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CHAPTER NINE

Solutions for Section 9.1

Exercises
1. Yes,a =1,ratio= —1/2.

2. No. Ratio between successive terms is not constant: ﬁ =0.66..., while % =0.75.

1/2 1/3
3. Yes,a = 5, ratio= —2.
4. Yes,a = 2,ratio=1/2.
. . . 22> 3z 3
5. No. Ratio between successive termsis not constant: — = 2z, while 502 = Em'
xr xr
6. Yes a = y?, ratio = y.
7. Yes,a = 1, ratio= —zx.
8. Yes a = 1, ratio = —y°.
. . . 622 92 3
9. No. Ratio between successive terms is not constant: 3, = 2z, while 6.2 = 52'
4 z
10. Yes, a = 1, ratio = 2z.
2
11 sum= 2L |y <1
1-y
1 1
12. Sum= = — 1
= (o) 142 1<
1
=)~ 1+ 50 [yl <
1
14. Sum = 7 2Z,|z| <1/2
1 1 1 1 - 1\" o
15 241 -4+ —- 4+ —- —... = -2)[—= metri i
5 + 2+4 8+16 Z:O( )( 2),ageoetcsereﬁ
Leta:—2andx:—%.Then
= 1\ a -2 4
(=2) (__) - - —
; 2 11—z 1—(—5) 3
3,.3.3 3 1 1 3(1—41r) 3(2"-1)
16. Sty =31+ ) = =
3+2+4+8 +210 3(+2+ +210) 1—% 210

17. Using the formulafor the sum of an infinite geometric series,

S =0 @ = () (5 () ) =i

18. Using the formulafor the sum of afinite geometric series,

B0 (o))" Q) (103 () (0)") - O 272

n=
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Problems

19. Since the amount of ampicillin excreted during the time interval between tablets is 250 mg, we have

Amount of ampicillin excreted = Original quantity — Final quantity
250 = @ — (0.04)Q.

Solving for @ gives, as before,
250

Q

20. (a) The amount of atenolol in the blood is given by Q(¢) = Qoe™**, where Qo = Q(0) and k is a constant. Since the
half-lifeis 6.3 hours,

1 63k _ 1.1
2—6 , k= 6.3ln2~0.11.

After 24 hours
Q — Qoe—k(24) ~ Q06—0.11(24) ~ QO(OO?)

Thus, the percentage of the atenolol that remains after 24 hours ~ 7%.
(b)

Qo = 50

Q1 = 50 + 50(0.07)

Q> = 50 + 50(0.07) + 50(0.07)>

Q3 = 50 + 50(0.07) 4 50(0.07)* + 50(0.07)*

_ n+1
Qn = 50 + 50(0.07) + 50(0.07)% + - - - + 50(0.07)" = 203 = (©07)"7)

1-10.07
©

P = 50(0.07)

P, = 50(0.07) + 50(0.07)”

P3 = 50(0.07) + 50(0.07)% 4 50(0.07)>

Py = 50(0.07) + 50(0.07)* 4 50(0.07)* + 50(0.07)*

P, = 50(0.07) + 50(0.07) + 50(0.07)® + - - - 4+ 50(0.07)"
_ 0.07(50)(1 — (0.07)")

= 50(0.07) (1 + (0.07) + (0.07)* +--- + (0.07)" ") 1-0.07

21. (a)
P =0

P> = 250(0.04)
Ps = 250(0.04) + 250(0.04)*
P, = 250(0.04) + 250(0.04)* + 250(0.04)>

P, = 250(0.04) 4 250(0.04)* + 250(0.04)® + - - - + 250(0.04)" !

0.04(1 — (0.04)"™ 1)

(b) P, =250(0.04) (1+ (0.04) + (0.04)” + (0.04)> + - - - + (0.04)" %) = 250 oo
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(©
P = lim P,

n— 00

o 0.04(1 — (0.04)" 1)

= Jim 250 1-0.04
(250)(0.04)

= = 0.04Q =~ 10.42

0.96 @

Thus, lim P, = 10.42 and lim @, = 260.42. We would expect these limits to differ because one is right

n—oo n—oo
before taking a tablet, one is right after. We would expect the difference between them to be 250 mg, the amount of
ampicillin in one tablet.

22. q (quantity, mg)

Qo = 250

125

t (time, days)

23. (a) Let h, bethe height of the n*® bounce after the ball hits the floor for the n®® time. Then from Figure 9.1,
ho = height before first bounce = 10 feet,
h1 = height after first bounce = 10 (2) feet,

2
h»> = height after second bounce = 10 (%) feet.

Generalizing gives

Figure 9.1

(b) When the ball hits the floor for the first time, the total distance it has traveled isjust D; = 10 feet. (Notice that this
isthe same as ho = 10.) Then the ball bounces back to aheight of A1 = 10 (2) , comes down and hits the floor for
the second time. See Figure 9.1. Thetotal distance it hastraveled is

Dg:h0+2h1:10+2~10(§):25feet.

2
Then the ball bounces back to a height of hy = 10 (%) , comes down and hits the floor for the third time. It has
traveled

2 2
Dg:h0+2h1+2h2:10+2-10(g)+2~10(Z) :25+2-10(Z) = 36.25 feet.
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Similarly,
D4 = ho + 2h1 + 2hs + 2hs3
=10+2-10 (é) +2-10 (§)2+2-10 (§)3
- 4 4 4
3 3
=36.25+2-10 (Z)
=~ 44.69 feet.
(c) When the ball hits the floor for the n*® time, its last bounce was of height ,,_1. Thus, by the method used in part

(b), we get

D, = ho+ 2h1 + 2hy +2h3 + -+ 4+ 2hp_1

3 3 2 3 3 3 n—1
_10+?'10(Z)+2'10(Z) +2'10(Z) +"'+2'10<Z)

finite geometric series

Sz (3) (1 (3)+ (3) + -+ (3) )
(

24. (a) The acceleration of gravity is 32 ft/sec’ so acceleration = 32 and velocity v = 32t + C. Since the ball is dropped,
itsinitial velocity is0 so v = 32t. Thus the position is s = 16t> + C. Calling the initial position s = 0, we have

s = 6t. The distancetraveled ish so h = 16¢. Solving for ¢t weget t = i\/ﬁ
(b) The first drop from 10 feet takes ++/10 seconds. The first full bounce (to 10 - (2) feet) takes 1/10 - (2) seconds

to rise, therefore the same time to come down. Thus, the full bounce, up and down, takes 2()4/10 - () seconds.
3

. 2 n
The next full bounce takes 2(1)10 - (2)” = 2(%)@( %) seconds. The n™ bounce takes 2(3)v/10 ( Z)
seconds. Therefore the
Total amount of time

1 2 3 2 3 ’ 2 3 ’

J

~~

Geometric serieswitha = 2v/10,/2 = 1v10y/2 andz = /2

_1 1 s 1
_4\/ﬁ+2\/ﬁ\/;<l_m> seconds.

25. (a)
Total amount of money deposited = 100 + 92 + 84.64 + - - -
100 + 100(0.92) + 100(0.92)* + - - -
100

1092 50 dollars

(b) Credit multiplier = 1250/100 = 12.50
The 12.50 is the factor by which the bank has increased its deposits, from $100 to $1250.
26. The amount of additional income generated directly by people spending their extra money is $100(0.8) = $80 million.
This additional money in turn is spent, generating another ($100(0.8)) (0.8) = $100(0.8)> million. This continues
indefinitely, resulting in

~100(0.8)

Total additional income = 100(0.8) + 100(0.8)* + 100(0.8)> + - -- = T—08 = $400 million
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Solutions for Section 9.2
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The total of the spending and respending of the additional income is given by the series: Total additional income =
100(0.9) + 100(0.9) + 100(0.9)> + - - - = 29209 — g900 million.
Notice the large effect of changing the assumption about the fraction of money spent has: the additional spending more

than doubles.

Exercises

1. Since lim z" =0if |z] < 1and|0.2] < 1, wehave lim (0.2)" = 0.
n— 00 n—r 00

2. Since 2™ increases without bound as n increases, the limit does not exist.

3. Since lim z" =0if |[z| <1and|— 0.3 < 1,wehave lim (—0.3)" = 0.
n—oo n—oo

4. Since lim z" = 0if |z| < 1and|e”2| < 1,wehave lim (e ") = lim (e )" = 0,90 lim (34+e >") = 3+0 = 3.
n— 00 n— 00 n—r 00 n— 00

5. Since S, = cos(mn) = lif nisevenand S,, = cos(wn) = —1if n isodd, the values of S,, oscillate between 1 and —1,

IS

10.

so the limit does not exist.
Since lim z" = 0if |z| < 1 and ‘2‘ < 1,wehave lim (2—) = lim (z) =0.
n— oo 3 n—oo \ 3" n—oo \ 3
As n increases, the term 4n is much larger than 3 and 7n is much larger than 5. Thus dividing the numerator and
denominator by n and using the fact that lim 1/n = 0, we have

n— 00

3+4n . (3/n)+4 4

I - =2
noo BTN noee (B3/n) +7 7

Asn increases, the term 2n is much larger in magnitude than (—1)"5 and the term 4n is much larger in magnitude than
(—1)™3. Thus dividing the numerator and denominator by n and using the fact that lim 1/n = 0, we have

n— 00

2 1"
i 20D

24+ (-1)"5/n 1

We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding
improper integral / %dm converges or diverges:

1
b

—lim(_—l—f-l)_l
1_b%o 22 2/ 2

o0 oo
Since the integral /1 %dm converges, we conclude from the integral test that the seriesz % converges.

n=1

0o b
1 . 1 .o —1
/ —dz = lim —dzr = lim —
. T b—oo [, @ b—oo 2T

We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral / %dm converges or diverges:
.z +1

ot T b T 1 b
dr = i dr = lim =In(z®+1
/1 71 b;ff:ofl 1= i g e )

= lim (%ln(bQ—f-l)— %1112) = oo.

b—oo

diverges.

