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Solutions for Section 10.1

Exercises
1. Let H% = (14z)"". Then f(0) =
fl(@) =11 +z)? f(0) = -1,
f'@)=211+2)"° f"(0) =2,
f(x) = =311 +2)~* f'(0) = =3,
FP(x) =41 +2)7° FU0) =4,
fO(z) = =51 +2)° F9(0) = -5,
fO@x) =6!(1+z)" £9(0) = 6!,
fO) = =711 +z)® F00) = -1,
f&(z) =81 +2)° F®(0) =8l
Piz) =1—z+2° —2° + 2%,
Ps(x)=1—x+2° — 2 +z* —2° + 25,
Pe(x)=1—z+2> -2 +2" —2° + 2% — 2" + 2°
2. Let f(a) = —— = (1—a) . Then £(0) = 1
fll@) =101 —2)7? f(0) =11,
f'(z) =211 —2)~° £"(0) =2,
fm(l') — 3!(1 _ x)—4 fm(o) _ 3!,
FO (@) =41 —2)7° F4(0) = 41,
fPa)=511-2)°  fO0) =3,
fO@ =61—-2)" 0 =6,
fO@)=101-2"  fD0)=1.

Py(z) =1+z+2° +2°,
Ps(z)=1+a+2> +2° + 2" +2°,
Prz)=1+z+z>+2°+2" +2° + 25+ 2"

3. Let f(z) = VI+ 2= (1+2)"2 Then f(0) = 1, and

fll@) =31 +2)" 1 f(0) =3,
flay=—ta+n 2 )=k
7"(@) = 31+ 2) F0) =2,
FO@) = —B+a) T fO0) = -,
Thus,
Pyz) =1+ %x — %x2,
Py(x )—1+;x—%x2+%m3

1 1 1 5
P4()—1+2$—§$2+E3 mIA
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4. Let f(x) = cosx. Then £(0) = cos(0) =1, and

f'(z) = —sinz f'(0) =0,
f"(@) = —cosw £(0) = -1,
f"(z) =sinx F"(0) =0,
F0 (@) = cosw o) =1,
fO2) = —sinz fP(0) =0,
fO(z) = —cosz £90) = -1.
Thus,
Py(z)=1-— 2—'
2 4
P4(x):1—x2—!+i—!,
2 4 6
5. Let f(x) = arctan z. Then f(0) = arctan 0 = 0, and
f@) =1/ +2%) = (1 +29)" ) =
f'(@) = (=) +a*) "2 f(0) =
7 (z) =21(1 + 2%)722%2” + (—=1)(1 + 2%) 72 o) =
@)= -31+z ) 42323 4 21(1 4 2%) 2%
+2(1 4+ 2%) 2% FD0) =
Therefore,
Ps(z) = Py(z) =2z — %a:?’.
6. Let f(x) = tanz. So f(0) = tan0 = 0, and
f(@) =1/ cos?x ) =1,
f"(x) = 2sinz/cos® x f'(0) =0,
" (z) = (2/ cos® ) + (6sin’ z/ cos ) f(0) =2,
F9(x) = (16sinz/ cos® z) + (24 sin® z/ cos® z) FP(0) =o0.
Thus,
3
Py(xz) = Py(z) =2+ —=.
7. Let f(z) = YT—2 = (1 — )% Then f(0) = 1, and
fle)=—3(1—z)7?? F1(0) = —3,
fa)=-20-n=F )=,
fm(l‘) — —;—2(1 m)—8/3 f”’(O) — ;g’
FO@) = —B( -2 () = -5
Then,
Py(z)=1-— %x— %%ﬁ =1-— %m— éx{
P3(x) = Py(z) — % (:1)’—2) ®=1- %a: - %a:2 - 8—5191:3,
Piw) = Po(a) — w800 L1, L2 58 10 4
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8. Let f(z) =In(1 + ). Then £(0) =In1 =0, and

