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CHAPTER NINE

Solutions for Section 9.1

Exercises

1. Yes, a = 1, ratio = �1=2.

2. No. Ratio between successive terms is not constant:
1=3

1=2
= 0:66 : : :, while

1=4

1=3
= 0:75.

3. Yes, a = 5, ratio = �2.

4. Yes, a = 2, ratio = 1=2.

5. No. Ratio between successive terms is not constant:
2x2

x
= 2x, while

3x3

2x2
=

3

2
x.

6. Yes, a = y2, ratio = y.

7. Yes, a = 1, ratio = �x.

8. Yes, a = 1, ratio = �y2.

9. No. Ratio between successive terms is not constant:
6z2

3z
= 2z, while

9z3

6z2
=

3

2
z.

10. Yes, a = 1, ratio = 2z.

11. Sum =
y2

1� y
; jyj < 1

12. Sum =
1

1� (�x) =
1

1 + x
; jxj < 1

13. Sum =
1

1� (�y2) =
1

1 + y2
; jyj < 1.

14. Sum =
1

1� 2z
; jzj < 1=2

15. �2 + 1� 1

2
+

1

4
� 1

8
+

1

16
� � � � =

1X
n=0

(�2)
�
�1

2

�n
, a geometric series.

Let a = �2 and x = � 1
2

. Then
1X
n=0

(�2)
�
�1

2

�n
=

a

1� x
=

�2
1� (� 1

2
)
= �4

3
.

16. 3 +
3

2
+

3

4
+

3

8
� � �+ 3

210
= 3

�
1 +

1

2
+ � � �+ 1

210

�
=

3
�
1� 1

211

�
1� 1

2

=
3
�
211 � 1

�
210

17. Using the formula for the sum of an infinite geometric series,

1X
n=4

�
1

3

�n
=
�
1

3

�4
+
�
1

3

�5
+ � � � =

�
1

3

�4�
1 +

1

3
+
�
1

3

�2
+ � � �

�
=

( 1
3
)4

1 � 1
3

=
1

54

18. Using the formula for the sum of a finite geometric series,

20X
n=4

�
1

3

�n
=
�
1

3

�4
+
�
1

3

�5
+� � �+

�
1

3

�20
=
�
1

3

�4�
1 +

1

3
+
�
1

3

�2
+ � � �

�
1

3

�16�
=

(1=3)4(1� (1=3)17)

1� (1=3)
=

317 � 1

2 � 320 :
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Problems

19. Since the amount of ampicillin excreted during the time interval between tablets is 250 mg, we have

Amount of ampicillin excreted = Original quantity � Final quantity

250 = Q� (0:04)Q:

Solving for Q gives, as before,

Q =
250

1� 0:04
� 260:42:

20. (a) The amount of atenolol in the blood is given by Q(t) = Q0e
�kt, where Q0 = Q(0) and k is a constant. Since the

half-life is 6.3 hours,
1

2
= e�6:3k; k = � 1

6:3
ln

1

2
� 0:11:

After 24 hours
Q = Q0e

�k(24) � Q0e
�0:11(24) � Q0(0:07):

Thus, the percentage of the atenolol that remains after 24 hours � 7%.
(b)

Q0 = 50

Q1 = 50 + 50(0:07)

Q2 = 50 + 50(0:07) + 50(0:07)2

Q3 = 50 + 50(0:07) + 50(0:07)2 + 50(0:07)3

...

Qn = 50 + 50(0:07) + 50(0:07)2 + � � �+ 50(0:07)n =
50(1� (0:07)n+1)

1� 0:07

(c)
P1 = 50(0:07)

P2 = 50(0:07) + 50(0:07)2

P3 = 50(0:07) + 50(0:07)2 + 50(0:07)3

P4 = 50(0:07) + 50(0:07)2 + 50(0:07)3 + 50(0:07)4

...

Pn = 50(0:07) + 50(0:07)2 + 50(0:07)3 + � � � + 50(0:07)n

= 50(0:07)
�
1 + (0:07) + (0:07)2 + � � � + (0:07)n�1

�
=

0:07(50)(1 � (0:07)n)

1� 0:07

21. (a)
P1 = 0

P2 = 250(0:04)

P3 = 250(0:04) + 250(0:04)2

P4 = 250(0:04) + 250(0:04)2 + 250(0:04)3

...

Pn = 250(0:04) + 250(0:04)2 + 250(0:04)3 + � � � + 250(0:04)n�1

(b) Pn = 250(0:04)
�
1 + (0:04) + (0:04)2 + (0:04)3 + � � �+ (0:04)n�2

�
= 250

0:04(1 � (0:04)n�1)

1� 0:04
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(c)
P = lim

n!1
Pn

= lim
n!1

250
0:04(1 � (0:04)n�1)

1� 0:04

=
(250)(0:04)

0:96
= 0:04Q � 10:42

Thus, lim
n!1

Pn = 10:42 and lim
n!1

Qn = 260:42. We would expect these limits to differ because one is right

before taking a tablet, one is right after. We would expect the difference between them to be 250 mg, the amount of
ampicillin in one tablet.

22.

125

Q0 = 250

1 2 3 4 5 6
t (time, days)

q (quantity, mg)

Q1 Q2 Q3 Q4 Q5

P1 P2 P3 P4 P5

23. (a) Let hn be the height of the nth bounce after the ball hits the floor for the nth time. Then from Figure 9.1,

h0 = height before first bounce = 10 feet;

h1 = height after first bounce = 10
�
3

4

�
feet;

h2 = height after second bounce = 10
�
3

4

�2
feet:

Generalizing gives

hn = 10
�
3

4

�n
:

6

?

10

6

?

10( 3
4
)

6

?

10( 3
4
)2

6

?
hn� � � � � �

Figure 9.1

(b) When the ball hits the floor for the first time, the total distance it has traveled is just D1 = 10 feet. (Notice that this

is the same as h0 = 10.) Then the ball bounces back to a height of h1 = 10
�
3

4

�
, comes down and hits the floor for

the second time. See Figure 9.1. The total distance it has traveled is

D2 = h0 + 2h1 = 10 + 2 � 10
�
3

4

�
= 25 feet:

Then the ball bounces back to a height of h2 = 10
�
3

4

�2
, comes down and hits the floor for the third time. It has

traveled

D3 = h0 + 2h1 + 2h2 = 10 + 2 � 10
�
3

4

�
+ 2 � 10

�
3

4

�2
= 25 + 2 � 10

�
3

4

�2
= 36:25 feet:
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Similarly,

D4 = h0 + 2h1 + 2h2 + 2h3

= 10 + 2 � 10
�
3

4

�
+ 2 � 10

�
3

4

�2
+ 2 � 10

�
3

4

�3
= 36:25 + 2 � 10

�
3

4

�3
� 44:69 feet:

(c) When the ball hits the floor for the nth time, its last bounce was of height hn�1. Thus, by the method used in part
(b), we get

Dn = h0 + 2h1 + 2h2 + 2h3 + � � �+ 2hn�1

= 10 + 2 � 10
�
3

4

�
+ 2 � 10

�
3

4

�2
+ 2 � 10

�
3

4

�3
+ � � �+ 2 � 10

�
3

4

�n�1
| {z }

finite geometric series

= 10 + 2 � 10 �
�
3

4

��
1 +
�
3

4

�
+
�
3

4

�2
+ � � �+

�
3

4

�n�2�

= 10 + 15

 
1 �

�
3
4

�n�1
1�
�
3
4

� !

= 10 + 60

�
1�
�
3

4

�n�1�
:

24. (a) The acceleration of gravity is 32 ft/sec2 so acceleration = 32 and velocity v = 32t + C. Since the ball is dropped,
its initial velocity is 0 so v = 32t. Thus the position is s = 16t2 + C. Calling the initial position s = 0, we have
s = 6t. The distance traveled is h so h = 16t. Solving for t we get t = 1

4

p
h.

(b) The first drop from 10 feet takes 1
4

p
10 seconds. The first full bounce (to 10 � (3

4
) feet) takes 1

4

p
10 � ( 3

4
) seconds

to rise, therefore the same time to come down. Thus, the full bounce, up and down, takes 2(1
4
)
p

10 � ( 3
4
) seconds.

The next full bounce takes 2(1
4
)10 � ( 3

4
)
2
= 2( 1

4
)
p
10
�p

3
4

�2
seconds. The nth bounce takes 2(1

4
)
p
10
�p

3
4

�n
seconds. Therefore the

Total amount of time

=
1

4

p
10 +

2

4

p
10

r
3

4
+

2

4

p
10

 r
3

4

!2

+
2

4

p
10

 r
3

4

!3

| {z }
Geometric series with a = 2

4

p
10
p

3
4
= 1

2

p
10
p

3
4

and x =
p

3
4

+ � � �

=
1

4

p
10 +

1

2

p
10

r
3

4

 
1

1�
p

3=4

!
seconds.

25. (a)

Total amount of money deposited = 100 + 92 + 84:64 + � � �
= 100 + 100(0:92) + 100(0:92)2 + � � �
=

100

1� 0:92
= 1250 dollars

(b) Credit multiplier = 1250=100 = 12:50
The 12.50 is the factor by which the bank has increased its deposits, from $100 to $1250.

26. The amount of additional income generated directly by people spending their extra money is $100(0:8) = $80 million.
This additional money in turn is spent, generating another ($100(0:8)) (0:8) = $100(0:8)2 million. This continues
indefinitely, resulting in

Total additional income = 100(0:8) + 100(0:8)2 + 100(0:8)3 + � � � = 100(0:8)

1� 0:8
= $400 million
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27. The total of the spending and respending of the additional income is given by the series: Total additional income =
100(0:9) + 100(0:9)2 + 100(0:9)3 + � � � = 100(0:9)

1�0:9
= $900 million.

Notice the large effect of changing the assumption about the fraction of money spent has: the additional spending more
than doubles.

Solutions for Section 9.2

Exercises

1. Since lim
n!1

xn = 0 if jxj < 1 and j0:2j < 1, we have lim
n!1

(0:2)n = 0.

2. Since 2n increases without bound as n increases, the limit does not exist.

3. Since lim
n!1

xn = 0 if jxj < 1 and j � 0:3j < 1, we have lim
n!1

(�0:3)n = 0.

4. Since lim
n!1

xn = 0 if jxj < 1 and je�2j < 1, we have lim
n!1

(e�2n) = lim
n!1

(e�2)n = 0, so lim
n!1

(3+e�2n) = 3+0 = 3.