00 oo
Since the integral / szde diverges, we conclude from the integral test that the series Z nZLH
1

n=1
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11. We usetheintegral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral / ze ™ da converges or diverges:
0

o 2 b 2 1 2
ze ¥ dr = lim rze “dr= lim ——e *
0 b—oo 0 b— o0

o) (oo}
2 2
Since the integral / ze “ dx converges, we conclude from the integral test that theseriesg ne " CONVerges.
0

n=0

12. We usethe integral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral / %dm converges or diverges:
, «(lnx)

= lim (__1 L)_L
T p5eo\lnb  In2/ 7 In2

2

oo b
1 -1
————dz = 1li ———dz = lim —
L z(Inz)? T , (lnz)? T e e

. _ * . e 1
Since the integral / ——— dz converges, we conclude from the integral test that the series E ——— CONverges.
, «(lnx) —~ n(lnn

)

Problems

13.

14.
15.

16.

17.

18.

- " . — 1. , o
The serlesz (g) is a convergent geometric series, but Z - is the divergent harmonic series.

n=1 n=1

— (3", 1 —((3\" 1 — (3)" _ w1
If Z ((Z) + ;) converged, then Z ((Z) + ;) — Z (Z) = Z - would converge by Theorem 9.2.
n=1 n=1 n=1

Thereforez ((%) + %) diverges.
n=1

Writing a, = n/(n + 1), we havelim, .~ a,, = 1 s0 the series diverges by Property 3 of Theorem 9.2.

Using the integral test, we compare the series with

> 3 Y A
dr = lim dx =3n|z + 2|
o T+ 2 b—oo [ T+ 2

Sinceln(b + 2) isunbounded asb — oo, the integral diverges and therefore so does the series.

b

0

The series can be written as

S n+2" =/ 1 1
; n2m :;(2_"_’_;)

o /1 1 1 1 . .
If this series converges, then 2;1 (27 + ﬁ) — Z:l o = Z:l - would converge by Theorem 9.2. Since this is the

n+2"

harmonic series, which diverges, then the series Z

diverges.
n
n=1
We use the integral test and cal culate the corresponding improper integral, f 1°° 3/(2z — 1)*du:
¥ 3de ' 8dr . =32 |"_ . =32 L3\ 3
L Qe—1) Tioe ) 20—1)2 T boe Rz —1)|  boee \(20-1) T 2) 2

Since the integral converges, the series Z (Zn% converges.
n=1

1)
We use the integral test and calculate the corresponding improper integral, f 0°° 2/V2+zde:

oo b b
2 dr = lim 2dr_ _ lim 4(2 + z)'/?
0 24+ b—oo [ 24+ b— o0

= lim 4 ((2+b)"/* —2'/%).
Since the limit does not exist (it is co), the integral diverges, so the seriesz 2+ diverges.
n
=1

o b—oo
V2
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19. Leta, = (Inn)/nand f(z) = (Inz)/x. We use the integral test and consider the improper integral

bl
/ Inz,
¢ T

"Iz 1 >
[ 7d1’ = E(lnx)z

and In R grows without bound as R — oo, the integral diverges. Therefore, the integral test tells us that the series,

Since

r_1 2 2
¢ =3 ((lnR) —(Inc) ),

Z lnTn aso diverges.
n=1

20. We usetheintegral test and calculate the corresponding improper integral, f;o(m +1)/(z® + 2z + 2) da:

b
= lim 1(1n(b2 +2b+2) —In17).
b—oo 2

0o b
/ _ Tl g~ fim Ldm:liméln|x2+2x+z|
3 3

2+ 2x + 2 b—oo f, 2+ 21 + 2 b— o0

diverges.

o)
Since the limit does not exist (it is co), the integral diverges, so the series E #ZH
n=3

21. Using left-hand sums for theintegral of f(z) = 1/(4x — 3) over theinterval 1 < z < n + 1 with uniform subdivisions
of length 1 gives alower bound on the partial sum:

n+1

11 1 et 1 1
Sn:1+g+—+~~~+—3>/ du —In(4z — 3) :Zln(4n+1).
1

9 dn — 4r —3 4

1

Sinceln(4n + 1) increases without bound asn — oo, the partial sums of the series are unbounded. Thus, thisis not
aconvergent series.

22. Using right-hand sums for theintegral of f(z) = z~%/2 over theinterval 1 < z < n with uniform subdivisions of length
1 gives:

1 1 " —3/2 —1/2
m+"'+m</ll' dr = —2(n —1).
Adding 1 to both sides gives an upper bound on the partial sum
_ 1 1 —1/2
Sn—1+m+"'+m<1—2(n —]_)

Thus, asn — oo, the sequence of partial sumsisbounded. Each successive partial sum is obtained from the previous one
by adding one more term in the series. Since al the terms are positive, the sequence of partial sums isincreasing. Hence
the series converges.

23. (a) WecompareZl/np with the integral / (1/z")dz. For p # 1, we have
1

n=1
o0 b —p+1 [P —ptl _
/ idacz lim idac: lim 1‘ = lim bil
1

P b—oo [, TP b—oo —p+1 l_baoo -p+1

If p > 1, the power of b is negative, so thislimit exists. Thusthe integral converges, so the series converges.
(b) If p < 1, thenthe power of b is positive and the limit does not exist. Thus, theintegral diverges, so the seriesdiverges.
We have to look at the case p = 1 separately, since the form of the antiderivative is different in that case. If

p:l,wecomparez 1/nwith/ (1/z)dz. Since
n=1 1

oo b b

1 . 1 . .

/ —dz = lim =dz = lim In|z|| = lim Inb,
1 x b— oo 1 x b—oco 1 b— 0o

and since blim In b does not exist, the integral diverges, so the series diverges. Combining these results shows that
— 00

Z 1/n? divergesif p < 1.

n=1
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25.

26.

27.

28.

29.

30.
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i 3" : 5 _ Z (Z)n + i 4% asum of two geometric series.
n=0

4
n=0 n=0
= (3)" 1
— = =4

n=0

=\ 5 5 20
> rTiI-3

45 20 32
o TP TR

8

n=0
We want to define lim S, = L sothat S, isascloseto L aswe please for al sufficiently large n. Thus, the definition

n—oo
says that for any positive ¢, thereisavalue N such that

|S. — L| < e whenever n > N.

Let S, be the n'™™ partial sum for Y a,, and let T,, be the n'® partial sum for " b,,. Then the n*" partial sums for
S (an+br),d (an—bn),and Y kan are Sp + Ty, Sn — T, and kS, respectively. To show that these series converge,
we have to show that the limits of their partial sums exist. By the properties of limits,

lim (S, +T,) = lim S, + lim T,

n— 0o n— 0o n— 0o
lim (S, —T,) = lim S, — lim T,
n—o00 n—o00 n—00
lim kS, =k lim S,.
n—o0 n— o0

This proves that the limits of the partial sums exist, so the series converge.

Let S, bethe n-th partial sumfor > a,, and let T, bethe n-th partial sum for  b,,. Suppose that Sy = T'v + k. Since
an, = b, forn > N,wehave S, =T, + k forn > N. Henceif S,, converges to alimit, so does T,,, and vice versa.
Wehave a,, = Sp — Sp—1.1f ) a, converges, then S = limy, o S» exists. Hence lim, ;o0 Sy—1 exists and is equal

to S aso. Thus
lim a, = lim (S, — Sp—1) = lim S, — lim S,-1 =S-S5 =0.

n—oo n—oo n—oo n—oo
From Property 1in Theorem 9.2, we know that if ) a, converges, then so does > ka...

Now suppose that ) a, divergesand > ka, converges for k # 0. Thus using Property 1 and replacing > a, by
> kan, weknow that the following series converges:

Z %(kan) = Zan.

Thus, we have arrived at a contradiction, which means our original assumption, that Z ka,, converged, must be wrong.

n=1

(a) Show that the sum of each group of fractionsis more than 1/2.

(b) Explain why this shows that the harmonic series does not converge.