flle)=00+2)"" f(0) =1,
f'(z) = (- )(1+x) 2 f(0) = -1,
() =2(14+2)7° f(0) = 2,
fP(x) = -3(1+ 1‘) 1 (0) = -3/,
fO @) =41 +2)° &) = 4,
fO() = —5'(1+m) F9(0) = -5,
FO(x) = 6!(1+2)" F7(0) =,
fO@) =11+ fO0) =7,
FO®x) =811 +2)° F9(0) = 8.
So,
1’2 1’3 1’4 1’5
P5(1')—1‘_7+?—Z-|‘€,
1’2 1’3 1’4 1’5 1’6 1’7
P7(1‘)—1‘—7+?—Z+€—€+7,
1’2 1’3 1’4 1’5 1’6 1’7 1‘8 1‘9
Blo)y=r-G+t3-T+t5 " %st7 5t
9. Let f() = ——— = (1+2)"/2. Then £(0) = 1
1+z
fl@) =—3(1+2)%? F(0)=—3,
(@) =55 (1+2)7°2 £(0) = 5,
f”'(x) — _%(1 +:1;)—7/2 fm(o) _ _%,
fOa) =201 +2)"7  fO0) = 35T
Then,
1 13 3
PQ(x):1_§x+§2_2$2:1_§$+§$2’
135 3_,_ 1 .32 5 3
Ps(z) = Px(x) 5 % = 1 2$+ 5% T 1%
13-5-7 4 3.2 5 3. 35 4
Pal@) = Pa(a) + =@ = 1= go+ 527~ 5% T 135

10. Let f(z) = (1 + z)”.

(@) Supposethat p = 0. Then f(z) = 1 and f*)(z) = 0 forany k > 1. Thus P>(z) = Ps(z) = Pa(x) = 1
(b) 1fp=1then f(z) = 1 +z, 50

f(0) =1,
fllz)=1,
fa)y=0 k>2
Thus Px(z) = P3(z) = Ps(z) = 1 +z.
(c) Ingenera:
(z) = (1+=)?,
f'(@)=p1+2)"",
(@) = pp - 1)(1 +2)" 7,
(@) =pp-1)p—-2)1+2)"7,
) =pp-1-2)(p-3)(1+2)""

577
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0)=p
F(0) =p(p-1),
"0y =plp—1)(p - 2),
FA0) =plp-1)p-2)(p-3)

Pz(m)zl—f-px—f-p(pZ_ ) 2
Py(z) =1+ px+ p(pz— 1)91:2 + plp = 1é(p— 2) 3
Pi(s) = 1+ pz + p(pz— D2y 2= 12(10 —2) 3
pp—1DP—-2)(p—3) 4
+ 21 T .
11. Let f(x) =sinz. f(§) = 1.
f'(x) = cosz f'(3) =0,
f'(x) = —sinx f'(5)=-1,
@) =—cose f7(5) =0,
f@(z) =sinz fYE) =1
So,
1 m\ 2 1 m\*
Py(z) =140 g(x 5) +0+I($ 5)
_ m™\2 1 m\4
= —5(“"‘5) +a(’f"‘z)
12. Let f(x) = cosz. Thencos & =sin § = @
Then f'(z) = —sinz, f’(z) = —cosz, and f""'(x) = sin z, so the Taylor polynomial for cos = of degree three about

rz=m/4is

- E e E _E —COS% _E 2 sin%( _E)?’
P3($)_C°s4+( 51“4)(9” 4)+ ] (m 4)+ 3 " 71

(DD D)

13. Let f(z) = e®. Since f¥)(z) = e® = f(x) foral k > 1, the Taylor polynomial of degree4 for f(x) = e® about z = 1

IS
Pi(z) :el+el(a:—1)+%(a:—l)2+%($—1)3+%(z—1)4
—e[14@-D+ 3@+ g1+ @ -1

14. Let f(z) =142z = (1 + )2
Then f'(z) = %(1 +2)72 " (2) = _i(l +2)73% and £ (z) = g(l + 2)~%/?. The Taylor polynomial of degree
three about z = 1 isthus

1 -
DY+ S0+ @ -1+

214+1)°7
8 3 (111 _ 1)3

_ r—1 (z—-1)% (z-1)3
_\/5<1+ 132 i )

—X(1+41)7%2

Py(z) = (1 2

+

(& —1)°

+
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Problems

15. Since P> (z) isthe second degree Taylor polynomial for f(z) about z = 0, P>(0) = f(0), whichsaysa = f(0). Since

d y
Zh@| =10,
b= f'(0); and since
d2 "
EP‘Z(”J?) - = £7(0),

2c = f"(0). In other words, a isthe y-intercept of f(x), b isthe slope of the tangent lineto f(z) at z = 0 and c tellsus
the concavity of f(x) near x = 0. Soc < 0 since f isconcave down; b > 0 since f isincreasing; a > 0 since f(0) > 0.

16. Aswe can see from Problem 15, a isthe y-intercept of f(z), b isthe slope of thetangent lineto f(x) atx = 0 and c tells
us the concavity of f(z) near x = 0.
Soa>0,b<0andc <0.