5. Since Sn = cos(�n) = 1 if n is even and Sn = cos(�n) = �1 if n is odd, the values of Sn oscillate between 1 and �1,
so the limit does not exist.

6. Since lim
n!1

xn = 0 if jxj < 1 and
���2
3

��� < 1, we have lim
n!1

�
2n

3n

�
= lim

n!1

�
2

3

�n
= 0.

7. As n increases, the term 4n is much larger than 3 and 7n is much larger than 5. Thus dividing the numerator and
denominator by n and using the fact that lim

n!1
1=n = 0, we have

lim
n!1

3 + 4n

5 + 7n
= lim

n!1

(3=n) + 4

(5=n) + 7
=

4

7
:

8. As n increases, the term 2n is much larger in magnitude than (�1)n5 and the term 4n is much larger in magnitude than
(�1)n3. Thus dividing the numerator and denominator by n and using the fact that lim

n!1
1=n = 0, we have

lim
n!1

2n+ (�1)n5
4n� (�1)n3 = lim

n!1

2 + (�1)n5=n
4� (�1)n3=n =

1

2
:

9. We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral

Z
1

1

1

x3
dx converges or diverges:

Z
1

1

1

x3
dx = lim

b!1

Z b

1

1

x3
dx = lim

b!1

�1
2x2

����b
1

= lim
b!1

��1
2b2

+
1

2

�
=

1

2
:

Since the integral

Z
1

1

1

x3
dx converges, we conclude from the integral test that the series

1X
n=1

1

n3
converges.

10. We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral

Z
1

1

x

x2 + 1
dx converges or diverges:

Z
1

1

x

x2 + 1
dx = lim

b!1

Z b

1

x

x2 + 1
dx = lim

b!1

1

2
ln(x2 + 1)

����b
1

= lim
b!1

�
1

2
ln(b2 + 1)� 1

2
ln 2
�
=1:

Since the integral

Z
1

1

x

x2 + 1
dx diverges, we conclude from the integral test that the series

1X
n=1

n

n2 + 1
diverges.
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11. We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral

Z
1

0

xe�x
2

dx converges or diverges:

Z
1

0

xe�x
2

dx = lim
b!1

Z b

0

xe�x
2

dx = lim
b!1

�1

2
e�x

2

����b
0

= lim
b!1

�
�1

2
e�b

2

+
1

2

�
=

1

2
:

Since the integral

Z
1

0

xe�x
2

dx converges, we conclude from the integral test that the series
1X
n=0

ne�n
2

converges.

12. We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral

Z
1

2

1

x(lnx)2
dx converges or diverges:

Z
1

2

1

x(lnx)2
dx = lim

b!1

Z b

2

1

x(lnx)2
dx = lim

b!1

�1
lnx

����b
2

= lim
b!1

��1
ln b

+
1

ln 2

�
=

1

ln 2
:

Since the integral

Z
1

2

1

x(lnx)2
dx converges, we conclude from the integral test that the series

1X
n=2

1

n(lnn)2
converges.

Problems

13. The series
1X
n=1

�
3

4

�n
is a convergent geometric series, but

1X
n=1

1

n
is the divergent harmonic series.

If
1X
n=1

��
3

4

�n
+

1

n

�
converged, then

1X
n=1

��
3

4

�n
+

1

n

�
�
1X
n=1

�
3

4

�n
=

1X
n=1

1

n
would converge by Theorem 9.2.

Therefore
1X
n=1

��
3

4

�n
+

1

n

�
diverges.

14. Writing an = n=(n+ 1), we have limn!1 an = 1 so the series diverges by Property 3 of Theorem 9.2.

15. Using the integral test, we compare the series withZ
1

0

3

x+ 2
dx = lim

b!1

Z b

0

3

x+ 2
dx = 3 ln jx+ 2j

����b
0

:

Since ln(b+ 2) is unbounded as b!1, the integral diverges and therefore so does the series.

16. The series can be written as
1X
n=1

n+ 2n

n2n
=

1X
n=1

�
1

2n
+

1

n

�
:

If this series converges, then
1X
n=1

�
1

2n
+

1

n

�
�
1X
n=1

1

2n
=

1X
n=1

1

n
would converge by Theorem 9.2. Since this is the

harmonic series, which diverges, then the series
1X
n=1

n+ 2n

n
diverges.

17. We use the integral test and calculate the corresponding improper integral,
R
1

1
3=(2x� 1)2dx:Z

1

1

3 dx

(2x� 1)2
= lim

b!1

Z b

1

3 dx

(2x� 1)2
= lim

b!1

�3=2
(2x� 1)

����b
1

= lim
b!1

�
�3=2

(2b� 1)
+

3

2

�
=

3

2
:

Since the integral converges, the series
1X
n=1

3

(2n� 1)2
converges.

18. We use the integral test and calculate the corresponding improper integral,
R
1

0
2=
p
2 + xdx:Z

1

0

2p
2 + x

dx = lim
b!1

Z b

0

2 dxp
2 + x

= lim
b!1

4(2 + x)1=2
����b
0

= lim
b!1

4
�
(2 + b)1=2 � 21=2

�
:

Since the limit does not exist (it is1), the integral diverges, so the series
1X
n=1

2p
2 + n

diverges.
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19. Let an = (lnn)=n and f(x) = (lnx)=x. We use the integral test and consider the improper integralZ
1

c

lnx

x
dx:

Since Z R

c

lnx

x
dx =

1

2
(lnx)2

��R
c =

1

2

�
(lnR)2 � (ln c)2

�
;

and lnR grows without bound as R ! 1, the integral diverges. Therefore, the integral test tells us that the series,
1X
n=1

lnn

n
, also diverges.

20. We use the integral test and calculate the corresponding improper integral,
R
1

3
(x+ 1)=(x2 + 2x+ 2) dx:Z

1

3

x+ 1

x2 + 2x+ 2
dx = lim

b!1

Z b

3

x+ 1

x2 + 2x+ 2
dx = lim

b!1

1

2
ln jx2 + 2x+ 2j

����b
3

= lim
b!1

1

2
(ln(b2 + 2b+ 2)� ln 17):

Since the limit does not exist (it is1), the integral diverges, so the series
1X
n=3

n+ 1

n2 + 2n+ 2
diverges.

21. Using left-hand sums for the integral of f(x) = 1=(4x� 3) over the interval 1 � x � n+ 1 with uniform subdivisions
of length 1 gives a lower bound on the partial sum:

Sn = 1 +
1

5
+

1

9
+ � � �+ 1

4n� 3
>

Z n+1

1

dx

4x� 3
=

1

4
ln(4x� 3)

����n+1

1

=
1

4
ln(4n+ 1):

Since ln(4n+ 1) increases without bound as n!1, the partial sums of the series are unbounded. Thus, this is not
a convergent series.

22. Using right-hand sums for the integral of f(x) = x�3=2 over the interval 1 � x � n with uniform subdivisions of length
1 gives:

1

23=2
+ � � �+ 1

n3=2
<

Z n

1

x�3=2 dx = �2(n�1=2 � 1):

Adding 1 to both sides gives an upper bound on the partial sum

Sn = 1 +
1

23=2
+ � � �+ 1

n3=2
< 1� 2(n�1=2 � 1)

Thus, as n!1, the sequence of partial sums is bounded. Each successive partial sum is obtained from the previous one
by adding one more term in the series. Since all the terms are positive, the sequence of partial sums is increasing. Hence
the series converges.

23. (a) We compare
1X
n=1

1=np with the integral

Z
1

1

(1=xp)dx. For p 6= 1, we have

Z
1

1

1

xp
dx = lim

b!1

Z b

1

1

xp
dx = lim

b!1

x�p+1

�p+ 1

����b
1

= lim
b!1

b�p+1 � 1

�p+ 1
:

If p > 1, the power of b is negative, so this limit exists. Thus the integral converges, so the series converges.
(b) If p < 1, then the power of b is positive and the limit does not exist. Thus, the integral diverges, so the series diverges.

We have to look at the case p = 1 separately, since the form of the antiderivative is different in that case. If

p = 1, we compare
1X
n=1

1=n with

Z
1

1

(1=x)dx. Since

Z
1

1

1

x
dx = lim

b!1

Z b

1

1

x
dx = lim

b!1
ln jxj

����b
1

= lim
b!1

ln b;

and since lim
b!1

ln b does not exist, the integral diverges, so the series diverges. Combining these results shows that
1X
n=1

1=np diverges if p � 1.
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24.
1X
n=0

3n + 5

4n
=

1X
n=0

�
3

4

�n
+

1X
n=0

5

4n
, a sum of two geometric series.

1X
n=0

�
3

4

�n
=

1

1� 3
4

= 4

1X
n=0

5

4n
=

5

1� 1
4

=
20

3

so
1X
n=0

3n + 5

4n
= 4 +

20

3
=

32

3
.

25. We want to define lim
n!1

Sn = L so that Sn is as close to L as we please for all sufficiently large n. Thus, the definition

says that for any positive �, there is a value N such that

jSn � Lj < � whenever n � N:

26. Let Sn be the nth partial sum for
P

an and let Tn be the nth partial sum for
P

bn. Then the nth partial sums forP
(an+bn),

P
(an�bn), and

P
kan are Sn+Tn, Sn�Tn, and kSn, respectively. To show that these series converge,

we have to show that the limits of their partial sums exist. By the properties of limits,

lim
n!1

(Sn + Tn) = lim
n!1

Sn + lim
n!1

Tn

lim
n!1

(Sn � Tn) = lim
n!1

Sn � lim
n!1

Tn

lim
n!1

kSn = k lim
n!1

Sn:

This proves that the limits of the partial sums exist, so the series converge.

27. Let Sn be the n-th partial sum for
P

an and let Tn be the n-th partial sum for
P

bn. Suppose that SN = TN + k. Since
an = bn for n � N , we have Sn = Tn + k for n � N . Hence if Sn converges to a limit, so does Tn, and vice versa.

28. We have an = Sn � Sn�1. If
P

an converges, then S = limn!1 Sn exists. Hence limn!1 Sn�1 exists and is equal
to S also. Thus

lim
n!1

an = lim
n!1

(Sn � Sn�1) = lim
n!1

Sn � lim
n!1

Sn�1 = S � S = 0:

29. From Property 1 in Theorem 9.2, we know that if
P

an converges, then so does
P

kan.
Now suppose that

P
an diverges and

P
kan converges for k 6= 0. Thus using Property 1 and replacing

P
an byP

kan, we know that the following series converges:X 1

k
(kan) =

X
an:

Thus, we have arrived at a contradiction, which means our original assumption, that
1X
n=1

kan converged, must be wrong.