(a) Noticethat
111 1 2 1
3 474 474 2
11,1 11 111 41
5 6 7 878 8 8 8 8 2
1ot o1t 111 81
9 10 16~ 16 16 16 16 2

In the same way, we can see that the sum of the fractions in each grouping is greater than 1/2.
(b) Sincethe sum of thefirst n groupsis greater than n/2, it follows that the harmonic series does not converge.
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100000
1 .
31. We want to estimate Z — using left and right Riemann sum approximations to f(z) = 1/z ontheinterval 1 <

x < 100,000. Figure9. 2 shows aleft Riemann sum approximation with 99,999 terms. Since f(x) is decreasing, the left
Riemann sum overestimates the area under the curve. Figure 9.2 shows that the first term in the sum is f(1) - 1 and the
last is £(99,999) - 1, so we have

100000
/ ~dz < LHS = (1) 14 f(2) - 1+~ + £(99,999) - 1

Since f(z) = 1/, the left Riemann sum is
99999

1 1
LHS == -14+=-1+4--
1 +2 + +99999 Zk’

99999

100900
—d
/1 x<zk

Since we want the sum to go k£ = 100,000 rather than k£ = 99,999, we add 1/100,000 to both sides:

99999 100000

100000 4
— d
/1 100 000 Z k' 100,000 000 Z k

The left Riemann sum has therefore given us an underestimate for our sum. We now use the right Riemann sum in
Figure 9.3 to get an overestimate for our sum.

[ [
\ \

[ r

\ \

\ ‘ \

1 1 x2 - 100,000 1 71 z2 - 100,000

Figure 9.2 Figure 9.3

The right Riemann sum again has 99,999 terms, but this time the sum underestimates the area under the curve.
Figure 9.3 shows that the first rectangle has area f(2) - 1 and thelast £(100,000) - 1, so we have

100000
RHS:f(2)-1+f(3)-1+~~~+f(100,000)-1</ —da.

Since f(z) = 1/, theright Riemann sumis

?5"I>--l

1 1 1 =
RHS = 3 14 3 14+ ifﬁitﬁij. ;g:

100000
- <ZU/P —-dz.

Sincewewant thesumto startat k = 1, we add 1 to both sides:
100000
d/r ££11$.
X

eyt

IOODOO

100900

K‘|P4

M
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32.

33.
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Putting these under- and overestimates together, we have

100,000

100000 1 100000 1
~d 1 = da.
/1 ST 000 Z S +/ P

100000
Since/ —dxr =1n100,000 —In1 = 11.513, we have
T
1

100000

1
11513 < ) - < 12513
k=1
100,000 1
Therefore we have ; T ~ 12.

Using aright-hand sum, we have

3 4
If acomputer could add a million terms in one second, then it could add

1 1 1 1 " dx
44+ 44+ < — =Inn.
2 n .z

605 L 6o Min o, NOUM a5 IS iflion EMS
min hour day
terms per year. Thus,
11 1 6
1+§+§---+E <1l+4+Inn=1+In(60-60-24-365-10") =~ 32.082 < 33.

So the sum after one year is about 32.

(oo}

(@) Let NV aninteger with N > ¢. Consider the series Z a;. The partia sums of this series areincreasing because all

i=N+1
the termsin the series are positive. We show the partial sums are bounded using the right-hand sum in Figure 9.4. We
see that for each positive integer k

N+k

f(N+1)+f(N+2)+---+f(N+k)g/ f(z) d.

N

Since f(n) = a, fordl n,and c < N, we have
N+k
an+1+an+2 + -+ antr < / f(z)dz.

Since f(z) is a positive function fN+k flz)de < f: f(z)dz for adl b > N + k. Since f is positive and
[ () dz is convergent, f (z)dx < [ f(x)dz, s0 we have

aN+1 tany2 + -+ anNs S/ f(l‘)dl‘ for al k.

oo

Thus, the partial sums of the series Z a; are all bounded by the same number, so this series converges. Now use
i=N+1

Theorem 9.2, property 2, to conclude that Z a; Converges.
=1
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/(@) f(@)
Area = f(N)
Area = f(N + 1) / Area = f(N +1)
Area = f(N +2) Area = f(N +2)
Area = f(N + 3) ¥
\
I T L T
¢ N N+1 c N N+1
Figure 9.4 Figure 9.5

(b) We now suppose / f(z) dz diverges. In Figure 9.5 we see that for each positive integer &

Netk+1
/ f@)de < f(N)+ f(N+1)+---+ f(N + k).

N

Since f(n) = a, for dl n, we have

N+4k+1
/ f(m)deaN +any1+ -+ antk-
N

Since f(z) isdefined for al = > ¢, if [* f(z) dx isdivergent, thenf f(z)dx isdivergent. Soask — oo, the the

N+4k+1

integral f f(z) dz diverges, so the partial sums of the series Z a; diverge. Thus, the series Z a; diverges.

More precisely, suppose the series converged. Then the partial sums would be bounded. (The partl aI sumswould
be less than the sum of the series, since al the termsin the series are positive.) But that would imply that the integral
converged, by Theorem 9.1 on Convergence of Increasing Bounded Sequences. This contradicts the assumption that
[ f(x)dx isdivergent.

Solutions for Section 9.3

Exercises
1 Leta, =1/(n® +2).Sincen® + 2 > n?, wehave1/(n* +2) < 1/n?, 0
0<an < iz
n
The serlesz — converges, so the comparison test tells us that the serleﬁz also converges.
n=1 n=1
2. Leta, =1/(n—3),forn > 4.Sincen — 3 < n,wehavel/(n —3) > 1/n,s0
1
an > —.
n

=1 . e 1 .
The harmonic series Z - diverges, so the comparison test tells us that the series Z =3 also diverges.
n=4 n=4
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Leta, = e "/n?. Sincee™™ < 1,forn > 1,Wehave€—2 < %,so
n n
1
0< an, < —-
n
o0 (oo}
. 1 . . e "
The serlesz — converges, so the comparison test tells us that the serlesz —- also converges.
n n
n=1 n=1
Since n® > n?, we have 1/n® < 1/n?%. Hence the series converges by comparison with 1/n%, which we showed
converges on page 415 of the text.
Sincelnn < nforn > 2, wehavel/Ilnn > 1/n, so the series diverges by comparison with the harmonic series,
> 1/n.
Leta, =1/(3" +1).Since3™ +1 > 3", wehavel/(3" +1) < 1/3" = (%) » SO
1 n
(oo} o)
Thus we can compare the seriesz ! with the geometric seriesz (l)n This geometric series converges since
3" +1 3/
n=1 n=1
= 1
1 1 he comparison I h nv .
|1/3] < 1, so the comparison test tellsus t atz;l T also converges
Leta, = 1/(n* +e™). Sincen® + e™ > n*, we have
11
n4 + en n4 ’
so
1
0 <anp < F
Since the seriesi = converges, the comparison test tells us that the seriesi _t also converges.
n? nt +en
n=1 n=1
a(n+1) (n+1)(1) . (n+1) 1 (1)"
Leta, =2 = — ). Since land — = (=) ,wehave
an m+2)  \n+2/)\2n nt2) o~ \2
1 n
0 < an < (5) s
= n(n+1) = /1\" .
so that we can comparethesen&Z 2 with the convergent geometric senesz (—) . The comparison test
‘ (n+2) « 2
= n=
tells us that
(oo}
Z 9—n (" + 1)
(n+2)
n=1
also converges.
. 1 1
Letan, = n®/(n* +1). Sincen* + 1 > n“,weha\/en4—+1 <
oo 1
"Tpt41 T pt T
therefore
n
(oo} o) 2
Since the seriesz = converges, the comparison test tells us that the seriesz o converges aso
n? ' nt+1 ’

n=1 n=1
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Leta, = (2" +1)/(n2" —1).Sincen2™ — 1 < n2" +n =n(2" + 1), we have

2" +1 2" +1 1

n2n —1 7 n2n+1)  n’

2"+ 1 with the divergent harmonic series Z l. The comparison test tells
n

Therefore, we can compare the series Z 5 1
non —

n=1 n=1

us that Z 2 also diverges.

We knOW that |sinn| < 1,s0

‘nsinn n < n 1
nd+11 = n3+1 " nd  n2
nsinn

Since Z — converges, comparison gives that Z ‘ 511

n=1

converges. Thus, by Theorem 9.5, Z o 1 converges

Sincea, = 1/(2n)!, replacingn by n + 1 giveSa,+1 = 1/(2n + 2)!. Thus
_
lans1]  (2n4+2)!  (2n)! (2n)! _ 1
lan| — 1 S (2n+2)! 2n+2)2n+1)(2n)!  (2n+2)(2n+1)’
(2n)!
S0
L= fim el L

Since L = 0, theratio test tells us that Z 1 converges

e = (o) (20, replacing by -+ 1 GVES s = ((n-+ DY /(20 +2). Ths,
((n+1)H? ‘
lant1] _ _(2n+2)! (n+1))* (2n)!
|an| (nh)? @2n+2)!  (n)?’
(2n)!

However, since (n + 1)! = (n + 1)n! and (2n + 2)! = (2n + 2)(2n + 1)(2n)!, we have

|@nt1] _ (n+1)2(n!)2(2n)! _ (n+ 1) _n+1
|an | 2n+2)2n+1)(2n)!(n)2 ~ 2n+2)2n+1)  4n+2’
” ansi] _ 1
— lim Antl] _ —.

E;‘l);' converges.