17. Aswe can see from Problem 15, a isthe y-intercept of f(z), b isthe slope of thetangent lineto f(x) at x = 0 and c tells
us the concavity of f(z) near z = 0.
Soa<0,b>0andc > 0.

18. Aswe can see from Problem 15, a isthe y-intercept of f(z), b isthe slope of thetangent lineto f(x) atx = 0 and c tells
us the concavity of f(z) near x = 0.
Soa<0,b<0andc > 0.

19. Using the fact that

"0 "o (o 3 (o ®)(p

and identifying coefficients with those given for Ps (), we obtain the following:

(@ £(0) = constant term which equals 0, o f(0) =0.

(b) f'(0) = coefficient of z which equals 3, o f'(0) =3.

(© % = coefficient of 2* which equals —4, 0 f"(0) = —24.

(d) L2© = coefficient of z° which equals0,  so £ (0) = 0.

G) % = coefficient of z° whichequals5,  so £ (0) = 5(6!) = 3600.
20. (a) Wehave
9" (5)

3!

g(z) = g(5) + g’ (5)(x — 5) + (x—5)%+ ...

Substituting gives

g(m):3—2(x—5)+%(m—5)2—%(m—f))?’—f-...

The degree 2 Taylor polynomial, P»(z), is obtained by truncating after the (¢ — 5)? term:
Py(z)=3—2(x —5) + %(m —5)%.
The degree 3 Taylor polynomial, P3(z), is obtained by truncating after the (¢ — 5)* term:
Pa(e) =3 —2(x —5) + %(x 52— %(x _5)3.
(b) Substitute z = 4.9 into the Taylor polynomial of degree 2:
Py(4.9) =3 —2(4.9 — 5) + %(4.9 —5)% = 3.205.

From the Taylor polynomial of degree 3, we obtain

P3(4.9) =3 —2(4.9 — 5) + %(4.9 —-5)% — %(4.9 —5)% = 3.2055.
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21

flx) =42> —7x+2 f(0) =2

f'(x) =8z —17 ) =-7

f'(z) =8 f'(0) =3,

S0 P2 (z) = 24 (—=T)z + $2° = 42® — 7z + 2. Wenotice that f(z) = P»(z) inthis case.

22. f'(x) = 32> + 142 — 5, f""(x) = 62 + 14, f"' (x) = 6. Thus, about a = 0,

Py(z) =1+ _1—'5x + %xZ + %x?’

=1-5z+72> +2°

= f(z).

23. (a) We'll make the following conjecture:
“If f(x)isapolynomia of degreen, i.e.
f(@)=ao+ a1z +axx® + -+ an_12" " + a,2”,

then P, (z), the n*" degree Taylor polynomial for f(z) about = 0, is f(z) itself.”
(b) All weneed to doisto calculate P, (z), the n*® degree Taylor polynomial for f about z = 0 and seeif it isthe same

as f ().
£(0) = ao;
J(0) = (a1 42000+ + nanz" )|,
=ay;
f(0) = (2a2 +3-2a3x+ - +n(n — 1)anat"72)|ac=0
= 2las.

If we continue doing this, we'll seein general

FR0) =Klak, k=1,23---,n

Therefore,
f/ 0 f// 0) . f(n) 0 N
Po@) = £ + L0 L0y O,
=ao+ a1z + a2z’ + - + anz"
= f(z).
24.
. 23 N
im 2% = Jim =3 —jim (1-2 ) =1
z—=0 T z—=0 T z—0 3!
25.
1—coszx . 1—(1—9”;4-3—?) 1 22 1
li = lim = lim _ - = _.
z—0 T z—0 2 z—0 \ 2 4! 2
n?  h® !
26. For f(h) =¢", Pa(h) =1+ h+ = + 2 + 7. S0
(@
. e"—1—h i Pa(B) —1—h
h—0 h2 o h—0 h2
4
= lim s 2 Rk
h—0



(b)

lim
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Py(h)—1—h— 1

h—0 h—0

lim
h—0

1

h4
STt ar

3=

2
h3
h3

(1
= lim [ —
h—0 \ 3!
1

6
Using Taylor polynomials of higher degree would not have changed the results since the terms with higher powers of h
al gotozeroash — 0.

27. (a) We use the Taylor polynomial of degree two for f and h about z = 2.