30. (a) Show that the sum of each group of fractions is more than 1=2.
(b) Explain why this shows that the harmonic series does not converge.

(a) Notice that

1

3
+

1

4
>

1

4
+

1

4
=

2

4
=

1

2
1

5
+

1

6
+

1

7
+

1

8
>

1

8
+

1

8
+

1

8
+

1

8
=

4

8
=

1

2
1

9
+

1

10
+ � � �+ 1

16
>

1

16
+

1

16
+ � � �+ 1

16
=

8

16
=

1

2
:

In the same way, we can see that the sum of the fractions in each grouping is greater than 1=2.
(b) Since the sum of the first n groups is greater than n=2, it follows that the harmonic series does not converge.
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31. We want to estimate
100;000X
k=1

1

k
using left and right Riemann sum approximations to f(x) = 1=x on the interval 1 �

x � 100;000. Figure 9.2 shows a left Riemann sum approximation with 99;999 terms. Since f(x) is decreasing, the left
Riemann sum overestimates the area under the curve. Figure 9.2 shows that the first term in the sum is f(1) � 1 and the
last is f(99;999) � 1, so we haveZ 100;000

1

1

x
dx < LHS = f(1) � 1 + f(2) � 1 + � � �+ f(99;999) � 1:

Since f(x) = 1=x, the left Riemann sum is

LHS =
1

1
� 1 +

1

2
� 1 + � � �+ 1

99;999
� 1 =

99;999X
k=1

1

k
;

so Z 100;000

1

1

x
dx <

99;999X
k=1

1

k
:

Since we want the sum to go k = 100;000 rather than k = 99;999, we add 1=100;000 to both sides:Z 100;000

1

1

x
dx+

1

100;000
<

99;999X
k=1

1

k
+

1

100;000
=

100;000X
k=1

1

k
:

The left Riemann sum has therefore given us an underestimate for our sum. We now use the right Riemann sum in
Figure 9.3 to get an overestimate for our sum.

1 x1 x2 � � � 100;000

1
x

x

Figure 9.2

1 x1 x2 � � � 100;000

1
x

x

Figure 9.3

The right Riemann sum again has 99;999 terms, but this time the sum underestimates the area under the curve.
Figure 9.3 shows that the first rectangle has area f(2) � 1 and the last f(100;000) � 1, so we have

RHS = f(2) � 1 + f(3) � 1 + � � �+ f(100;000) � 1 <
Z 100;000

1

1

x
dx:

Since f(x) = 1=x, the right Riemann sum is

RHS =
1

2
� 1 + 1

3
� 1 + � � � + 1

100;000
� 1 =

100;000X
k=2

1

k
:

So
100;000X
k=2

1

k
<

Z 100;000

1

1

x
dx:

Since we want the sum to start at k = 1, we add 1 to both sides:

100;000X
k=1

1

k
=

1

1
+

100;000X
k=2

1

k
< 1 +

Z 100;000

1

1

x
dx:
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Putting these under- and overestimates together, we haveZ 100;000

1

1

x
dx+

1

100;000
<

100;000X
k=1

1

k
< 1 +

Z 100;000

1

1

x
dx:

Since

Z 100;000

1

1

x
dx = ln 100;000 � ln 1 = 11:513, we have

11:513 <

100;000X
k=1

1

k
< 12:513:

Therefore we have
100;000X
k=1

1

k
� 12.

32. Using a right-hand sum, we have
1

2
+

1

3
+

1

4
+ � � �+ 1

n
<

Z n

1

dx

x
= lnn:

If a computer could add a million terms in one second, then it could add

60
sec
min

� 60 min
hour

� 24hour
day

� 365days
year

� 1 million
terms
sec

terms per year. Thus,

1 +
1

2
+

1

3
� � �+ 1

n
< 1 + lnn = 1 + ln(60 � 60 � 24 � 365 � 106) � 32:082 < 33:

So the sum after one year is about 32.

33. (a) Let N an integer with N � c. Consider the series
1X

i=N+1

ai. The partial sums of this series are increasing because all

the terms in the series are positive. We show the partial sums are bounded using the right-hand sum in Figure 9.4. We
see that for each positive integer k

f(N + 1) + f(N + 2) + � � �+ f(N + k) �
Z N+k

N

f(x) dx:

Since f(n) = an for all n, and c � N , we have

aN+1 + aN+2 + � � �+ aN+k �
Z N+k

c

f(x) dx:

Since f(x) is a positive function,
R N+k

c
f(x) dx �

R b
c
f(x) dx for all b � N + k. Since f is positive andR

1

c
f(x)dx is convergent,

R N+k

c
f(x) dx <

R
1

c
f(x) dx, so we have

aN+1 + aN+2 + � � � + aN+k �
Z
1

c

f(x) dx for all k.

Thus, the partial sums of the series
1X

i=N+1

ai are all bounded by the same number, so this series converges. Now use

Theorem 9.2, property 2, to conclude that
1X
i=1

ai converges.



9.3 SOLUTIONS 553

c N N + 1

f(x)

	

Area = f(N + 3)	

Area = f(N + 1)

	

Area = f(N + 2)

x

Figure 9.4

c N N + 1

	

Area = f(N)

	

Area = f(N + 1)

	

Area = f(N + 2)

f(x)

x

Figure 9.5

(b) We now suppose

Z
1

c

f(x)dx diverges. In Figure 9.5 we see that for each positive integer k

Z N+k+1

N

f(x) dx � f(N) + f(N + 1) + � � �+ f(N + k):

Since f(n) = an for all n, we haveZ N+k+1

N

f(x)dx � aN + aN+1 + � � �+ aN+k:

Since f(x) is defined for all x � c, if
R
1

c
f(x)dx is divergent, then

R
1

N
f(x) dx is divergent. So as k!1, the the

integral
R N+k+1

N
f(x) dx diverges, so the partial sums of the series

1X
i=N

ai diverge. Thus, the series
1X
i=1

ai diverges.

More precisely, suppose the series converged. Then the partial sums would be bounded. (The partial sums would
be less than the sum of the series, since all the terms in the series are positive.) But that would imply that the integral
converged, by Theorem 9.1 on Convergence of Increasing Bounded Sequences. This contradicts the assumption thatR
1

N
f(x)dx is divergent.

Solutions for Section 9.3

Exercises

1. Let an = 1=(n2 + 2). Since n2 + 2 > n2, we have 1=(n2 + 2) < 1=n2 , so

0 < an <
1

n2
:

The series
1X
n=1

1

n2
converges, so the comparison test tells us that the series

1X
n=1

1

n2 + 2
also converges.

2. Let an = 1=(n� 3), for n � 4. Since n� 3 < n, we have 1=(n� 3) > 1=n, so

an >
1

n
:

The harmonic series
1X
n=4

1

n
diverges, so the comparison test tells us that the series

1X
n=4

1

n� 3
also diverges.
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3. Let an = e�n=n2 . Since e�n < 1, for n � 1,we have
e�n

n2
<

1

n2
, so

0 < an <
1

n2
:

The series
1X
n=1

1

n2
converges, so the comparison test tells us that the series

1X
n=1

e�n

n2
also converges.

4. Since n3 � n2, we have 1=n3 � 1=n2 . Hence the series converges by comparison with 1=n2 , which we showed
converges on page 415 of the text.

5. Since lnn � n for n � 2, we have 1= lnn � 1=n, so the series diverges by comparison with the harmonic series,P
1=n.

6. Let an = 1=(3n + 1). Since 3n + 1 > 3n, we have 1=(3n + 1) < 1=3n =
�
1

3

�n
, so

0 < an <
�
1

3

�n
:

Thus we can compare the series
1X
n=1

1

3n + 1
with the geometric series

1X
n=1

�
1

3

�n
: This geometric series converges since

j1=3j < 1, so the comparison test tells us that
1X
n=1

1

3n + 1
also converges.

7. Let an = 1=(n4 + en). Since n4 + en > n4, we have

1

n4 + en
<

1

n4
;

so

0 < an <
1

n4
:

Since the series
1X
n=1

1

n4
converges, the comparison test tells us that the series

1X
n=1

1

n4 + en
also converges.

8. Let an = 2�n
(n+ 1)

(n+ 2)
=
�
n+ 1

n+ 2

��
1

2n

�
. Since

(n+ 1)

(n+ 2)
< 1 and

1

2n
=
�
1

2

�n
, we have

0 < an <
�
1

2

�n
;

so that we can compare the series
1X
n=1

2�n
(n+ 1)

(n+ 2)
with the convergent geometric series

1X
n=1

�
1

2

�n
. The comparison test

tells us that
1X
n=1

2�n
(n+ 1)

(n+ 2)

also converges.

9. Let an = n2=(n4 + 1). Since n4 + 1 > n4, we have
1

n4 + 1
<

1

n4
, so

an =
n2

n4 + 1
<

n2

n4
=

1

n2
;

therefore

0 < an <
1

n2
:

Since the series
1X
n=1

1

n2
converges, the comparison test tells us that the series

1X
n=1

n2

n4 + 1
converges also.



9.3 SOLUTIONS 555

10. Let an = (2n + 1)=(n2n � 1). Since n2n � 1 < n2n + n = n(2n + 1), we have

2n + 1

n2n � 1
>

2n + 1

n(2n + 1)
=

1

n
:

Therefore, we can compare the series
1X
n=1

2n + 1

n2n � 1
with the divergent harmonic series

1X
n=1

1

n
: The comparison test tells

us that
1X
n=1

2n + 1

n2n � 1
also diverges.

11. We know that j sinnj < 1, so ���n sinn

n3 + 1

��� � n

n3 + 1
<

n

n3
=

1

n2
:

Since
1X
n=1

1

n2
converges, comparison gives that

1X
n=1

���n sinn

n3 + 1

��� converges. Thus, by Theorem 9.5,
1X
n=1

n sinn

n3 + 1
converges.

12. Since an = 1=(2n)!, replacing n by n+ 1 gives an+1 = 1=(2n+ 2)!. Thus

jan+1j
janj =

1

(2n+ 2)!
1

(2n)!

=
(2n)!

(2n+ 2)!
=

(2n)!