Since L < 1, theratio test tells us that Z
n=1

Sincea,, = 2"/(n® + 1), replacing n by n + 1 givesan+1 = 2" /((n + 1)® 4+ 1). Thus
2n+1
lans1|  (n+1)34+1 PAR .n3+1_ n® 41
lan| 2" T 41341 2 T T(n41)3 41
n3+1

L= lim |2l _

n— oo |an|

n

2
Since L > 1 theratio test tells us that the series Z dlverges
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Sincea, = 1/(ne™), replacing n by n + 1 giveS an+1 = 1/(n + 1)e™ . Thus

1
jansi] _ (ntDemtt _ me” ( : ) 1
lan| 1 T (n4+1ertt T \n+1/ €’
ner
Therefore
L= fim 2l 1y
n— 0o |an| e
. . — 1
Since L < 1, theratio test tells us that Z —— converges.
= ner
16. Leta, =1/(2n +1). Thenreplacingn by n + 1 giveSa,+1 = 1/(2n + 3). Since2n + 3 > 2n + 1, we have
0<a — < L _ a
T3 S a1
. : = (-1t
We also have lim,, —, o a, = 0. Therefore, the alternating series test tells us that the series Z % converges.
n
n=1
. . 1 1
17. Leta, = 1/y/n. Thenreplacing n by n+1wehavea,+1 = 1/v/n + 1. Sincev/n + 1 > /n, wehave < —,
V¥l n
. — (—1)" . :
hence a,4+1 < a,. Inaddition, lim, oo an = 0 S0 Z u converges by the alternating series test.
—~ Vv
Problems
18. The partial sumslook like: S; =1, S2 = 0.9, Ss = 0.91, S4 = 0.909, S5 = 0.9091, S¢ = 0.90909. The series appears

19.

20.

21.

22.

23.

24.

to be converging t0 0.909090 ... or 10/11.
Sincea,, = 10~* ispositive and decreasingand lim 10~" = 0, the alternating series test confirms the convergence

n—00

of the series.

The partial sumsare S; = 1, S2 = —1, S5 = 2, Si0 = =5, S11 = 6, S100 = —50, Si01 = 51, S1000 = —500,

S1001 = 501, which appear to be oscillating further and further from 0. This series does not converge.

The partial sums look like: S; = 1, S» = 0, S3 = 0.5, S4 = 0.3333, S5 = 0.375, S10 = 0.3679, S20 = 0.3679, and

higher partial sums agree with these first 4 decimal places. The series appears to be converging to about 0.3679.
Sincea, = 1/n! ispositive and decreasing and lim,, —, o, 1/n! = 0, the alternating series test confirms the conver-

gence of this series.

Thefirst few terms of the series may be written

3

T+e ' ve P +e 4.
this is a geometric series witha = 1 and z = e ' = 1/e. Since || < 1, the geometric series converges to
1 1 e

S = = = .

l—z 1—-e1! e-—1
We use the ratio test and calculate

n+1 !
lim |an+1| _ lim (01) /(TL+ 1). _ im 0.1 —

Since the limit isless than 1, the series converges.
We use theratio test and calculate

. ant] . nl/(n+1)? . n! n? . n’
lim ——— = lim ————*— = lim . =lm (n- —— .

Since the limit does not exist (it is co), the series diverges.

Thefirst few terms of the series may be written
e+62+63—+—~--=e+e-e—+—e-e2+~~~;

thisis ageometric serieswitha = e and z = e. Since |z| > 1, this geometric series diverges.
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Leta, =1/+/3n — 1. Thenreplacing n by n + 1 givesan+1 = 1/4/3(n+ 1) — 1. Since

3(n+1)—1>+v3n—1,

we have
an+1 < An.
o (_l)n—l
In addition, lim, - an, = 0 S0 the alternating seriestest tells us that the seriesz =1 converges.
n—
n=1
Since the exponential, 2™, grows faster than the power, n?, thetermsaregrowing insize. Thus, lim a, # 0. Weconclude
n—oo
that this series diverges.
Letan, = n(n + 1)/v/n3 + 2n2. Sincen® + 2n® = n’(n + 2), we have
o = nn+1)  n+1
" nyn + 2 vn+2
S0 a, grows without bound asn — oo, therefore the seriesi M diverges.
" ’ = Vn® + 202 '
Leta, = 1/4/n2(n + 2). Sincen®(n + 2) = n® + 2n> > n®, we have
Si he seri L h i ell h
ncet esenesz 2 converges, the comparison test tells us that
n=1
(oo}
>
= V/n?(n+2)
also converges.
(@) Assumethat n iseven. Then
he g = () ) e )
2 3 4 n 2 3 4 n—1 n
1.2 3-4 (n=1)-n
) . 1 1 . .
(b) Thegiven series — + — + —— + - - - isterm by term less than the series
1-2 34 5-6
IR S S SERNRUURNS NS S I
11 2.2 3-3 T12 0 22 0 33

Since this second series, 1 /n?, converges by the integral test, the first series converges.

(c) By parts (a) and (b), the sequence of partial sums for even n converges. The partial sum for odd n equals 1/n plus
the partial sum for even n — 1. Thus the partial sums for odd n approach the partial sums for even n, asn — oo.
Therefore the sequence of all partial sums converges, and hence the series converges.

The argument is false. Property 1 of Theorem 9.2 only applies to convergent series. Furthermore, since n(n + 1) > »°

= 1 . =1 .
we can compare Z:l m with the convergent series 2;1 e and deduce that it converges.

Suppose welet ¢, = (—1)"an. (We have just given the terms of the series ) " (—1)"a, anew name.) Then
len| = 1(=1)"an| = lan|.

Thus Y |cn | converges, and by Theorem 9.5,

ch = Z(—l)"an converges.
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32. (a) Sinceb, = a, if a,, ispositive or zero and b,, = 0 if a,, iSnegative, we have

0 < bn < an| for al n.
Thus, by the comparison test, > by, converges.
(b) Sincec,, = 0if a,, ispositiveor zero and ¢, = —a., if a, iSnegative, ¢, isnever negative and
0 <cn < lan| for dl n.

Thus, by the comparison test, Y ¢, converges.
(c) Theb,sarethe positivetermsin > an, and the ¢, s are the negative terms. For each n, either b,, or ¢, is0, and

an = bp, — cn.

Thus, > an = > bn — Y cn isthe difference of convergent sequences and hence converges.

Solutions for Section 9.4

Exercises
1. Yes.
2. No, because it contains negative powers of z.
3. No, each term isapower of adifferent quantity.
4. Yes. It'sapolynomial, or aseries with all coefficients beyond the 7th being zero.
5. The general term can be written as 13 52;; : Ejn Do forn > 1.
6. The general term can be written as 22 = D@ = 2)" el R D > 1.
n:
7. The general term can be written as (—1)* (2 — 1)%%/(2k)! for k > 0.
8. The general term can be written as (—1)* (z — 1)2+3/(2k)! for k > 0.
9. The general term can be written as % forn > 1.
(k +2)(z + 5)%*+3

10. The general term can be written as for k > 0.

k!
11. Thisseries may be written as
145z + 252”4 - - -

so C,, = 5". Using theratio test, with a,, = 5" z™, we have

lim lan 1] _

n— 0o |an|
Thus the radius of convergenceis R = 1/5.
12. Since C,, = n®, replacing n by n + 1 gives C,,+1 = (n + 1)3. Using the ratio test, with a,, = n32™, we have

Cn+1|
|Cnl

|an+1| — |1’||
|an|

27y (2

= |23 -

We have

li |an+1| _| |

n— oo |an|

Thus the radius of convergenceis R = 1.
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Since Cy, = (n+ 1)/(2" + n), replacing n by n + 1 gives Cp41 = (n + 2)/(2" ™! + n + 1). Using the ratio test, we
have

|an+l|_|x||Cn+l|_|m|(n+2)/(2n+l+n+1)_|m| n+2 .2”+n_|x|n+2. 2" +n
lan| |ICnl m+1)/2"+n) ~ T'ntlip4+1l n+1 0 Tn+l 20l 4pp4 1]
Since 5
im 2F2 1
and

. 2" +n 1 .. 2" +n 1
lim (7) =-lm | ——F— ) =7,
because 2" dominates n asn — oo, we have

lim 122l L

n— oo |an| 2

Thus the radius of convergenceis R = 2.
Since C,, = 2™ /n, replacing n by n + 1 gives C,,.41 = 2" /(n + 1). Using the ratio test, we have

n+1 n+1
il gy ol 20D g 21 gy (1),
|an| |Cnl 2" /n (n+1) 2 n+1
SO
lim MZZM—H

n— 00 |an|
Thus the radius of convergenceis R = 3.
Tofind R, we consider the following limit, where the coefficient of the nt" termis given by C,, = n?.

. lana] .| (n 4 1)t . n?+2n+1
lim St gy (AP T norenTo
R P B
14 (2 1/n?
= |z| lim( +(/n)+(/n)>:|x|
n—o0o 1

Thus, the radius of convergenceis R = 1.
The coefficient of the n*" termis C,, = (—1)"**/n®. Now consider theratio

n2gpn+l

(n+1)2zn

An+1
an

—|z|] a n— oco.