F@) = @)+ -2+ L2 @m0 = 2w -2y
h(z) = h(2) + 1 (2)(z — 2) + %(z -2)° = g(x —2)’
Thus, using the fact that near x = 2 we can approximate a function by Taylor polynomials
lim (@) = lim M = §
o2 g(e)  eo2i(z—2)2 T
(b) We use the Taylor polynomial of degree two for f and g about z = 2.
fa) ~ f@ 4 F @ -2+ 2@ 22 = 2 o2
9(@) = g(2) + g 2)(x —2) + Z 2(!2) (x —2)° =22(x — 2) + g(x —-2)%
Thus, X X
. fl@) 3(x—2)2 . 2(x —2) 0
oy = I <22(x—22)+5(x—2)2> = lim <222+5(a:—2)> =5 =0

28. Let f(x) beafunction that has derivativesup to order n at z = a. Let

P(z)=Co+Ci(x —a)+- -+ Ch(x —a)"

be the polynomial of degree n that approximates f(x) about z = a. Werequirethat P, (z) and all of itsfirst n derivatives
agree with those of the function f(z) at z = a, i.e., we want

f(a) = Pr(a),
f'(a) = Py (a),
f"(a) = P/(a),

1"(a) - P (a).

When we substitute z = a in P, (x), al the terms except the first drop out, so

Now differentiate P,, (z):

P.(z) = C1 + 2Cs(x — a) 4+ 3C3(x —a)® + --- + nCp(z —a)" "
Subgtitute z = a again, which yields

Differentiate Py, (z):

P)(z) =202 43-2C3(x —a) +--- +n(n —1)Cp(z —a)" " *
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and substitute x = a again:
f"(a) = P;/(a) = 2C>.
Differentiating and substituting again gives

£ (a) = P!"(a) = 3 - 2Cs.
Similarly,
™ (a) = P,® (a) = kICy.
So, Co = f(a), C1 = f'(a), C2 = £508, €y = L2(4) and soon.
If we adopt the convention that f(*)(a) = f(a) and 0! = 1, then

W),
= ,k=0,1,2,---,n.

Ck
Therefore,
f(x) = P.(z) = Co+ Ci(x —a) + Ca(x —a)’- -+ Cu(x —a)"

"(a 9 (n)a N
= f@ + F @@ -0+ L@ a2y LD gy

29. @) f(z)=e"
f(x) = 2ze™ () =201+ 2x2)eg”2, " (x) =43z + 21‘3)69”2,
@) =43+ 6:122)6902 + 43z + 2a:3)2xex2.
The Taylor polynomial about = 0 is

0 2 . 0 12
1
:1+x2+§x4.

(b) f(z) = €®. The Taylor polynomial of degree 2 is
2

_ T o 1,
Q2(m)_1+ﬂ+§_1+m+§x.

If we substitute 2> for z in the Taylor polynomial for e” of degree 2, we will get Py(z), the Taylor polynomial for
e’ of degree 4:

Qu(a®) = 1+ + 3 (a?)’

1
:1+x2+§x4

= Py(x).
x 1132 $10 .
(©) LetQuo(z) =1+ T + o + o+ o be the Taylor polynomial of degree 10 for e” about = 0. Then

Pyo(x) = Qio(z”)

(d) Lete® = Qs(x) =1+ 2% +---+ . Then

6_2z ~ Q5(—2$)
_ -2z  (=2z)? (-2z)® (-20)* (—22)°
L TR e R | T
4 2 4
—1_9 op2 _ I8, 24 25
xr + 2x 31‘ + 31‘ 15x
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30. (@) Theequation sin z = 0.2 has one solution near x = 0 and infinitely many others, one near each multiple of . See
3

Figure 10.1. The equation z — % = 0.2 has three solutions, one near z = 0 and two others. See Figure 10.2.

AMA .

23

Figure 10.1: Graph of y = sinz andy = 0.2 Figure 10.2: Graphof y =z — 3y andy = 0.2

(b) Near z = 0, the cubic Taylor polynomial & — 2®/3! ~ sin 2. Thus, the solutions to the two equations near = = 0 are
approximately equal. The other solutions are not close. The reason is that  — z*/3! only approximates sin = near
2 = 0 but not further away. See Figure 10.3.

e DL

:1:75133/3!
Figure 10.3
3
sint  t—4 t°
31 ~ 3T 1%
1. 1 2 3|t
/ Sl?tdtz/ <1_%> dt:t_i_g =0.94444 - -
0 0 0
) Sintzﬂ:1_ﬁ+i
¢ t 6 120