(2n+ 2)(2n + 1)(2n)!
=

1

(2n+ 2)(2n+ 1)
;

so

L = lim
n!1

jan+1j
janj = lim

n!1

1

(2n+ 2)(2n+ 1)
= 0:

Since L = 0, the ratio test tells us that
1X
n=1

1

(2n)!
converges.

13. Since an = (n!)2=(2n)!, replacing n by n+ 1 gives an+1 = ((n+ 1)!)2=(2n + 2)!. Thus,

jan+1j
janj =

((n+ 1)!)2

(2n+ 2)!

(n!)2

(2n)!

=
((n+ 1)!)2

(2n+ 2)!
� (2n)!
(n!)2

:

However, since (n+ 1)! = (n+ 1)n! and (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)!, we have

jan+1j
janj =

(n+ 1)2(n!)2(2n)!

(2n+ 2)(2n + 1)(2n)!(n!)2
=

(n+ 1)2

(2n+ 2)(2n+ 1)
=

n+ 1

4n + 2
;

so

L = lim
n!1

jan+1j
janj =

1

4
:

Since L < 1, the ratio test tells us that
1X
n=1

(n!)2

(2n)!
converges.

14. Since an = 2n=(n3 + 1), replacing n by n+ 1 gives an+1 = 2n+1=((n+ 1)3 + 1). Thus

jan+1j
janj =

2n+1

(n+ 1)3 + 1

2n

n3 + 1

=
2n+1

(n+ 1)3 + 1
� n

3 + 1

2n
= 2

n3 + 1

(n+ 1)3 + 1
;

so

L = lim
n!1

jan+1j
janj = 2:

Since L > 1 the ratio test tells us that the series
1X
n=0

2n

n3 + 1
diverges.
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15. Since an = 1=(nen), replacing n by n+ 1 gives an+1 = 1=(n+ 1)en+1. Thus

jan+1j
janj =

1

(n+ 1)en+1

1

nen

=
nen

(n+ 1)en+1
=
�

n

n+ 1

�
1

e
:

Therefore

L = lim
n!1

jan+1j
janj =

1

e
< 1:

Since L < 1, the ratio test tells us that
1X
n=1

1

nen
converges.

16. Let an = 1=(2n + 1). Then replacing n by n + 1 gives an+1 = 1=(2n+ 3). Since 2n + 3 > 2n+ 1, we have

0 < an+1 =
1

2n+ 3
<

1

2n+ 1
= an:

We also have limn!1 an = 0. Therefore, the alternating series test tells us that the series
1X
n=1

(�1)n�1
2n+ 1

converges.

17. Let an = 1=
p
n. Then replacing n by n+1 we have an+1 = 1=

p
n + 1. Since

p
n+ 1 >

p
n, we have

1p
n+ 1

<
1p
n

,

hence an+1 < an. In addition, limn!1 an = 0 so
1X
n=0

(�1)np
n

converges by the alternating series test.

Problems

18. The partial sums look like: S1 = 1, S2 = 0:9, S3 = 0:91, S4 = 0:909, S5 = 0:9091, S6 = 0:90909. The series appears
to be converging to 0:909090 : : : or 10=11.

Since an = 10�k is positive and decreasing and lim
n!1

10�n = 0, the alternating series test confirms the convergence

of the series.

19. The partial sums are S1 = 1, S2 = �1, S3 = 2, S10 = �5, S11 = 6, S100 = �50, S101 = 51, S1000 = �500,
S1001 = 501, which appear to be oscillating further and further from 0. This series does not converge.

20. The partial sums look like: S1 = 1, S2 = 0, S3 = 0:5, S4 = 0:3333, S5 = 0:375, S10 = 0:3679, S20 = 0:3679, and
higher partial sums agree with these first 4 decimal places. The series appears to be converging to about 0.3679.

Since an = 1=n! is positive and decreasing and limn!1 1=n! = 0, the alternating series test confirms the conver-
gence of this series.

21. The first few terms of the series may be written

1 + e�1 + e�2 + e�3 + � � � ;
this is a geometric series with a = 1 and x = e�1 = 1=e. Since jxj < 1, the geometric series converges to

S =
1

1� x
=

1

1� e�1
=

e

e� 1
.

22. We use the ratio test and calculate

lim
n!1

jan+1j
janj = lim

n!1

(0:1)n+1=(n+ 1)!

(0:1)n=n!
= lim

n!1

0:1

n+ 1
= 0:

Since the limit is less than 1, the series converges.

23. We use the ratio test and calculate

lim
n!1

jan+1j
janj = lim

n!1

n!=(n + 1)2

(n� 1)!=n2
= lim

n!1

�
n!

(n� 1)!
� n2

(n+ 1)2

�
= lim

n!1

�
n � n2

(n+ 1)2

�
:

Since the limit does not exist (it is1), the series diverges.

24. The first few terms of the series may be written

e+ e2 + e3 + � � � = e+ e � e+ e � e2 + � � � ;
this is a geometric series with a = e and x = e. Since jxj > 1, this geometric series diverges.
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25. Let an = 1=
p
3n� 1. Then replacing n by n+ 1 gives an+1 = 1=

p
3(n+ 1)� 1. Sincep

3(n+ 1)� 1 >
p
3n� 1;

we have
an+1 < an:

In addition, limn!1 an = 0 so the alternating series test tells us that the series
1X
n=1

(�1)n�1p
3n� 1

converges.

26. Since the exponential, 2n, grows faster than the power, n2, the terms are growing in size. Thus, lim
n!1

an 6= 0. We conclude

that this series diverges.

27. Let an = n(n+ 1)=
p
n3 + 2n2. Since n3 + 2n2 = n2(n+ 2), we have

an =
n(n+ 1)

n
p
n+ 2

=
n + 1p
n + 2

so an grows without bound as n!1, therefore the series
1X
n=1

n(n+ 1)p
n3 + 2n2

diverges.

28. Let an = 1=
p
n2(n+ 2). Since n2(n+ 2) = n3 + 2n2 > n3, we have

0 < an <
1

n3=2
:

Since the series
1X
n=1

1

n3=2
converges, the comparison test tells us that

1X
n=1

1p
n2(n + 2)

also converges.

29. (a) Assume that n is even. Then

1� 1

2
+

1

3
� 1

4
+ � � � � 1

n
=
�
1� 1

2

�
+
�
1

3
� 1

4

�
+ � � �+

�
1

n� 1
� 1

n

�
=

1

1 � 2 +
1

3 � 4 + � � �+ 1

(n� 1) � n:

(b) The given series
1

1 � 2 +
1

3 � 4 +
1

5 � 6 + � � � is term by term less than the series

1

1 � 1 +
1

2 � 2 +
1

3 � 3 + � � � = 1

12
+

1

22
+

1

33
+ � � � :

Since this second series,
P

1=n2 , converges by the integral test, the first series converges.
(c) By parts (a) and (b), the sequence of partial sums for even n converges. The partial sum for odd n equals 1=n plus

the partial sum for even n � 1. Thus the partial sums for odd n approach the partial sums for even n, as n ! 1.
Therefore the sequence of all partial sums converges, and hence the series converges.

30. The argument is false. Property 1 of Theorem 9.2 only applies to convergent series. Furthermore, since n(n + 1) > n2

we can compare
1X
n=1

1

n(n+ 1)
with the convergent series

1X
n=1

1

n2
and deduce that it converges.

31. Suppose we let cn = (�1)nan. (We have just given the terms of the series
P

(�1)nan a new name.) Then

jcnj = j(�1)nanj = janj:
Thus

P jcnj converges, and by Theorem 9.5,X
cn =

X
(�1)nan converges.
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32. (a) Since bn = an if an is positive or zero and bn = 0 if an is negative, we have

0 � bn � janj for all n:

Thus, by the comparison test,
P

bn converges.
(b) Since cn = 0 if an is positive or zero and cn = �an if an is negative, cn is never negative and

0 � cn � janj for all n:

Thus, by the comparison test,
P

cn converges.
(c) The bns are the positive terms in

P
an, and the cns are the negative terms. For each n, either bn or cn is 0, and

an = bn � cn:

Thus,
P

an =
P

bn �
P

cn is the difference of convergent sequences and hence converges.

Solutions for Section 9.4

Exercises

1. Yes.

2. No, because it contains negative powers of x.

3. No, each term is a power of a different quantity.

4. Yes. It’s a polynomial, or a series with all coefficients beyond the 7th being zero.

5. The general term can be written as
1 � 3 � 5 � � � (2n� 1)

2n � n! xn for n � 1.

6. The general term can be written as
p(p� 1)(p� 2) � � � (p� n+ 1)

n!
xn for n � 1.

7. The general term can be written as (�1)k(x� 1)2k=(2k)! for k � 0.

8. The general term can be written as (�1)k(x� 1)2k+3=(2k)! for k � 0.

9. The general term can be written as
(x� a)n

2n�1 � n! for n � 1.

10. The general term can be written as
(k + 2)(x+ 5)2k+3

k!
for k � 0.

11. This series may be written as
1 + 5x+ 25x2 + � � �

so Cn = 5n. Using the ratio test, with an = 5nxn, we have

lim
n!1

jan+1j
janj = jxj lim

n!1

jCn+1j
jCnj = jxj lim

n!1

5n+1

5n
= 5jxj:

Thus the radius of convergence is R = 1=5.

12. Since Cn = n3, replacing n by n+ 1 gives Cn+1 = (n+ 1)3. Using the ratio test, with an = n3xn, we have

jan+1j
janj = jxj jCn+1j

jCnj = jxj (n+ 1)3

n3
= jxj

�
n+ 1

n

�3
:

We have

lim
n!1

jan+1j
janj = jxj:

Thus the radius of convergence is R = 1.
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13. Since Cn = (n+ 1)=(2n + n), replacing n by n+ 1 gives Cn+1 = (n+ 2)=(2n+1 + n+ 1). Using the ratio test, we
have

jan+1j
janj = jxj jCn+1j

jCnj = jxj (n+ 2)=(2n+1 + n+ 1)

(n+ 1)=(2n + n)
= jxj n+ 2

2n+1 + n+ 1
� 2

n + n

n+ 1
= jxjn+ 2

n+ 1
� 2n + n

2n+1 + n+ 1
:

Since

lim
n!1

n+ 2

n+ 1
= 1

and

lim
n!1

�
2n + n

2n+1 + n+ 1

�
=

1

2
lim
n!1

�
2n + n

2n + (n+ 1)=2

�
=

1

2
;

because 2n dominates n as n!1, we have

lim
n!1

jan+1j
janj =

1

2
jxj:

Thus the radius of convergence is R = 2.