Thus, the radius of convergenceis R = 1.
Here the coefficient of the n™® term is C,, = (2" /n!). Now we have

_ ‘ 2/ (n + 1))z !
@ /nl)zn

2|z|
= — 0asn — oo.
n+1

An+1
an

Thus, the radius of convergence is R = oo, and the series converges for all x.
Here the coefficient of the n™® term is C,, = n/(2n + 1). Now we have

(n+1)2n+1)
= |z| = |z| asn — oco.
n(2n + 3)

An+1
an

_ ‘((n+ 1)/(2n + 3))z"**
(n/(2n + 1))a™

Thus, by the ratio test, the radius of convergenceis R = 1.
Here C,, = (2n)!/(n!)?. We have:

_ ‘(2(n+1))!/((n+1)!)291:"+1 _ (2(n+ 1) (n!)? 2|
(2n)! ((n+1)H)?
_ (2n+2)(2n + 1)|z|
= CESIE — 4|z asn — oo.

An+1
an

(2n)!/(n!)2z™

Thus, the radius of convergenceis R = 1/4.
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20. Herethe coefficient of the n*® term isC,, = (2n + 1)/n. Applying the ratio test, we consider:

ant1 | _ | (2n+5)/(n + D)e™ _|a:|2n+3- " |z|asn = oo
an | ((2n +1)/n)x" T oan+1 n+1 '
Thus, the radius of convergenceis R = 1.
21. Wewritethe seriesas
1‘3 1'5 1'7 1 xZn—l
_Z 4z 4. B L B T
Gt T S A | ’
o 2 1
e
— (=1 n—-1% .
an = (1"
Replacing n by n + 1, we have
2(n+1)—1 2n41
— (-1 nti-1_ T 7 _1n$ )
ant1 = (1) smrD=1 - V2
Thus
lans1| | (=1 x> ! . 2n—1 _ 2n—1m2
lan] | 2n+1 (=1)n—1g2n-1| " 2p 41"’
so
L= lim [0nttl _ oy 2012 o
n— 0o |an|

By the ratio test, this series convergesif L < 1, thatis, if 22 < 1,s0 R = 1.
Problems

22. (a) Thegeneral term of the seriesisz™ /n if n isodd and —z™ /n if n iseven, so C,, = (—1)""" /n, and we can use the
ratio test. We have

n . 1" 1 .

lim [on1] = |z| lim (=D /(n+ 1)) = |z| lim = |z].
Therefore the radius of convergence is R = 1. Thistells us that the power series converges for |z| < 1 and does not

(b)

converge for || > 1. Notice that the radius of convergence does not tell us what happens at the endpoints, = = +1.
The endpoints of the interval of convergence arex = +1. Atz = 1, we have the series

1 1 1

(_1)n71
1l 4+ 4.7 4.
ety gttt
Thisis an dternating series with a,, = 1/n, so by the aternating series test, it converges. At x = —1, we have the
series
1 1 1 1 1

This isthe negative of the harmonic series, so it does not converge. Therefore the right endpoint is included, and the
left endpoint isnot included in the interval of convergence, whichis —1 < z < 1.
23. Let C,, = 2™ /n. Thenreplacing n by n + 1 gives C,41 = 2" /(n + 1). Using the ratio test, we have
|ant1]

= folCtal 2 IOED g 2Ry ()
an| Wl n/n Tln4l 2 n+1)’
|an| |C| 2n/ 1 2 1
Thus
lim [an1] = 2|z|.
n— 0o |an|
The radius of convergenceis R = 1/2.

, IR N B
For z = 1/2 the series becomes the harmonic series E - which diverges.
n=1

For x = —1/2 the series becomes the alternating seri%Z (=1)

- which converges. See Example 7 on page 421
n=1
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24. The coefficient of the n*® term of the binomial power seriesis given by

o _Pe=-Dp-2)-(p-(n-1)
" n! ’

To apply the ratio test, consider

ntr| pp—1p—-2)---(p—(n—-1))(p—n)/(n+1)!
an plp—1(p—-2)-(p—(n—-1))/n!
:|$|‘Z:—T‘:|x|‘nf—l_nil s |o| asn — oo.

Thus, the radius of convergenceis R = 1.

25. The k'™ coefficientinthe series Y kCr 2" is Dy, = k-Cy. Weare given that the series > Cj.«* hasradius of convergence
R by theratio test, so

k—oo

Hence the new series has radius of convergence R.
26. Theradius of convergence of the series, R, isat least 4 but no larger than 7.

(a) Felse. Since10 > R the seriesdiverges.
(b) True. Since3 < R the series converges.
(c) False Sincel < R the series converges.
(d) Not possible to determine since the radius of convergence may be more or less than 6.

Solutions for Chapter 9 Review

Exercises

n” < l
3nz2+4 3

1 n
0 n =
<a <(3)

1. Leta, =n?/(3n® 4+ 4).Since 3n® + 4 > 3n?, we have

, SO

. = (1\" . = n? "
The geometric series (—) converges, so the comparison test tells us that the series also con-
: 3 (5)" comes : > (53)
n=1 n=1
verges.
. . . . 1 1
2. Leta, = 1/(nsin®n). Since0 < sin®n < 1, for any integer n, we have nsin® n < n, S0 ——— > E,thus
nsim-n

Ap > —.
n

2

o0 (oo}
. . 1 . . . 1 .
The harmonic series E — diverges, so the comparison test tells us that the series E - also diverges.
n nsm-n
n=1

n=1

4
n3

3. Thefirst few terms of thisseri&sz :Lnl are
n=1

3,2,1 001 2
2 9 28 126 217
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. i . 4—-n . .
Note that we cannot use the comparison test directly since a, = " s negative for n > 4. However

n3+1
>4 2 > 4
—n n—
2Tttt L

Sincen® + 1 > n®, we have

therefore

n—4 n—4 n
< 3

1
] e =3 forn > 4,

= - 1 . .
S0 we can compare the series E T; 1 — » which converges. The comparison test tells us that the series
n n

n=>5 n=>5

n3+1
n=1
also converges.
The series can be written as

OOSn +n+1 >, n n 1
2_: nd+1 _Z<3n5+1+n5+1+n5+1>'

n=1

3

2
To show that the original series converges we show that each of the series Z ST Z

nd+1'
converges. (See Property 1 of Theorem 9.2)

2 2

.Let then sincen® + 1 > n® we have
5 _+_1

Firstly, consider the seneez = —n5n+ 1’

) . . . 1 . .
so we can compare the first series with the convergent series Z el The comparison test tells us that the series

n=1
o 2
Z nS+1
n=1
. . n n
Now consider the series, .Leta, = ——, then we have
Z n®+1 “ n®+1
n=1
n 1

- < i
ns+1 " nd nt

so we can compare this series with the convergent series Z —-. The comparison test tells us that the series Z 51

n=1 n=1
converges.
Finally, = ——, then
y nd+1
! <
n®+1 ~ nd’

1

1
so we can compare this series with the convergent series Z —. The comparison test tells us that the series Z 1

n=1 n=1

also converges.
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2 [o%e}

. . > n - n 1 .
From Property 1 of Theorem 9.2, since the series E = , E = and E —— Cconverge, the series
— n°+1 — ns+1 ns+1

n=1

f:wa]gjcomer es.
nd+1 ges.

. To show that the original series converges, we show that the series E (Z) and E iz converge. The first of these
n
n=1

n=1
. o . =1 o
is aconvergent geometric series, since |3/4| < 1. Theintegral test tells us that series Z e converges by comparing it
n=1

with the convergent integral fol 1/2%dx. Theorem 9.2 then tells us that the seriesz (% + %) also converges.
n=1

. The series can be written as

243" =/2 3" - \" /3\"
= — 4+ ) = 2(= e )
Y5 (mE)-206) +6))
=1\ o ) o =3\
Theserlesz (5) is a geometric series which converges because |z | < 1. Likewise, the geometric senesz (5)
n=0 n=0

2+ 3"
5n

converges because | % | < 1. Since both series converge, Property 1 of Theorem 9.2 tellsusthat the serieﬁz aso

n=0

converges.

7. Writing a, = 1/(2 + sinn), we have lim, _, « a, # 0 S0 the series diverges by Property 3 of Theorem 9.2.

. Sincea, = 3"/(2n)!, replacing n by n + 1 giveSan+1 = 3" /(2n + 2)!. Thus

antr 3" /(2n+2)! 3t (2n)!

ar,  37/(2n)! 2n+2)! 3n
Since (2n + 2)! = (2n + 2)(2n + 1)(2n)!, we have

An+1 _ 3

an (2n+2)(2n+1)’

. An+1
lim —— =0.
n—oo Qn

n

Theratio test tells us that the series Z % cornverges.
n=1 ’

. Sincea, = (2n)!/(n!)?, replacing n by n + 1 givesa,+1 = (2n + 2)!/((n + 1)!)2. Thus

(2n +2)!
ant1 _ (n+1H2 (2n + 2)! ~ nin!
a, (o) T (n+D!n+1)! (2n)!
(n!)?

Since 2n+2)! = (2n+2)(2n + 1)(2n)! and (n + 1)! = (n + 1)n!, we have

ant1 _ (2n+2)(2n+1)

an | Dm0

)

therefore a
L= lim = =4,
n—oo QOn

(2n)!
(n1)?

