
However, it could be that f'(z) becomes negative so that (f'(x))? becomes large, making the integral for the arc length
large also. For example, f(z) = (3/4)x — x? is concave down and f'(0) = 3/4, but £(0) = 0 and f(4) = —13, so the
graph of f ontheinterval [0, 4] hasarc length at least 13.

False. Notethat p isthe density function for the population, not the cumuléative density function. Thusp(10) = 1/2 means
that the probability of = lying in asmall interval of length Az around z = 10 isabout (1/2)Az.

True. Thisfollows directly from the definition of the cumulative density function.

True. The interval from z = 9.98 to z = 10.04 has length 0.06. Assuming that the value of p(z) is near 1/2 for
9.98 < z < 10.04, the fraction of the population in that interval isfgl_gémp(a:)da: ~ (1/2)(0.06) = 0.03.

False. Note that p is the density function for the population, not the cumulative density function. Thus p(10) = p(20)
means that = values near 10 are as likely as z values near 20.

True. By the definition of the cumulative distribution function, P(20) — P(10) = 0 is the fraction of the population
having x values between 10 and 20.

PROJECTS FOR CHAPTER EIGHT

1

Let us make coordinate axes with the origin at the center of the box. The z and y axes will lie along the central
axes of the cylinders, and the (height) axiswill extend vertically to the top of the box. If one slicesthe cylinders
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horizontally, one getsacross. The crossiswhat you get if you cut out four corner squares from a square of side
length 2. If h isthe height of the cross above (or below) the zy plane, the equation of acylinderish 2 +y% =1
(or h? + 2% = 1). Thus the “armpits’ of the cross occur wherey? — 1 = —h? = 22 — 1 for some fixed height
h—that is, out /1 — h2 units from the center, or 1 — +/1 — h?2 units away from the edge. Each corner square
hasarea (1 — /1 — h2)? = 2 — h? — 24/1 — h2. The whole big square has area 4. Therefore, the area of the

Crossis

4—4(2—-h%—2y/1—h2) = —4+4h> +8y/1 — h2.

We integratethisfromh = —1to h = 1, and obtain the volume, V:

1
V:/ —4 +4h% +8v/1 — h2dh
1

4h3
3

1
—_ | _ - _ A2 i
= l 4h + +8 5 (h 1-h +arcs1nh)l

8 16
:_8_‘_5_{_47‘-:47{—?%7.23.

2
1—\/1—%5
1-V1—h2 V1-h2

1

-1

Thisis areasonableanswer, asthe volume of the cubeis 8, and the volume of one cylinder aloneis 27 =~ 6.28.

2. (a) Lety represent height, and let  represent horizontal distance from the lowest point of the cable. Then the
stretched cable is a parabola of the form y = kx2 passing through the point (1280/2, 143) = (640, 143).
Therefore, 143 = k(640)2 so k ~ 3.491 x 10~*. To find the arc length of the parabola, we take twice the

arc length of the part to the right of the lowest point. Since dy /dx = 2k,

640 640

Arc Length = 2 V1+ (2kz)?2dx =2 V14 4k2z? dx.
0

0

The easiest way to find thisintegral is to substitute the value of & and find the integral’s value numer-

icaly, giving
Arc Length &~ 1321.4 meters.

Alternatively, we can make the substitution w = 2kz:

1280k
Arc Length = Q_k/ V1+w?dw
0

1 [l280k
=z / vV 1+w?dw
0
1 1280k 1 1280k 1
=— w1+ w? + — ——dw
2k 0 2k 0 vV 1+ ’11)2

[Using the integral table, FormulaVV1-29, or substitute w = tan 6]
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1 1 1280k
_ 2 \/ 2
=% (1280k\/1 + (1280k) ) + % <1n ‘a:—f- 1+2 ‘ . )
1 1
5% (1280k\/1 + (1280k) ) + % (ln ‘1280]4: + /14 (1280k) D

~ 1321.4 meters.

(b) Adding 0.05% to the length of the cable gives acablelength of (1321.4)(1.0005) = 1322.1. We now want
to calculate the new shape of the parabolg; that is, we want to find anew k£ so that the arc lengthis 1322.1.

Since
640

Arc Length = 2 V1+4k2x? dx

0
we can find & numericaly by trial and error. Trying values close to our original value of &, we find
k ~ 3.52 x 107, To find the sag for this new &, we find the height y = k22 for which the cable hangs
from the towers. Thisis
y = k(640)? ~ 144.2.

Thus the cable sag is 144.2 meters, over a meter more than on a cold winter day. Notice, though, that
although the length increases by 0.05%, the sag increases by more:144.2/143 ~ 1.0084, an increase of

0.84%.
3. (@) Revolving the semi-circley = +/r2 — 22 around the z-axis yields the sphere of radius r. See Figure 8.79.
Differentiating yields:

a9y -1 .z
dx N Vr2 — x? N y'
Thus, substituting —z/y for f'(z), we get

T 2 T
Surface area = 271'/ y’/1+w—2d1‘:2ﬂ-/ Va2 +y?da
—r Y —r

= 27r dx = 4772,

—-r

Figure 8.79 Figure 8.80

(b) Revolvingtheliney = rz/h around the z-axis yields the cone. The base of the coneis a circle with area
7r2. See Figure 8.80. The area of the rest of the coneis

h r2 r2 [r (B
Surfacearea:27r/0 Y 1+ﬁd$:2ﬂ' 1+ﬁ E/o xdz
2

h2
2271'%?\/1+% =narvr? +h?
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Adding the area of the base, we get
Total surface area of cone = 712 + r\/r2 + h2.