14. Since Cn = 2n=n, replacing n by n+ 1 gives Cn+1 = 2n+1=(n + 1). Using the ratio test, we have

jan+1j
janj = jx� 1j jCn+1j

jCnj = jx� 1j2
n+1=(n+ 1)

2n=n
= jx� 1j 2n+1

(n+ 1)
� n
2n

= 2jx� 1j
�

n

n+ 1

�
;

so

lim
n!1

jan+1j
janj = 2jx� 1j:

Thus the radius of convergence is R = 1
2

.

15. To find R, we consider the following limit, where the coefficient of the nth term is given by Cn = n2:

lim
n!1

jan+1j
janj = lim

n!1

���� (n+ 1)2xn+1

n2xn

���� = lim
n!1

jxjn
2 + 2n+ 1

n2

= jxj lim
n!1

�
1 + (2=n) + (1=n2)

1

�
= jxj:

Thus, the radius of convergence is R = 1:

16. The coefficient of the nth term is Cn = (�1)n+1=n2 . Now consider the ratio���an+1

an

��� = ���� n2xn+1

(n+ 1)2xn

����! jxj as n!1:

Thus, the radius of convergence is R = 1.

17. Here the coefficient of the nth term is Cn = (2n=n!): Now we have���an+1

an

��� = ���� (2n+1=(n+ 1)!)xn+1

(2n=n!)xn

���� = 2jxj
n + 1

! 0 as n!1:

Thus, the radius of convergence is R =1, and the series converges for all x.

18. Here the coefficient of the nth term is Cn = n=(2n+ 1): Now we have���an+1

an

��� = ���� ((n+ 1)=(2n+ 3))xn+1

(n=(2n+ 1))xn

���� = (n+ 1)(2n + 1)

n(2n+ 3)
jxj ! jxj as n!1:

Thus, by the ratio test, the radius of convergence is R = 1.

19. Here Cn = (2n)!=(n!)2: We have:���an+1

an

��� = ���� (2(n+ 1))!=((n + 1)!)2xn+1

(2n)!=(n!)2xn

���� = (2(n+ 1))!

(2n)!
� (n!)2

((n+ 1)!)2
jxj

=
(2n+ 2)(2n+ 1)jxj

(n+ 1)2
! 4jxj as n!1:

Thus, the radius of convergence is R = 1=4.
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20. Here the coefficient of the nth term is Cn = (2n+ 1)=n: Applying the ratio test, we consider:���an+1

an

��� = ���� ((2n+ 3)=(n+ 1))xn+1

((2n+ 1)=n)xn

���� = jxj2n+ 3

2n+ 1
� n

n+ 1
! jxj as n!1:

Thus, the radius of convergence is R = 1.

21. We write the series as

x� x3

3
+
x5

5
� x7

7
+ � � �+ (�1)n�1 x

2n�1

2n� 1
+ � � � ;

so

an = (�1)n�1 x
2n�1

2n� 1
:

Replacing n by n+ 1, we have

an+1 = (�1)n+1�1 x2(n+1)�1

2(n + 1)� 1
= (�1)n x2n+1

2n+ 1
:

Thus
jan+1j
janj =

����(�1)nx2n+1

2n+ 1

���� �
���� 2n � 1

(�1)n�1x2n�1
���� = 2n� 1

2n+ 1
x2;

so

L = lim
n!1

jan+1j
janj = lim

n!1

2n� 1

2n+ 1
x2 = x2:

By the ratio test, this series converges if L < 1, that is, if x2 < 1, so R = 1.

Problems

22. (a) The general term of the series is xn=n if n is odd and �xn=n if n is even, so Cn = (�1)n�1=n, and we can use the
ratio test. We have

lim
n!1

jan+1j
janj = jxj lim

n!1

j(�1)n=(n + 1)j
j(�1)n�1=nj = jxj lim

n!1

n

n + 1
= jxj:

Therefore the radius of convergence is R = 1. This tells us that the power series converges for jxj < 1 and does not
converge for jxj > 1: Notice that the radius of convergence does not tell us what happens at the endpoints, x = �1.

(b) The endpoints of the interval of convergence are x = �1. At x = 1, we have the series

1� 1

2
+

1

3
� 1

4
+ � � � + (�1)n�1

n
+ � � �

This is an alternating series with an = 1=n, so by the alternating series test, it converges. At x = �1, we have the
series

�1� 1

2
� 1

3
� 1

4
� � � � � 1

n
� � � �

This is the negative of the harmonic series, so it does not converge. Therefore the right endpoint is included, and the
left endpoint is not included in the interval of convergence, which is �1 < x � 1:

23. Let Cn = 2n=n. Then replacing n by n+ 1 gives Cn+1 = 2n+1=(n+ 1). Using the ratio test, we have

jan+1j
janj = jxj jCn+1j

jCnj = jxj2
n+1=(n+ 1)

2n=n
= jxj 2

n+1

n+ 1
� n
2n

= 2jxj
�

n

n+ 1

�
:

Thus

lim
n!1

jan+1j
janj = 2jxj:

The radius of convergence is R = 1=2.

For x = 1=2 the series becomes the harmonic series
1X
n=1

1

n
which diverges.

For x = �1=2 the series becomes the alternating series
1X
n=1

(�1)n
n

which converges. See Example 7 on page 421.
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24. The coefficient of the nth term of the binomial power series is given by

Cn =
p(p� 1)(p� 2) � � � (p� (n� 1))

n!
:

To apply the ratio test, consider���an+1

an

��� = jxj
����p(p� 1)(p� 2) � � � (p� (n� 1))(p� n)=(n+ 1)!

p(p� 1)(p� 2) � � � (p� (n� 1))=n!

����
= jxj

���p� n

n+ 1

��� = jxj
��� p

n+ 1
� n

n+ 1

���! jxj as n!1:

Thus, the radius of convergence is R = 1.

25. The kth coefficient in the series
P

kCkx
k isDk = k�Ck . We are given that the series

P
Ckx

k has radius of convergence
R by the ratio test, so

jxj lim
k!1

jCk+1j
jCkj =

jxj
R
:

Thus, applying the ratio test to the new series, we have

lim
k!1

����Dk+1x
k+1

Dkxk

���� = lim
k!1

���� (k + 1)Ck+1

kCk

���� jxj = jxj
R
:

Hence the new series has radius of convergence R:

26. The radius of convergence of the series, R, is at least 4 but no larger than 7.

(a) False. Since 10 > R the series diverges.
(b) True. Since 3 < R the series converges.
(c) False. Since 1 < R the series converges.
(d) Not possible to determine since the radius of convergence may be more or less than 6.

Solutions for Chapter 9 Review

Exercises

1. Let an = n2=(3n2 + 4). Since 3n2 + 4 > 3n2, we have
n2

3n2 + 4
<

1

3
, so

0 < an <
�
1

3

�n
:

The geometric series
1X
n=1

�
1

3

�n
converges, so the comparison test tells us that the series

1X
n=1

�
n2

3n2 + 4

�n

also con-

verges.

2. Let an = 1=(n sin2 n). Since 0 < sin2 n < 1, for any integer n, we have n sin2 n < n, so
1

n sin2 n
>

1

n
, thus

an >
1

n
:

The harmonic series
1X
n=1

1

n
diverges, so the comparison test tells us that the series

1X
n=1

1

n sin2 n
also diverges.

3. The first few terms of this series
1X
n=1

4� n

n3 + 1
are

3

2
+

2

9
+

1

28
+ 0� 1

126
� 2

217
� : : : :
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Note that we cannot use the comparison test directly since an =
4� n

n3 + 1
is negative for n > 4. However

1X
n=1

4� n

n3 + 1
=

3

2
+

2

9
+

1

28
�
1X
n=5

n� 4

n3 + 1
:

Since n3 + 1 > n3, we have
1

n3 + 1
<

1

n3
;

therefore
n� 4

n3 + 1
<

n� 4

n3
<

n

n3
=

1

n2
; for n > 4;

so we can compare the series
1X
n=5

n� 4

n3 + 1
with

1X
n=5

1

n2
, which converges. The comparison test tells us that the series

1X
n=1

4� n

n3 + 1

also converges.

4. The series can be written as
1X
n=1

3n2 + n + 1

n5 + 1
=

1X
n=1

�
3

n2

n5 + 1
+

n

n5 + 1
+

1

n5 + 1

�
:

To show that the original series converges we show that each of the series
1X
n=1

n2

n5 + 1
,
1X
n=1

n

n5 + 1
, and

1X
n=1

1

n5 + 1

converges. (See Property 1 of Theorem 9.2.)

Firstly, consider the series
1X
n=1

n2

n5 + 1
. Let an =

n2

n5 + 1
, then since n5 + 1 > n5 we have

n2

n5 + 1
<

n2

n5
=

1

n3
;

so we can compare the first series with the convergent series
1X
n=1

1

n3
. The comparison test tells us that the series

1X
n=1

n2

n5 + 1
converges.

Now consider the series,
1X
n=1

n

n5 + 1
. Let an =

n

n5 + 1
, then we have

n

n5 + 1
<

n

n5
=

1

n4
;

so we can compare this series with the convergent series
1X
n=1

1

n4
. The comparison test tells us that the series

1X
n=1

n

n5 + 1

converges.

Finally, consider the series
1X
n=1

1

n5 + 1
. Let an =

1

n5 + 1
, then

1

n5 + 1
<

1

n5
;

so we can compare this series with the convergent series
1X
n=1

1

n5
. The comparison test tells us that the series

1X
n=1

1

n5 + 1

also converges.
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From Property 1 of Theorem 9.2, since the series
1X
n=1

n2

n5 + 1
,
1X
n=1

n

n5 + 1
and

1X
n=1

1

n5 + 1
converge, the series

1X
n=1

3n2 + n+ 1

n5 + 1
also converges.

5. To show that the original series converges, we show that the series
1X
n=1

�
3

4

�n
and

1X
n=1

1

n2
converge. The first of these

is a convergent geometric series, since j3=4j < 1. The integral test tells us that series
1X
n=1

1

n2
converges by comparing it

with the convergent integral
R 1

0
1=x2dx. Theorem 9.2 then tells us that the series

1X
n=1

�
3

4

n

+
1

n2

�
also converges.