As L = 4 theratio test tells us that theseriesz

n=1

diverges.
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10. Thisisan aternating series. Let a, = 1/(v/n + 1). Then lim, o ar, = 0. Now replace n by n + 1 to give a1 =
1
1/(Vn+1+1).Sincev/n+14+1> + 1, we have < , SO
/(Vn ) " Vi Vntl+l S Vntl

1 1
a = < =
T U ntilal o Vn+l

an.

n—1

Therefore, the alternating seriestest tells us that the series E % cornverges.
n
n=1

11. Sinceln(1+1/k) =In((k+1)/k) =In(k + 1) — Ink, the M partial sum of this seriesis
S, = zn:ln (1 + l)
" k
k=1
=) In(k+1) =) Ink
k=1 k=1

=(W2+mIn3+---+In(n+1)) —(Inl+In2+---+1nn)
=In(n+1)—Inl
=In(n+1).

Thus, the partial sums, S,,, grow without bound asn — oo, so the series diverges by the definition.
12. SinceC,, = n, replacingn by n + 1 givesC,,+1 = n + 1. Using theratio test with a,, = nx™, we have

. |an+1| _ . |Cn+1| _ . n+1 _
lim —— = |z| lim = |z| lim —— = |z|.
n— oo |an| n— oo |Cn| n— oo n
Thus the radius of convergenceis R = 1.
(2n)! . (2n + 2)! . m 2
13. LetC,, = oz Then replacingn by n + 1, wehave Cp, 41 = (CESER Thus, witha, = (2n)!z"/(n!)*, we have
a1l _ g [Cosil _ o @rA 2 (D)2 @r+ 2t ()
|an| |Cnl (2n)!/(n)? @)t ((n+DH>

Since (2n + 2)! = (2n + 2)(2n + 1)(2n)! and (n + 1)! = (n + 1)n! we have

(Cosa| _ (2n+2)(2n+1)

ICul — (n+1D)(n+1)
% C 2 2)(2 1 4 2
lim [an+1] = |z| lim [Cr1] = |z| lim @n+2)@n+1) = |z| lim nt2_ |z,

so the radius of convergence of this seriesisR = 1/4.
14. Let C,, = 2™ +n®. Thenreplacing n by n + 1 gives C,,+1 = 2" + (n + 1)2. Using the ratio test, we have

9t 4 (n+ 1)2 2" + 5(n+1)°
n 2 = 2|$| n 2
2" +n 2" +n

C+1
= e Cotl _

|Cn

|ant1]
|an|

Since 2™ dominates n* asn — oo, we have
lim —|an+1|
n— 0o |an|

= 2|z|.

Thus the radius of convergenceis R = %
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15. LetC,, = 1/(n! + 1). Thenreplacing n by n + 1 gives C,,11 = 1/((n + 1)! + 1). Using the ratio test, we have

Ch1| [((n+ 1) +1)
|Cnl 1/(n!+1)

n!+1
(mn+1)!+1"

|an+1]

1
= ||
|an|

_

= |z]

Sincen! and (n + 1)! dominate the constant term 1 asn — oo and (n + 1)! = (n + 1) - n! we have

T LSS

n— oo |an|

Thus the radius of convergenceis R = co.

Problems
16. (a) 0.232323...=0.23 + 0.23(0.01) + 0.23(0.01)% + - - - which is ageometric serieswith a = 0.23 and 2 = 0.01.
. 0.23 0.23 23
(b) Thesumis = =

1-0.01 099 99
17. The amount of cephalexin in the body is given by Q(t) = Qoe™**, where Qo = Q(0) and k is a congtant. Since the
half-lifeis 0.9 hours, ) ) )
—0.9k
- = =——1In=~0.38.
5 =¢ , k o923 0.8
(a) After 6 hours

Q — Qoefk(ﬁ) ~ Q0€70.8(6> — Q0(001)
Thus, the percentage of the cephalexin that remains after 6 hours ~ 1%.

(b)
Q1 = 250
Q> = 250 + 250(0.01)
Qs = 250 + 250(0.01) + 250(0.01)*
Q4 = 250 + 250(0.01) + 250(0.01)* + 250(0.01)>
(©)
Qs = 250(1 — (0.01)?)
*T 1001
~ 252.5
Qs = 250(1 — (0.01)*)
T 1001
~ 252.5

Thus, by the time a patient has taken three cephal exin tablets, the quantity of drug in the body has leveled off to 252.5
mg.
(d) Looking at the answers to part (b) shows that

Qn = 250 4 250(0.01) + 250(0.01)% + - - - + 250(0.01)" "
~250(1 — (0.01)")

1—-0.01
(e) Inthelong run, n — co. So,
250
=l n = ———— = 252.5.
@=lm Qn=1"7gg =225

18. (@) (i) On the night of December 31, 1999:

First deposit will have grown to 2(1.04)7 million dollars.
Second deposit will have grown to 2(1.04)® million dollars.

Most recent deposit (Jan.1, 1999) will have grown to 2(1.04) million dollars.
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Thus

Total amount = 2(1.04)" + 2(1.04)° + - - - + 2(1.04)
=2(1.04)(1 + 1.04 + - - + (1.04)%)

finite geor;mretri C series
1—(1.04)7
=2(1.04) | ————
(1.04) < 1-1.04 >
= 16.43 million dollars.

(if) Notice that if 10 payments are made, there are 9 years between the first and the last. On the day of the last
payment:
First deposit will have grown to 2(1.04)° million dollars.
Second deposit will have grown to 2(1.04)® million dollars.

Last deposit will be 2 million dollars.

Therefore

Total amount = 2(1.04) +2(1.04)° + - +2
=2(1+1.04 + (1.04)° +- - + (1.04)?)
finite geon:etri C series
_y <1 - (1.04)1°>
1-1.04

= 24.01 million dollars.

(b) Inpart (a) (ii) we found the future value of the contract 9 yearsin the future. Thus

24.01 -
Present Value = 00 — 16.87 million dollars.
Alternatively, we can calculate the present value of each of the payments separately:
2 2 2
Present V. =94 - 4 __° 4.4
tvelue =2+ 751 * @onr Tt Woap
o (1=(1/1040)"0\ .
=2 < T—1/1.04 = 16.87 million dollars.

Notice that the present value of the contract ($16.87 million) is considerably less than the face value of the contract,
$20 million.

10.

Total present value, in dollars = 1000 + 1000e~°%* + 1000e ~°%*® 4+ 1000e~%%*® ...
= 1000 + 1000(e~*"*) + 1000(e~%**)? 4+ 1000(e~*%*)% + ...

Thisisan infinite geometric serieswith a = 1000 and z = ¢(=%°Y, and sum

1000

Total present value, in dollars = 1T ¢ 00d

= 25,503.

20. A person should expect to pay the present value of the bond on the day it is bought.

Present value of first payment = %

10
Pr Vi f n m = — 3
esent value of second payment TR etc

Therefore, ) , .
Total present value = 10 + _10 + _10 +

1.04 ' (1.04)2 ' (1.04)3
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.. . . . 10 1
Thisisageometric serieswitha = Tod andz = To1’ so
_1o_
Total present value = —L04— = £250.
=161
21.
) 50
Present value of first coupon = 106
50
Present value of second coupon = ———, etc.
PO = T 06y
50 50 50 1000
Total presentvalue = — + ——— + -+
P 106 T o T o6y T (.06)10
~ ~~ s N —
coupons principal
—ﬂ 1+L+...+ 1 + 1000
©1.06 1.06 (1.06)9 (1.06)10
10
50 (11— (1) L 1000
1.06 1— 155 (1.06)t°
= 368.004 + 558.395
= $926.40
22.
Present value of first coupon = S0
PO = T04
Present value of second coupon = %, etc.
50 50 50 1000
Total tvaue = — + ——— ...
o presentvale =104 T woay Tt Wony0 T Lono
~ ~~ s N —
coupons principal
—ﬂ 1+L+...+ 1 + 1000
T 1.04 1.04 (1.04)9 (1.04)10
10
50 (11— (1h) L 1000
1.04 1— 4 (1.04)10
= 405.545 + 675.564
= $1081.11
23. (a)
) 50
Present value of first coupon = To5
50
Present value of second coupon = ———, etc.
PoN = To5)2”
50 50 50 1000
Total present value = ——
P 105 T (wos)? T (1.05)10 © (1.05)10
N - DN _
coupons principal
_80 (41 ), _tow
T 1.05 1.05 (1.05)° (1.05)10

567
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25.
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10
50 (1- (1) L1000
105\ 1- L (1.05)10

= 386.087 + 613.913
= $1000

(b) When the interest rate is 5%, the present value equals the principal .

(c) When the interest rate is more than 5%, the present value is smaller than it is when interest is 5% and must therefore
be less than the principal. Since the bond will sell for around its present value, it will sell for less than the principal;
hence the description trading at discount.

(d) When the interest rate is less than 5%, the present value is more than the principal. Hence the bound will be selling
for more than the principal, and is described as trading at a premium.

The series converges for |z — 2| = 2 and diverges for |z — 2| = 4, thus the radius of convergence of the series, R, is at
least 2 but no larger than 4.

(a) Fase If z = 7then |z — 2| = 5, so the series diverges.

(b) False.If x =1 then|z — 2| = 1, so the series converges.

(¢) True If x = 0.5 then |z — 2| = 1.5, so the series converges.

(d) If z =5 then|z — 2| = 3 and it isnot possible to determine whether or not the series converges at this point.
(e) False. If x = —3then|z — 2| = 5, so the series diverges.