1

= 0.94611 - --
0

1 . 1 2 4 3 5
sint t t t t

lotn [ (1— ) dt=t -+ ——

/0 t /0< 6+120> 18 600

32. (a) Sincethe coefficient of the z-term of each f is 1, weknow £ (0) = f5(0) = f3(0) = 1. Thus, each of the fs slopes
upward near 0, and are in the second figure.
The coefficient of the z-termin g; and in g2 is 1, so g1(0) = g5(0) = 1. For g3 however, g5(0) = —1. Thus,
g1 and g» slope up near O, but g3 slopes down. The gsarein thefirst figure.
(b) Sinceg1(0) = g2(0) = g3(0) = 1, the point A is(0,1).
Since f1(0) = f2(0) = f3(0) = 2, the point B is (0, 2).
(c) Since g3 slopesdown, gs isl. Since the coefficient of z2 for g; is2, we know

"
202 o o=t
By similar reasoning g4 (0) = 2. Since g1 and g» are concave up, and g has alarger second derivative, g; islll and

g2 isll.
Calculating the second derivatives of the fs from the coefficients z2, wefind

flO)=4  f0)=-2 f/(0)=2

Thus, fi1 and f3 are concave up, with f; having the larger second derivative, so fi islll and f3 is|l. Then f is
concave down and is|l.
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Solutions for Section 10.2

Exercises
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10. Again using the derivatives found in Problem 9, we have

11.

12.
13.
14.
15.
16.
17.
18.

1 ! _ _1 1" 1 " _§
f(2)—§, f(2)_ 47 f (2)_47 f (2)_ 8-
1_1_z=2 (2-2° 3@=2"_
z 2 4 4-2! 8- 3!
1 (z-2), (z—2)° (z-2)°
=31 tTwm T U
Using the derivatives from Problem 9, we have
f(_l) =-1, f,(_l) =-1, f”(_l) =-2 fm(_l) =-6
Hence,
1 20z +1)  6(z+1)°
E__l_(x+1)_ 2! - 3! o

The general term can be written as z™ for n > 0.

The general term can bewrittenas (—1)"z™ for n > 0.

The general term can be written as —z™ /n for n > 1.

“1—(z+1)-(z+1)’—(z+1)°>—--.

The general term can be written as (—1)" '™ /n for n > 1.
The general term can be written as (—1)*z2*+1 /(2k + 1)! for k > 0.
)

xr
The general term can be written as (—1)*z

The general term can be written as z* /k! for k > 0.

ZkF1/(2k + 1) for k > 0.

= (sinz”)16z" + (— cos 2°)24x” + (— cos 2°)24x” + (—sin )12
sinz”)16z" + (— cos #°)48z% + (—sinz”)12

19. The generd term can be written as (—1)¥z*¥2/(2k)! for k > 0.
Problems
20. (a)
f(z) = sin2”
f(z) = (cosz®)2x
f"(z) = (—sinz”)dz” + (cosz”)2
" (x) = (—cosz”)8z” + (—sinz”)8z + (—sinz”)dx
= (—cosz”)8z> + (—sinz”)12z
FP(@) = (
(
(

+(—cos )96z + (— cos z°)24x

= (cos £°)32z° + (sin z°)160z> + (— cos 2°)120z
O (z) = (—sinz?)642° + (cos 2°)160z* + (cos2*)320z* + (sin 2%)480z>

+(sinz”)2402” + (— cos z°)120

= (—sinz”)64z° + (cos 2°)480z* 4 (sin 2%)7202> + (— cos z)120

So,

(=)

o~
—_~ ===
o o
RARCANG AN
I

(=)

o v o o

@0 = o,
@0 = o,
£9(0) = —120,
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Thus
. 2 120
f(z) =sinz :§x2—7 4.
oL,

As we can see, the amount of calculation in order to find the higher derivatives of sin z* increases very rapidly. In
fact, the next non-zero term in the Taylor expansion of sin 2 isthe 10" derivative term, which really requires alot
of work to get.
(b) ) )
sina:za:—ﬁxs—l—axs—---

2

The first couple of coefficients of the above expansion are the same as those in part (a). If we substitute ” for z in
the Taylor expansion of sin 2, we should get the Taylor expansion of sin 2.

sing? =z — %(x2)3 + a(alcz)5
— 2 %m6+ %xlo _
21 (@ f(z)=In(1+2z) f(0)=0
f'(@) = 5 f(0)=2
f'@) =~y F'(0) = —4
f”,(l') — ﬁ flll(o) — 16

ln(1+2:1:):2:1:—2:1:2+§1-3+

(b) To get the expression for In(1 + 2x) from the series for In(1 + z), substitute 2z for = in the series

to get
(2z)* n (2z)® _ (2z)* .