6. The series can be written as

1X
n=0

2 + 3n

5n
=

1X
n=0

�
2

5n
+

3n

5n

�
=

1X
n=0

�
2
�
1

5

�n
+
�
3

5

�n�
:

The series
1X
n=0

�
1

5

�n
is a geometric series which converges because j1

5
j < 1. Likewise, the geometric series

1X
n=0

�
3

5

�n
converges because j3

5
j < 1. Since both series converge, Property 1 of Theorem 9.2 tells us that the series

1X
n=0

2 + 3n

5n
also

converges.

7. Writing an = 1=(2 + sinn), we have limn!1 an 6= 0 so the series diverges by Property 3 of Theorem 9.2.

8. Since an = 3n=(2n)!, replacing n by n+ 1 gives an+1 = 3n+1=(2n+ 2)!. Thus

an+1

an
=

3n+1=(2n + 2)!

3n=(2n)!
=

3n+1

(2n+ 2)!
� (2n)!

3n
:

Since (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)!, we have

an+1

an
=

3

(2n + 2)(2n+ 1)
;

so
lim
n!1

an+1

an
= 0:

The ratio test tells us that the series
1X
n=1

3n

(2n)!
converges.

9. Since an = (2n)!=(n!)2 , replacing n by n+ 1 gives an+1 = (2n+ 2)!=((n+ 1)!)2. Thus

an+1

an
=

(2n+ 2)!

((n+ 1)!)2

(2n)!

(n!)2

=
(2n+ 2)!

(n+ 1)!(n+ 1)!
� n!n!
(2n)!

:

Since (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)! and (n+ 1)! = (n+ 1)n!, we have

an+1

an
=

(2n + 2)(2n+ 1)

(n + 1)(n + 1)
;

therefore
L = lim

n!1

an+1

an
= 4:

As L = 4 the ratio test tells us that the series
1X
n=1

(2n)!

(n!)2
diverges.
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10. This is an alternating series. Let an = 1=(
p
n + 1). Then limn!1 an = 0. Now replace n by n + 1 to give an+1 =

1=(
p
n+ 1 + 1). Since

p
n+ 1 + 1 >

p
n+ 1, we have

1p
n+ 1 + 1

<
1p
n+ 1

, so

an+1 =
1p

n + 1 + 1
<

1p
n+ 1

= an:

Therefore, the alternating series test tells us that the series
1X
n=1

(�1)n�1p
n + 1

converges.

11. Since ln(1 + 1=k) = ln((k + 1)=k) = ln(k + 1)� ln k, the nth partial sum of this series is

Sn =

nX
k=1

ln
�
1 +

1

k

�

=

nX
k=1

ln(k + 1)�
nX

k=1

ln k

= (ln 2 + ln 3 + � � � + ln(n+ 1))� (ln 1 + ln 2 + � � �+ lnn)

= ln(n+ 1)� ln 1

= ln(n+ 1):

Thus, the partial sums, Sn, grow without bound as n!1, so the series diverges by the definition.

12. Since Cn = n, replacing n by n+ 1 gives Cn+1 = n+ 1. Using the ratio test with an = nxn, we have

lim
n!1

jan+1j
janj = jxj lim

n!1

jCn+1j
jCnj = jxj lim

n!1

n + 1

n
= jxj:

Thus the radius of convergence is R = 1.

13. Let Cn =
(2n)!

(n!)2
. Then replacing n by n+ 1, we have Cn+1 =

(2n+ 2)!

((n+ 1)!)2
. Thus, with an = (2n)!xn=(n!)2 , we have

jan+1j
janj = jxj jCn+1j

jCnj = jxj (2n+ 2)!=((n+ 1)!)2

(2n)!=(n!)2
= jxj (2n+ 2)!

(2n)!
� (n!)2

((n+ 1)!)2
:

Since (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)! and (n+ 1)! = (n+ 1)n! we have

jCn+1j
jCnj =

(2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)
;

so

lim
n!1

jan+1j
janj = jxj lim

n!1

jCn+1j
jCnj = jxj lim

n!1

(2n+ 2)(2n + 1)

(n+ 1)(n+ 1)
= jxj lim

n!1

4n + 2

n+ 1
= 4jxj;

so the radius of convergence of this series is R = 1=4.

14. Let Cn = 2n + n2. Then replacing n by n+ 1 gives Cn+1 = 2n+1 + (n+ 1)2. Using the ratio test, we have

jan+1j
janj = jxj jCn+1j

jCnj = jxj2
n+1 + (n+ 1)2

2n + n2
= 2jxj

�
2n + 1

2
(n+ 1)2

2n + n2

�
:

Since 2n dominates n2 as n!1, we have

lim
n!1

jan+1j
janj = 2jxj:

Thus the radius of convergence is R = 1
2

.
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15. Let Cn = 1=(n! + 1). Then replacing n by n+ 1 gives Cn+1 = 1=((n+ 1)! + 1). Using the ratio test, we have

jan+1j
janj = jxj jCn+1j

jCnj = jxj1=((n + 1)! + 1)

1=(n! + 1)
= jxj n! + 1

(n+ 1)! + 1
:

Since n! and (n+ 1)! dominate the constant term 1 as n!1 and (n+ 1)! = (n+ 1) � n! we have

lim
n!1

jan+1j
janj = 0:

Thus the radius of convergence is R =1.

Problems

16. (a) 0:232323 : : : = 0:23 + 0:23(0:01) + 0:23(0:01)2 + � � � which is a geometric series with a = 0:23 and x = 0:01.

(b) The sum is
0:23

1� 0:01
=

0:23

0:99
=

23

99
.

17. The amount of cephalexin in the body is given by Q(t) = Q0e
�kt, where Q0 = Q(0) and k is a constant. Since the

half-life is 0.9 hours,
1

2
= e�0:9k; k = � 1

0:9
ln

1

2
� 0:8:

(a) After 6 hours
Q = Q0e

�k(6) � Q0e
�0:8(6) = Q0(0:01):

Thus, the percentage of the cephalexin that remains after 6 hours � 1%.
(b)

Q1 = 250

Q2 = 250 + 250(0:01)

Q3 = 250 + 250(0:01) + 250(0:01)2

Q4 = 250 + 250(0:01) + 250(0:01)2 + 250(0:01)3

(c)

Q3 =
250(1 � (0:01)3)

1� 0:01
� 252:5

Q4 =
250(1 � (0:01)4)

1� 0:01
� 252:5

Thus, by the time a patient has taken three cephalexin tablets, the quantity of drug in the body has leveled off to 252.5
mg.

(d) Looking at the answers to part (b) shows that

Qn = 250 + 250(0:01) + 250(0:01)2 + � � �+ 250(0:01)n�1

=
250(1 � (0:01)n)

1� 0:01
:

(e) In the long run, n!1. So,

Q = lim
n!1

Qn =
250

1� 0:01
= 252:5:

18. (a) (i) On the night of December 31, 1999:

First deposit will have grown to 2(1:04)7 million dollars.
Second deposit will have grown to 2(1:04)6 million dollars.
� � �
Most recent deposit (Jan.1, 1999) will have grown to 2(1:04) million dollars.



566 Chapter Nine /SOLUTIONS

Thus

Total amount = 2(1:04)7 + 2(1:04)6 + � � �+ 2(1:04)

= 2(1:04)(1 + 1:04 + � � �+ (1:04)6| {z }
finite geometric series

)

= 2(1:04)

�
1� (1:04)7

1� 1:04

�
= 16:43 million dollars:

(ii) Notice that if 10 payments are made, there are 9 years between the first and the last. On the day of the last
payment:

First deposit will have grown to 2(1:04)9 million dollars.
Second deposit will have grown to 2(1:04)8 million dollars.
� � �
Last deposit will be 2 million dollars.

Therefore

Total amount = 2(1:04)9 + 2(1:04)8 + � � � + 2

= 2(1 + 1:04 + (1:04)2 + � � �+ (1:04)9| {z }
finite geometric series

)

= 2

�
1� (1:04)10

1� 1:04

�
= 24:01 million dollars:

(b) In part (a) (ii) we found the future value of the contract 9 years in the future. Thus

Present Value =
24:01

(1:04)9
= 16:87 million dollars:

Alternatively, we can calculate the present value of each of the payments separately:

Present Value = 2 +
2

1:04
+

2

(1:04)2
+ � � �+ 2

(1:04)9

= 2

�
1� (1=1:04)10

1� 1=1:04

�
= 16:87 million dollars:

Notice that the present value of the contract ($16:87 million) is considerably less than the face value of the contract,
$20 million.

19.

Total present value, in dollars = 1000 + 1000e�0:04 + 1000e�0:04(2) + 1000e�0:04(3) + � � �
= 1000 + 1000(e�0:04) + 1000(e�0:04)2 + 1000(e�0:04)3 + � � �

This is an infinite geometric series with a = 1000 and x = e(�0:04), and sum

Total present value, in dollars =
1000

1� e�0:04
= 25;503:

20. A person should expect to pay the present value of the bond on the day it is bought.

Present value of first payment =
10

1:04

Present value of second payment =
10

(1:04)2
; etc.

Therefore,

Total present value =
10

1:04
+

10

(1:04)2
+

10

(1:04)3
+ � � � :
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This is a geometric series with a =
10

1:04
and x =

1

1:04
, so

Total present value =
10
1:04

1� 1
1:04

= $250:

21.

Present value of first coupon =
50

1:06

Present value of second coupon =
50

(1:06)2
; etc.

Total present value =
50

1:06
+

50

(1:06)2
+ � � �+ 50

(1:06)10| {z }
coupons

+
1000

(1:06)10| {z }
principal

=
50

1:06

�
1 +

1

1:06
+ � � �+ 1

(1:06)9

�
+

1000

(1:06)10

=
50

1:06

 
1�

�
1

1:06

�10
1� 1

1:06

!
+

1000

(1:06)10

= 368:004 + 558:395

= $926:40

22.

Present value of first coupon =
50

1:04

Present value of second coupon =
50

(1:04)2
; etc:

Total present value =
50

1:04
+

50

(1:04)2
+ � � �+ 50

(1:04)10| {z }
coupons

+
1000

(1:04)10| {z }
principal

=
50

1:04

�
1 +

1

1:04
+ � � �+ 1

(1:04)9

�
+

1000

(1:04)10

=
50

1:04

 
1�

�
1

1:04

�10
1� 1

1:04

!
+

1000

(1:04)10

= 405:545 + 675:564

= $1081:11

23. (a)

Present value of first coupon =
50

1:05

Present value of second coupon =
50

(1:05)2
; etc.