(@) Since
lan| = an ifa, >0
|an| = —Qan if an < 0,
we have
an + |an| = 2|an| ifa, >0
an + lan| =0 ifa, <0.
Thus, for al n,

0 <an +|an| < 2|an|.
(b) If > |an| converges, then " 2|a, | is convergent, so, by comparison, 3 (an + |ax|) isconvergent. Then

Y ((@n +laah) = laal) =Y an

is convergent, asit isthe difference of two convergent series.

CAS Challenge Problems

26.

(@) UsingaCAS, we get

Si(z)Ti(z) = z(1 +z) =z +2°

2
Sa(z)Ta(z) = (z +22°) <1+m+%> :m+31’2+57$+x4

2 3 3 4 5 6
_ 2 3 T T - o, 1lx 25x 11z z”
Sa(2)Ts(x) = (¢ +22 +3x)<1+x+ >+ 6) =T438+ ot Tt
N 3 4 1‘2 1‘3 1'4
S4(:L’)T4($)=(:L’+2x +3z +4$) 1+$+7+F+ﬂ
_$+3x2+11a:3+49a:4+47x5+31x6+19a:7+a:_8
a 2 6 8 12 24 6

(o) The coefficient of z is always the same, namely 1. The coefficient of z* is 1 in the first line, and then 3 thereafter.
The coefficient of z> changes twice, but then remains at 11/2 for the last two lines.
(c) Following the same pattern, we expect that the coefficient of z* to remain the same after n = 4, and indeed we find
that
. o 112°  49z' 872"  9112° 39727 412 2927 o'
Ss(x)Ts(x) =+ 3" + 3 + 6 + 3 + 120 + 120 + 20 + 120 +24,

so the coefficient of z* stays at 49/6.




(d)

27. (8

(b)
©

(d)

28. (a)
(b)

(©

(d)
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In general, the coefficient of z* in the product can vary in SiT1, SoT5, ..., Sk Tk and then stays the same after that.
Thisisbecause the coefficient of z* in the product depends on the coefficientsof 1, z, 22, ... 2% in S, (z) and T, (z),
and these remain the same for n > k.

Using aCAS, we get

Tl(Sl(l‘)) =14z
5z° 3 4
Tz(Sz(m)):1+m+T+2x +2z

2 3 5 6 7 9
1 1 125 21
Ts(Ss(m))=1+m+5Tm+36m +6zt + 9; +76m + 5 +9x8+97m

The coefficient of 2 stays the same, namely 1. The coefficient of 22 isQin thefirst line, but after that stabilizes at 5/2.
Thus we predict that the coefficient of =* will stabilize after n = 3 and will be 31/6 in T4 (S4(x)). Thisis confirmed
by
522 31z® 2412 832 702% 71z  5992%  1274°
+ + +

T4(S4(m)):1+m+T+ 5 + 54 + 5 + 3 5 1 5

In general, the coefficient of z* in the composite can vary in T1(S1(z)), T2 (S2(z)), ..., Tk (Sk(x)) and then stays
the same after that. This is because the coefficient of 2* in the composite depends on the coefficients of 1, z, 2,
...z"in S, (x) and T, (z), and these remain the same for n > k.

Both p and ¢ are geometric series. The radius of convergence of p is 1 and that of ¢ is 1/2.
Using aCAS, we get
pg=QQ—z+a® -2 +2' —2 42 —2" 4% -2 + 20— )
(1+2z+42° +82> + 162" +322° +642° +1282" 4256 2° 4+ 5122° + 10242 + - - )
=14+a+32" +52° + 112" +212° +432° + 852" +1712° +3412° +6832'° + - --

The following table givesthe ratio Cp41/Cr forn =0, ...,9, wherepg = 3 Crz™.

n 0 1 2 3 4 5 6 7 8 9
Cp4+1/Crn | 1| 3.000 | 1.667 | 2.200 | 1.910 | 2.048 | 1.977 | 2.012 | 1.994 | 2.003

Theratios look like they are approaching 2 so we guess that the radius of convergenceis 1/2.
A reasonable conjecture is that the radius of convergence of a product is the smaller of the radii of convergence of
the two original series.

CHECK YOUR UNDERSTANDING

1. True. A geometric series, a + ax + ax® + - - -, isapower series about z = 0 with all coefficients equal to a.
2. False. Writing out terms, we have

(-1 +(x—-2°+@-3)>+---.

A power seriesisasum of powers of (z — a) for constant a. In this case, the value of a changes from term to term, so it
isnot a power series.

3. True. This power series has an interval of convergence centered on « = 0. If the power series converges for z = 2, the
radius of convergence is 2 or more. Thus, z = 1 iswell within the interval of convergence, so the series converges at
r=1.

4. False. This power series has aninterval of convergence centered on z = 0. Knowing the power series convergesfor z = 1
does not tell us whether the series converges for z = 2. Since the series converges at = = 1, we know the radius of
convergence is at least 1. However, we do not know whether the interval of convergence extends as far asz = 2, so we
cannot say whether the series converges at = = 2. Since this statement is not true for all C,,, the statement is false.
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True. This power serieshas an interval of convergence centered on z = 0. If the power series does not converge for z = 1,
then the radius of convergence islessthan or equal to 1. Thus, z = 2 liesoutside the interval of convergence, so the series
does not converge there.

False. It does not tell us anything to know that b,, is larger than a convergent series. For example, if a, = 1/n* and
b, = 1,then 0 < an < by and ) an converges, but Y b, diverges. Since this statement is not true for al a,, and by,
the statement is false.

7. True. Thisisone of the statements of the comparison test.

10.

11.

12.

13.

14.
15.

16.

17.
18.

10.

True. Consider the series > " (—b,) and > (—ax). The series Y (—by) converges, since b, converges, and
0< —a, < —by.

By the comparison test, Y " (—a, ) converges, so > a, converges.

False. Itistrue that if > |ax| converges, then we know that > a,, converges. However, knowing that > a,, converges
does not tell usthat ) |ax| converges.

For example, if a, = (—1)""'/n, then Y a, converges by the alternating series test. However, _ |ax| is the
harmonic series which diverges.
False. For example, if a, = 1/n and b, = —1/n, then |a, + bn| = 0,50 Y |an + bx| converges. However > |a, | and
> |bn| are the harmonic series, which diverge.

False. For example, if a, = 1/n?, then

2 2
lim |an+1] _ lim M = lim " _
n—o0o |an| n—o0o l/nz n— 0o (TL+1)2

1.

However, Y 1/n” converges.
False, sinceif wewrite out the termsof the series, using thefact that cos 0 = 1, cos m = —1, cos(27) = 1, cos(37) = —1,
and so on, we have

(=1)°cos 0 + (—=1)" cos 7w + (—1)% cos 2w + (—1)* cos 3w + - - -

=1Q)+ (DD + @A) + (D=1 +---
=1414141+---.

Thisis not an aternating series.
True. Writing out the terms of this series, we have

A+ EDH+A+EDH+ A+ (D) + A+ (DY) + -
=(1-D+A+D+A-D+ A+ +--
=0+2+0+2+---.

False. Thisis an alternating series, but since the terms do not go to zero, it does not converge.
False. The termsin the series do not go to zero:

2(—1)1 + 2(—1)2 +2(—1)3 + 2(—1)4 + 2(_1)5 4+ = 2_1 + 21 + 2_1 + 21 + 2_1 4+ ..
=1/24+241/2424+1/2 4.

False. For example, if a,, = (—1)"~"/n,then " a, convergesby thealternating seriestest. But (—1)"a, = (—1)"(-=1)""'/n =
(-1)>""'/n = —1/n.Thus, >_(—1)"a, isthe negative of the harmonic series and does not converge.

True. Letc, = (—1)"|an|. Then |cn| = |an| S0 Y |cn| converges, and therefore > ¢, = > (—1)"|an| converges.

True. Since the series is aternating, Theorem 9.8 gives the error bound. Summing the first 100 terms gives Sigo, and if
thetruesumis S,

1
- = — <0.01.
|S — S100] < @101 101 <
True. Theradius of convergence, R, isgivenby lim |Cr41|/|Crn| = 1/R, if thislimit exists, and since these series have
n—oo
the same coefficients, C,,, the radii of convergence are the same.
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20. False. Two series can have the same radius of convergence without having the same coefficients. For example, Y z™ and
>~ nz™ both have radius of convergence of 1:

fim ot = im L o1 ad Gim Bnt o g 2Rl g
n— oo n n— oo n— oo n n— oo n
21. False. Consider the power series
(z-1)?°  (z—1)° ot (@ =1)"

(z—-1) -

-1
2 + 3 + +(=1) n

whose interval of convergenceis0 < x < 2. This series converges at one endpoint, z = 2, but not at the other, z = 0.

22. True. If the terms do not tend to zero, the partial sums do not tend to alimit. For example, if the terms are all greater than
0.1, the partial sums will grow without bound.

23. False. Consider theseriesz 1/n. This series does not converge, but 1/n — 0 asn — co.

n=1

24. Fdse If a, = b, = 1/n, then Z a, and Z b, do not converge. However, a,,b,, = 1/n2, 0 Z a, by, does converge.

25. False. If a,b, = 1/n2 and a, = b, = 1/n, then Z an by, converges, but Z a, and Z b, do not converge.

PROJECTS FOR CHAPTER NINE

L@ (@)p
(ii) Thereare two waysto do this. One way isto compute your opponent’s probability of winning two in
arow, whichiis (1 — p)2. Then the probability that neither of you win the next pointsis:
1 — (Probability you win next two + Probability opponent wins next two)

=1-@"+(1-p)?
=1-(P*+1-2p+p’)
=2p” —2p
=2p(1—p).