(c) Wefind the volume of y = 1/x revolved about the z-axis as = runs from 1 to co. See Figure 8.81.

Figure 8.81

> | bd —1
Vqume:/ ﬂ'y2dx:ﬂ'/ — dr =7 lim & lim -
1 1 T

b—oo J1 T b—oo I

=
1

Thus, the volume of this solid isfinite and equal to .
(d) Now we show the surface area of this solid is unbounded. We have

2
Surfacearea:27r/ y\/1+<@> d:n:27r/ —\/1+ —dz
1 dx 1 x x

: L 1 1 .
We cannot easily compute the antiderivative of - 1+ ot so we bound the integral from below by
noticing that

1
1+ o > 1.
Thus we see that
| b dx b
Surface area > 271'/ —dx =27 lim — =27 lim Inx
1 xr b—oo J1 T b—o0 1

Sinceln z goesto infinity as z goes to infinity, the surface areais unbounded.

Alternatively, we can try calculating
b
1 1
271'/ —\/1+ —dz
1z T

for larger and larger values of b. We would see that the integral seems to diverge.
(e) For asolid generated by the revolution of acurvey = f(z) fora < z < b,

b
Volume :/ my? dx
a

and

Surface area = /b 2ry\/1+ (f'(x))? dx.
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The volume and the surface area will be equal if

f(@) =21+ (f'(2))*.
We find afunctiony = f(z) which satisfies this relation:

dy
y=2/1
()

2
y dy
I 1 hut
4 +<dm>
dy _ v
dx 4

dy —ld

ﬁ__
dx

=i
Inly+ Vy? —4| = —+C
y+Vy? —4 Aem

Noticein the third line we have used the fact that dy /dz > 0. Any function, y = f(z), which satisfiesthis
relationship has the required property

4. (a) Wewant tofind a suchthat [~ p(v) dv = Jim af v2e=mV*/2kT gy — 1. Therefore,

r

— = lim p2e~ MV /2T gy,
a r—oo [o

To evaluate the integral, use integration by parts with the substitutionsu = v and w’ = ve—™v"/2kT":

r —mv2/2kT
/v —m/kT dv

w

r —mv?/2kT
_ 2 e
v pe”™V R gy =
0 T —— ~—~— _m/kT

w'! u

kTre—mr2/2kT + KT
m m Jo

2
- _ e—mv /2kT dv.

o0
o 1
From the normal distribution we know that / e~ dp =
0

/ e 2 4y = ﬂ
0 2
Therefore in the above integral, make the substitution z = /7%v, so that dz = /7% dv, or dv =
% dx. Then
r 3/2 /B

k_T e_mvz/QkT dv = (k—T> / e_mz/2 dx.

m Jo m 0
Substituting thisinto Equation 4awe get

3/2 o /Er 3/2 /o=
1_ lim (— @e*m’"z/%T + <£> / et dm) 0+ (kT> —ZW.
m

a r—oo m m 0 2

Therefore, a = %(%)3/2 Substituting the values for k, T', and m givesa ~ 3.4 x 1075,
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(b) To find the median, we wish to find the speed x such that

¢ I mov? 1
/ p(v)dv = / av’e =T dy = -,
0 0 2
2

wherea = —2—(/2)3/2. Using acalculator, by trial and error we get = a 441 m/sec.

V2
o0 o0 mvz
/ vp(v) dv :/ avde” =T dv.
0 0

To find the mean, we find
Thisintegral can be done by substitution. Let u = v2, S0 du = 2vdv. Then

oo 2 a v=00 2
_me _mu
/ avde” 2T dy = —/ v2e” 2T 20 dv
0 2 v=0
a [T
= - ue” 2T dy
2 u=0
r
. a _ mu
= lim — ue” 2kT du.
r—0o0 0

Now, using the integral table, we have
o0 m’Uz
/ av’e T dy = lim <
0

_a (2N
2 m

~ 457.7 m/sec.

The maximum for p(v) will be at apoint where p’(v) = 0.

2 mv?
P (v) = a(2v)e” BT + av? <—%> e 2T
muz
= ae” 2T (21} - 03%)

2kT .
Thusp'(v) =0av=0andatv = \/7 ~ 405. It'sobviousthat p(0) = 0, and that p — 0 asv — oc.
So v = 405 gives us amaximum: p(405) ~ 0.002.

_ _adk*T? 4 EYV2TV2 :
(¢) The mean, aswe found in part (b), is a = . Itisclear, then, that as T increases so

2 m2 /27r m1/2
. . . 2kT
does the mean. We found in part (b) that p(v) reached its maximumat v = 4/ " Thus

2 m \3/2 2kT
The maximum value of p(v) = —=— (_) okl 1
V2m \kKT m
4 mi/2
eV2r kT2

Thus as T increases, the maximum value decreases.