Total present value =
50

1:05
+

50

(1:05)2
+ � � �+ 50

(1:05)10| {z }
coupons

+
1000

(1:05)10| {z }
principal

=
50

1:05

�
1 +

1

1:05
+ � � �+ 1

(1:05)9

�
+

1000

(1:05)10
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=
50

1:05

 
1�

�
1

1:05

�10
1� 1

1:05

!
+

1000

(1:05)10

= 386:087 + 613:913

= $1000

(b) When the interest rate is 5%, the present value equals the principal.
(c) When the interest rate is more than 5%, the present value is smaller than it is when interest is 5% and must therefore

be less than the principal. Since the bond will sell for around its present value, it will sell for less than the principal;
hence the description trading at discount.

(d) When the interest rate is less than 5%, the present value is more than the principal. Hence the bound will be selling
for more than the principal, and is described as trading at a premium.

24. The series converges for jx� 2j = 2 and diverges for jx � 2j = 4, thus the radius of convergence of the series, R, is at
least 2 but no larger than 4.

(a) False. If x = 7 then jx� 2j = 5, so the series diverges.
(b) False. If x = 1 then jx� 2j = 1, so the series converges.
(c) True. If x = 0:5 then jx� 2j = 1:5, so the series converges.
(d) If x = 5 then jx� 2j = 3 and it is not possible to determine whether or not the series converges at this point.
(e) False. If x = �3 then jx� 2j = 5, so the series diverges.

25. (a) Since
janj = an if an � 0

janj = �an if an < 0;

we have
an + janj = 2janj if an > 0

an + janj = 0 if an < 0:

Thus, for all n,
0 � an + janj � 2janj:

(b) If
P janj converges, then

P
2janj is convergent, so, by comparison,

P
(an + janj) is convergent. ThenX

((an + janj)� janj) =
X

an

is convergent, as it is the difference of two convergent series.

CAS Challenge Problems

26. (a) Using a CAS, we get

S1(x)T1(x) = x(1 + x) = x+ x2

S2(x)T2(x) =
�
x+ 2 x2

��
1 + x+

x2

2

�
= x+ 3x2 +

5x3

2
+ x4

S3(x)T3(x) =
�
x+ 2 x2 + 3x3

��
1 + x+

x2

2
+
x3

6

�
= x+ 3x2 +

11 x3

2
+

25x4

6
+

11 x5

6
+

x6

2

S4(x)T4(x) =
�
x+ 2 x2 + 3x3 + 4x4

��
1 + x+

x2

2
+

x3

6
+
x4

24

�

= x+ 3 x2 +
11x3

2
+

49 x4

6
+

47x5

8
+

31 x6

12
+

19x7

24
+

x8

6

(b) The coefficient of x is always the same, namely 1. The coefficient of x2 is 1 in the first line, and then 3 thereafter.
The coefficient of x3 changes twice, but then remains at 11/2 for the last two lines.

(c) Following the same pattern, we expect that the coefficient of x4 to remain the same after n = 4, and indeed we find
that

S5(x)T5(x) = x+ 3x2 +
11 x3

2
+

49x4

6
+

87 x5

8
+

911 x6

120
+

397 x7

120
+

41x8

40
+

29 x9

120
+

x10

24
;

so the coefficient of x4 stays at 49=6.
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(d) In general, the coefficient of xk in the product can vary in S1T1, S2T2, . . . , SkTk and then stays the same after that.
This is because the coefficient of xk in the product depends on the coefficients of 1, x, x2, . . .xk in Sn(x) and Tn(x),
and these remain the same for n � k.

27. (a) Using a CAS, we get

T1(S1(x)) = 1 + x

T2(S2(x)) = 1 + x+
5x2

2
+ 2x3 + 2 x4

T3(S3(x)) = 1 + x+
5x2

2
+

31 x3

6
+ 6x4 +

19x5

2
+

71 x6

6
+

21x7

2
+ 9 x8 +

9x9

2

(b) The coefficient of x stays the same, namely 1. The coefficient of x2 is 0 in the first line, but after that stabilizes at 5/2.
(c) Thus we predict that the coefficient of x3 will stabilize after n = 3 and will be 31/6 in T4(S4(x)). This is confirmed

by

T4(S4(x)) = 1 + x+
5x2

2
+

31 x3

6
+

241 x4

24
+

83x5

6
+

70 x6

3
+

71x7

2
+

599 x8

12
+

127 x9

2
+ � � � :

(d) In general, the coefficient of xk in the composite can vary in T1(S1(x)), T2(S2(x)), . . . , Tk(Sk(x)) and then stays
the same after that. This is because the coefficient of xk in the composite depends on the coefficients of 1, x, x2,
. . .xk in Sn(x) and Tn(x), and these remain the same for n � k.

28. (a) Both p and q are geometric series. The radius of convergence of p is 1 and that of q is 1/2.
(b) Using a CAS, we get

pq = (1� x+ x2 � x3 + x4 � x5 + x6 � x7 + x8 � x9 + x10 � � � �)
(1 + 2x+ 4x2 + 8 x3 + 16x4 + 32 x5 + 64x6 + 128 x7 + 256 x8 + 512 x9 + 1024 x10 + � � �)

= 1 + x+ 3x2 + 5 x3 + 11x4 + 21 x5 + 43x6 + 85 x7 + 171 x8 + 341 x9 + 683 x10 + � � �

(c) The following table gives the ratio Cn+1=Cn for n = 0; : : : ; 9, where pq =
P

Cnx
n.

n 0 1 2 3 4 5 6 7 8 9
Cn+1=Cn 1 3.000 1.667 2.200 1.910 2.048 1.977 2.012 1.994 2.003

The ratios look like they are approaching 2 so we guess that the radius of convergence is 1/2.
(d) A reasonable conjecture is that the radius of convergence of a product is the smaller of the radii of convergence of

the two original series.

CHECK YOUR UNDERSTANDING

1. True. A geometric series, a+ ax+ ax2 + � � �, is a power series about x = 0 with all coefficients equal to a.

2. False. Writing out terms, we have
(x� 1) + (x� 2)2 + (x� 3)3 + � � � :

A power series is a sum of powers of (x� a) for constant a. In this case, the value of a changes from term to term, so it
is not a power series.

3. True. This power series has an interval of convergence centered on x = 0. If the power series converges for x = 2, the
radius of convergence is 2 or more. Thus, x = 1 is well within the interval of convergence, so the series converges at
x = 1.

4. False. This power series has an interval of convergence centered on x = 0. Knowing the power series converges for x = 1
does not tell us whether the series converges for x = 2. Since the series converges at x = 1, we know the radius of
convergence is at least 1. However, we do not know whether the interval of convergence extends as far as x = 2, so we
cannot say whether the series converges at x = 2. Since this statement is not true for all Cn, the statement is false.
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5. True. This power series has an interval of convergence centered on x = 0. If the power series does not converge for x = 1,
then the radius of convergence is less than or equal to 1. Thus, x = 2 lies outside the interval of convergence, so the series
does not converge there.

6. False. It does not tell us anything to know that bn is larger than a convergent series. For example, if an = 1=n2 and
bn = 1, then 0 � an � bn and

P
an converges, but

P
bn diverges. Since this statement is not true for all an and bn,

the statement is false.

7. True. This is one of the statements of the comparison test.

8. True. Consider the series
P

(�bn) and
P

(�an). The series
P

(�bn) converges, since
P

bn converges, and

0 � �an � �bn:
By the comparison test,

P
(�an) converges, so

P
an converges.

9. False. It is true that if
P janj converges, then we know that

P
an converges. However, knowing that

P
an converges

does not tell us that
P janj converges.

For example, if an = (�1)n�1=n, then
P

an converges by the alternating series test. However,
P janj is the

harmonic series which diverges.

10. False. For example, if an = 1=n and bn = �1=n, then jan + bnj = 0, so
P jan + bnj converges. However

P janj andP jbnj are the harmonic series, which diverge.

11. False. For example, if an = 1=n2 , then

lim
n!1

jan+1j
janj = lim

n!1

1=(n+ 1)2

1=n2
= lim

n!1

n2

(n+ 1)2
= 1:

However,
P

1=n2 converges.

12. False, since if we write out the terms of the series, using the fact that cos 0 = 1, cos � = �1, cos(2�) = 1, cos(3�) = �1,
and so on, we have

(�1)0 cos 0 + (�1)1 cos � + (�1)2 cos 2� + (�1)3 cos 3� + � � �
= (1)(1) + (�1)(�1) + (1)(1) + (�1)(�1) + � � �
= 1 + 1 + 1 + 1 + � � � :

This is not an alternating series.

13. True. Writing out the terms of this series, we have

(1 + (�1)1) + (1 + (�1)2) + (1 + (�1)3) + (1 + (�1)4) + � � �
= (1� 1) + (1 + 1) + (1� 1) + (1 + 1) + � � �
= 0 + 2 + 0 + 2 + � � � :

14. False. This is an alternating series, but since the terms do not go to zero, it does not converge.

15. False. The terms in the series do not go to zero:

2(�1)
1

+ 2(�1)
2

+ 2(�1)
3

+ 2(�1)
4

+ 2(�1)
5

+ � � � = 2�1 + 21 + 2�1 + 21 + 2�1 + � � �
= 1=2 + 2 + 1=2 + 2 + 1=2 + � � � :

16. False. For example, if an = (�1)n�1=n, then
P

an converges by the alternating series test. But (�1)nan = (�1)n(�1)n�1=n =
(�1)2n�1=n = �1=n. Thus,

P
(�1)nan is the negative of the harmonic series and does not converge.

17. True. Let cn = (�1)njanj. Then jcnj = janj so
P jcnj converges, and therefore

P
cn =

P
(�1)njanj converges.

18. True. Since the series is alternating, Theorem 9.8 gives the error bound. Summing the first 100 terms gives S100, and if
the true sum is S,

jS � S100j < a101 =
1

101
< 0:01:

19. True. The radius of convergence, R, is given by lim
n!1

jCn+1j=jCnj = 1=R, if this limit exists, and since these series have

the same coefficients, Cn, the radii of convergence are the same.
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20. False. Two series can have the same radius of convergence without having the same coefficients. For example,
P

xn andP
nxn both have radius of convergence of 1:

lim
n!1

Cn+1

Cn
= lim

n!1

1

1
= 1 and lim

n!1

Bn+1

Bn
= lim

n!1

n+ 1

n
= 1:

21. False. Consider the power series

(x� 1)� (x� 1)2

2
+

(x� 1)3

3
+ � � � + (�1)n�1 (x� 1)n

n
+ � � � ;

whose interval of convergence is 0 < x � 2. This series converges at one endpoint, x = 2, but not at the other, x = 0.