The other way to compute thisis to observe either you win the first point and lose the second or vice
versa. Both have probability p(1 — p), so the probability you split the pointsis 2p(1 — p).

(iii)
Probability = (Probability of splitting next two) - (Probability of winning two after that)
= 2p(1 - p)p°
(iv)
Probability = (Probability of winning next two) + (Probability of splitting next two,
winning two after that)
=p* +2p(1 - p)p?
(v) The probability is:

w = (Probability of winning first two)
+ (Probability of splitting first two)-(Probability of winning next two)
+ (Prob. of split. first two)-(Prob. of split. next two)-(Prob. of winning next two)
=p’+2p(1—p)p’ + 2p(1 —p))*p* + - --.
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(vi) Forp = 0.5,w =
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This is an infinite geometric series with a first term of p? and aratio of 2p(1 — p). Therefore the
probability of winningis

p2

w=-—-—.
1-2p(1-p)
(0.5)2

T505 =05 = 0.5. Thisis what we would expect. If you and your opponent
are equally likely to score the next point, you and your opponent are equally likely to win the next
game.

Forp =0.6,w = % = 0.69. Here your probability of winning the next point has been
magnified to a probability 0.69 of winning the game. Thus it gives the better player an advantage to
have to win by two points, rather than the “sudden death” of winning by just one point. This makes
sense: when you have to win by two, the stronger player always gets a second chance to overcomethe
weaker player’s winning the first point on a“fluke.”

Forp = 0.7, w = % = 0.84. Again, the stronger player’s probability of winning is
magnified.
Forp=04,w = —OH 31, We already computed that for p = 0.6, w = 0.69. Thus

1-2(0.4)(0.6)
the value for w when p = 0.4, should be the same as the probability of your opponent winning for
p = 0.6, namely 1 — 0.69 = 0.31.

S = (Prob. you scorefirst point)
+(Prob. you losefirst point, your opponent |oses the next,
you win the next)
+(Prob. you lose a point, opponent loses, you lose,
opponent loses, you win)
= (Prob. you scorefirst point)
+(Prob. you lose)- (Prob. opponent loses)-(Prob. you win)
+(Prob. you lose)-(Prob. opponent | oses)-(Prob. you lose)
-(Prob. opponent loses)-(Prob. you win)+ - - -

p+(1-p)(l—qp+((1-p)(1—q)’p+--
p

TI-(-p-9

(if) Since S isyour probability of winningthe next point, we can use the formulacomputedin part (v) of (a)

for winning two pointsin arow, thereby winning the game:

52
YT 1251 -9)
e Whenp=0.5andq = 0.5,
0.5
Therefore )
S? (0.67)2

= 0.80.

YT T 25(1-8)  1-2(0.67)(1—067)

e Whenp=0.6andq = 0.5,
0.6 (0.75)

S = T Toans -0 A v TG = 0.75)

=0.9.
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Let k£ by the relative rate of decay, per minute, of quinine. Since quinine’s half-lifeis 11.5 hours, we have
% _ ¢—k(15)(60)
* In 2
n
k= ——— ~0.001.
(i1.5)(60) ~ "0

Hence, k = 0.1%/min.
Just prior to 8 am of the first day the patient has no quininein her body. Assuming the drug mixesrapidly in
the patient’s body, she has about 50/70 =~ 0.714 mg/kg of the drug soon after 8 am. Suppose we represent
the concentration of quinine in the patient (in mg/kg) by x and represent time since 8 am (in minutes) by
t. Then

T = A670.001t,

where A istheinitial concentrationand k¥ = —0.001 istherate at which quinineis metabolized per minute.
There are 24 - 60 = 1440 minutes in a day. On the first day, the patient begins with 0.714 mg/kg in her
system, so just before 8 am of the second day the patient’s system holds

0.714e9:001-1440 ~ 0.169 mg/kg.

After the patient’s second dose of quinine, her system contains0.714 + 0.169 = 0.883 mg/kg of quinine.
By continuingin asimilar manner, we seethat just prior to 8 am onthethird day, shehas0.883¢ ~0-001-1440
0.209 mg/kg; just after 8 am, she has 0.209 + 0.714 = 0.923 mg/kg. Just prior to 8 am on the fourth day,
she has 0.923e~0-001-1440 ~, ().218 mg/kg; just after 8 am, she has 0.228 + 0.714 = 0.932 mg/kg. We can
keep going with these calculations: just prior to 8 am on the fifth day, the concentration is 0.221 mg/kg;
on the sixth day, it is 0.222 mg/kg; on the seventh day, it is 0.222 mg/kg, and so on forever.

We find a formulafor the concentration just after the nt" dose as follows. The last dose contributes
0.714 mg/kg. The previous dose contributes 0.714e —9-001(1440) mg/kg. The dose before that contributes
0.714e0:001(2)(1440) mg/kg, and so on, back to 0.714e —0:001(n—1)(1440) mg/kg from the initial dose. So

1

ConcentrationjUst _ 714 4 0,714~ 4 0.714 (e=1)* 4 ... 4 0.714 (e=4)" L.

after n doses
We notice that thisis ageometric series, with sum given by
1 — e—1.44n
1 — e—1.44

Concentration just

aftern doses  — 0714 (

) =0.936(1 — e~ 1441,

Although the concentration of quinine does not reach an equilibrium it does fall into a steady-state
pattern which repeats over and over again. This makes sense; at some point the patient must metabolize
the daily dosage exactly. If we let n — oo in our formula, we have e 1447 — 0, which means that the
concentration just after the nt" dose gets very close to 0.936. So the concentration just beforethen t" dose
is0.936 — 0.714 = 0.222, aswe found in our calculations for the first few days.

xr

0.936
0.714

0.222

Figure 9.6

If we keep setting the clock back to 0 minutes each day at 8 am, then we have that at t = 0 each day,
the concentration (starting on the fifth day or so) is 0.936 mg/kg. As the day progresses, we have

x = 0.936e 200,
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(e) Theaverage concentration of quininein the patient is given by theintegral of the concentration over aday,
divided by thetimein aday:

1440 1440

Average concentration = —— 0.936e7 9001 ¢

dt = ——
1440 J, 7“7 1440 J,

0936 (—e 00011 |10 936
1440 \ 0.001 B

o 1.44
~ 0.496 mg/kg.

(1 _ 671.44)

(f) Since the average concentration is 0.496 mg/kg and the minimum effective average concentration is 0.4
mg/kg, thistreatment is effective. It is al so safe—the highest concentration (0.936 mg/kg, achieved shortly
after 8 am) isless than the toxic concentration of 3.0 mg/kg.

(9) Each dose of 25 mg correspondsto 25/70 = 0.357 mg/kg. Let x ; be the steady-state concentration just
before each 0.357 mg/kg dose. Then z 5 + 0.357 will be the concentration just after the dose. Since we are
in a steady-state, this concentration decaysto exactly x ; just before the next dose. So

&5 = (x5 + 0.357)e™0-001(12)(60)

This means
0.3576_0'001(12)(60)

1 _ ¢—0.001(12)(60)

Ts

~ 0.339 mg/kg,

so z, + 0.357 = 0.696 mg/kg is the concentration just after each dose. At ¢ minutes after a dose, for
0 <t < (12)(60), there is a steady-state concentration of

x = 0.696e 20" mg/kg.

This means
720 720 0.001
Average concentration = — dt ~ — 0.696e 0001t q¢
« 720 /0 U0 /0 ¢
0.696 [ —e—0-001t1 1720 6og
= ° = 21— (.487]
720 | 0.001 ||, 0.72

~ 0.496 mg/kg.

Thistreatment is also effective and safe. The average concentration of 0.496 mg/kg is greater than 0.4

mg/kg, and the highest concentration of 0.696 mg/kg is less than 3 mg/kg.
(h) For an exponentially decaying function, the average value between two points (z o,y0) and (z1,y) is
Wwo—v1) \yherer isthe relative rate of decay and A istheinitial concentration. Thereasonis asfollows.

(z1—z0)r?

1 1
Average = / Age "t
T1 — To xo

AO efrt
.771—.770|: r :|

Yo— U
C(mp—x) -

T1

Zo

(i) Since asteady state has been reached, y¢ is the concentration right after adose and i1 is the concentration
just prior to adose. Thus, yo — y1 represents the increase in concentration from each dose. Furthermore,
1 — o IS the time between doses. When we go to the new protocol, we halve both the numerator and
the denominator of the equation for the average concentration, and so the average remains unchanged.
Similarly, if we wereto doublethe doseto 100 mg and give it every 48 hours we would simply be doubling
both the numerator and the denominator; again the average concentration would not change.

(i) We want the final concentration to be 10 ~'° kg/kg = 10~* mg/kg. We therefore need to solve for ¢ in
10~ = 0.883 - ¢ 0:001 Doing soyieldst ~ 9086 min ~ 6.3 days.