22. True. If the terms do not tend to zero, the partial sums do not tend to a limit. For example, if the terms are all greater than
0:1, the partial sums will grow without bound.

23. False. Consider the series
1X
n=1

1=n. This series does not converge, but 1=n! 0 as n!1.

24. False. If an = bn = 1=n, then
X

an and
X

bn do not converge. However, anbn = 1=n2 , so
X

anbn does converge.

25. False. If anbn = 1=n2 and an = bn = 1=n, then
X

anbn converges, but
X

an and
X

bn do not converge.

PROJECTS FOR CHAPTER NINE

1. (a) (i) p2

(ii) There are two ways to do this. One way is to compute your opponent’s probability of winning two in
a row, which is (1� p)2. Then the probability that neither of you win the next points is:

1� (Probability you win next two + Probability opponent wins next two)

= 1� (p2 + (1� p)2)

= 1� (p2 + 1� 2p+ p2)

= 2p2 � 2p

= 2p(1� p):

The other way to compute this is to observe either you win the first point and lose the second or vice
versa. Both have probability p(1� p), so the probability you split the points is 2p(1� p).

(iii)

Probability = (Probability of splitting next two) � (Probability of winning two after that)

= 2p(1� p)p2

(iv)

Probability = (Probability of winning next two) + (Probability of splitting next two,

winning two after that)

= p2 + 2p(1� p)p2

(v) The probability is:

w = (Probability of winning first two)

+ (Probability of splitting first two)�(Probability of winning next two)

+ (Prob. of split. first two)�(Prob. of split. next two)�(Prob. of winning next two)

+ � � �

= p2 + 2p(1� p)p2 + (2p(1� p))
2
p2 + � � � :
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This is an infinite geometric series with a first term of p2 and a ratio of 2p(1 � p). Therefore the
probability of winning is

w =
p2

1� 2p(1� p)
:

(vi) For p = 0:5, w = (0:5)2

1�2(0:5)(1�(0:5)) = 0:5. This is what we would expect. If you and your opponent
are equally likely to score the next point, you and your opponent are equally likely to win the next
game.

For p = 0:6, w = (0:6)2

1�2(0:6)(0:4) = 0:69. Here your probability of winning the next point has been
magnified to a probability 0.69 of winning the game. Thus it gives the better player an advantage to
have to win by two points, rather than the “sudden death” of winning by just one point. This makes
sense: when you have to win by two, the stronger player always gets a second chance to overcome the
weaker player’s winning the first point on a “fluke.”

For p = 0:7, w = (0:7)2

1�2(0:7)(0:3) = 0:84. Again, the stronger player’s probability of winning is
magnified.

For p = 0:4, w = (0:4)2

1�2(0:4)(0:6) = 0:31. We already computed that for p = 0:6, w = 0:69. Thus
the value for w when p = 0:4, should be the same as the probability of your opponent winning for
p = 0:6, namely 1� 0:69 = 0:31.

(b) (i)
S = (Prob. you score first point)

+(Prob. you lose first point, your opponent loses the next,

you win the next)

+(Prob. you lose a point, opponent loses, you lose,

opponent loses, you win)

+ � � �

= (Prob. you score first point)

+(Prob. you lose)�(Prob. opponent loses)�(Prob. you win)

+(Prob. you lose)�(Prob. opponent loses)�(Prob. you lose)

�(Prob. opponent loses)�(Prob. you win)+ � � �

= p+ (1� p)(1� q)p+ ((1� p)(1� q))
2
p+ � � �

=
p

1� (1� p)(1� q)

(ii) SinceS is your probability of winning the next point, we can use the formula computed in part (v) of (a)
for winning two points in a row, thereby winning the game:

w =
S2

1� 2S(1� S)
:

� When p = 0:5 and q = 0:5,

S =
0:5

1� (0:5)(0:5)
= 0:67:

Therefore

w =
S2

1� 2S(1� S)
=

(0:67)2

1� 2(0:67)(1� 0:67)
= 0:80:

� When p = 0:6 and q = 0:5,

S =
0:6

1� (0:4)(0:5)
= 0:75 and w =

(0:75)2

1� 2(0:75)(1� 0:75)
= 0:9:
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2. (a) Let k by the relative rate of decay, per minute, of quinine. Since quinine’s half-life is 11:5 hours, we have

1

2
= e�k(11:5)(60);

so

k =
ln 2

(11:5)(60)
� 0:001:

Hence, k = 0:1%/min.
(b) Just prior to 8 am of the first day the patient has no quinine in her body. Assuming the drug mixes rapidly in

the patient’s body, she has about 50=70 � 0:714 mg/kg of the drug soon after 8 am. Suppose we represent
the concentration of quinine in the patient (in mg/kg) by x and represent time since 8 am (in minutes) by
t. Then

x = Ae�0:001t;

where A is the initial concentration and k = �0:001 is the rate at which quinine is metabolized per minute.
There are 24 � 60 = 1440 minutes in a day. On the first day, the patient begins with 0:714 mg/kg in her
system, so just before 8 am of the second day the patient’s system holds

0:714e�0:001�1440 � 0:169 mg/kg.

After the patient’s second dose of quinine, her system contains 0:714 + 0:169 = 0:883 mg/kg of quinine.
(c) By continuing in a similar manner, we see that just prior to 8 am on the third day, she has 0:883e�0:001�1440 �

0:209 mg/kg; just after 8 am, she has 0:209 + 0:714 = 0:923 mg/kg. Just prior to 8 am on the fourth day,
she has 0:923e�0:001�1440 � 0:218 mg/kg; just after 8 am, she has 0:228+ 0:714 = 0:932 mg/kg. We can
keep going with these calculations: just prior to 8 am on the fifth day, the concentration is 0:221 mg/kg;
on the sixth day, it is 0:222 mg/kg; on the seventh day, it is 0:222 mg/kg, and so on forever.

We find a formula for the concentration just after the n th dose as follows. The last dose contributes
0:714 mg/kg. The previous dose contributes 0:714e�0:001(1440) mg/kg. The dose before that contributes
0:714e�0:001(2)(1440) mg/kg, and so on, back to 0:714e�0:001(n�1)(1440) mg/kg from the initial dose. So

Concentration just
after n doses

= 0:714 + 0:714e�1:44 + 0:714
�
e�1:44

�2
+ � � �+ 0:714

�
e�1:44

�n�1
:

We notice that this is a geometric series, with sum given by

Concentration just
after n doses

= 0:714

�
1� e�1:44n

1� e�1:44

�
= 0:936(1� e�1:44n):

Although the concentration of quinine does not reach an equilibrium it does fall into a steady-state
pattern which repeats over and over again. This makes sense; at some point the patient must metabolize
the daily dosage exactly. If we let n ! 1 in our formula, we have e�1:44n ! 0, which means that the
concentration just after the nth dose gets very close to 0:936. So the concentration just before the n th dose
is 0:936� 0:714 = 0:222, as we found in our calculations for the first few days.

(d)

1 2 3 4 5

0:222

0:936

0:714

t

x

Figure 9.6

If we keep setting the clock back to 0 minutes each day at 8 am, then we have that at t = 0 each day,
the concentration (starting on the fifth day or so) is 0:936 mg/kg. As the day progresses, we have

x = 0:936e�0:001�t:
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(e) The average concentration of quinine in the patient is given by the integral of the concentration over a day,
divided by the time in a day:

Average concentration =
1

1440

Z 1440

0

x dt =
1

1440

Z 1440

0

0:936e�0:001tdt

=
0:936

1440

�
�e�0:001t

0:001

� ����1440
0

=
0:936

1:44
(1� e�1:44)

� 0:496 mg/kg.

(f) Since the average concentration is 0:496 mg/kg and the minimum effective average concentration is 0:4
mg/kg, this treatment is effective. It is also safe—the highest concentration (0:936 mg/kg, achieved shortly
after 8 am) is less than the toxic concentration of 3:0 mg/kg.

(g) Each dose of 25 mg corresponds to 25=70 = 0:357 mg/kg. Let x s be the steady-state concentration just
before each 0:357 mg/kg dose. Then xs +0:357 will be the concentration just after the dose. Since we are
in a steady-state, this concentration decays to exactly xs just before the next dose. So

xs = (xs + 0:357)e�0:001(12)(60):

This means

xs =
0:357e�0:001(12)(60)

1� e�0:001(12)(60)
� 0:339 mg/kg;

so xs + 0:357 = 0:696 mg/kg is the concentration just after each dose. At t minutes after a dose, for
0 � t � (12)(60), there is a steady-state concentration of

x = 0:696e�0:001t mg/kg:

This means

Average concentration =
1

720

Z 720

0

x dt �
1

720

Z 720

0

0:696e�0:001tdt

=
0:696

720

�
�e�0:001t

0:001

� ����720
0

=
0:696

0:72
[1� 0:487]

� 0:496 mg/kg.

This treatment is also effective and safe. The average concentration of 0:496 mg/kg is greater than 0:4
mg/kg, and the highest concentration of 0:696 mg/kg is less than 3 mg/kg.

(h) For an exponentially decaying function, the average value between two points (x 0; y0) and (x1; y1) is
(y0�y1)
(x1�x0)r

, where r is the relative rate of decay and A0 is the initial concentration. The reason is as follows.

Average =
1

x1 � x0

Z x1

x0

A0e
�rtdt

=
A0

x1 � x0

�
e�rt

r

� ����x1
x0

=
y0 � y1

(x1 � x0) � r

(i) Since a steady state has been reached, y0 is the concentration right after a dose and y1 is the concentration
just prior to a dose. Thus, y0 � y1 represents the increase in concentration from each dose. Furthermore,
x1 � x0 is the time between doses. When we go to the new protocol, we halve both the numerator and
the denominator of the equation for the average concentration, and so the average remains unchanged.
Similarly, if we were to double the dose to 100 mg and give it every 48 hours we would simply be doubling
both the numerator and the denominator; again the average concentration would not change.

(j) We want the final concentration to be 10�10 kg/kg = 10�4 mg/kg. We therefore need to solve for t in
10�4 = 0:883 � e�0:001�t. Doing so yields t � 9086 min � 6:3 days.