In(1+2z) =2z — 5 3 1

3
:2m—2x2+8%—4m4+-~

(c) Since the interval of convergence for In(1 + z) is —1 < z < 1, substituting 2z for = suggests the interval of

convergence of In(1 + 2z) is—1 < 2z < 1,0r -1 <z < 1.
22. By looking at Figure 10.4, we see that the Taylor polynomials are reasonable approximations for the function f(x) =

v1+ z between z = —1 and z = 1. Thus agood guessisthat the interval of convergenceis—1 < = < 1.

flx)=vxz+1

Figure 10.4
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23. By looking at Figure 10.5 we can that the Taylor polynomials are reasonable approximations for the function f(z) =

\/11+_m between z = —1 and z = 1. Thus agood guess is that the interval of convergenceis —1 < z < 1.

Figure 10.5

24. The graph suggests that the Taylor polynomials converge to f(z) = 1 ! ontheinterval —1 < = < 1. SeeFigure 10.6.

: — T
Since 1
—— =l4z+az’+2°
11—z
theratio test gives
n+1
fim 12l g 2
n— 00 |an| n— 00 |$"|
Thus, the series converges if |z| < 1|; thatis, —1 < z < 1.
|
|
|
|
%
f(CE) = lix |
— - ‘ T
-1 1
P",'(CI?) i
|
P5(I) }
|
Ps(z) » I
Figure 10.6
25. The Taylor seriesfor In(1 — z) is
2 3 n
x x T
In(l—2)= - — =— — 2 — ... ...
a1 —z) T 3 n ’
S0
lim [ 1] = |z| lim M = |z| lim ‘ = |z|.
n— oo |an| n— oo l/TL n— oo n+1

Thusthe series converges for |z| < 1, and theradius of convergenceis 1. Note: This series can be obtained from the series
for In(1 + z) by replacing = by —z and has the same radius of convergence as the seriesfor In(1 + x).

26. (a) We have shown that the seriesis

—1) , ~D(p-2) 5
(pz! )2, P 3)!(10 ) 0?4

1+pm+p

so thegenera termis
pp=1)...(p=(n=1) .
n! '




27.
28.
29.
30.
3L
32.

33.

35.

36.

37.
38.

10.2 SOLUTIONS
(b) Weusetheratio test
n . -1)...(p—(n—-1 —n)-n! . -
n—oo |an| nsoo| (m+Dlplp—-1)...(p—(n—-1)) n—oo [N +1

Since p isfixed, we have

lim
n— 00

‘p_"‘ =1, s R=1.

n+1

Thisisthe series for e” with z replaced by 2, so the series converges to e2.

Thisisthe seriesfor sin = with z replaced by 1, so the series convergesto sin 1.

Thisisthe seriesfor 1/(1 — z) with = replaced by 1/4, so the series convergesto 1/(1 — (1/4)) = 4/3.
Thisisthe seriesfor cos = with z replaced by 10, so the series converges to cos 10.

Thisisthe seriesfor In(1 + z) with z replaced by 1/2, so the series convergesto In(3/2).

The Taylor seriesfor f(z) =1/(1 + z) is

1 _ 2 3
172 =l—-xz+zx xr” + .
Substituting z = 0.1 gives
1 1
1-014(0.1)°=0.1)>%+...= =,
+(0.1) (0.1)" + 14+0.1 1.1

Alternatively, thisisageometric serieswitha = 1, z = —0.1.
Thisisthe seriesfor ¢® with z = 3 substituted. Thus

9 27 81 32 3 3t 3

1+3+§+§+Z+“.:1+3+§+§+I+.“:e .
. Thisisthe seriesfor cos x with z = 1 substituted. Thus
1 1 1
Thisisthe seriesfor ¢® with —0.1 substituted for x, so
0.01  0.001 o1
1—0.1+T—T+--~—e .
. 5 3 1 _ 1 o1 4

Sincel +x +z° 4+ z° + --- = ———, ageometric series, we solve =5gving==1—2,%z=—.

1—2z 11—z 5 5

. 1 . 1 - . .

Sincex — §$2 + §$3 + .- =In(1 +z), wesolveln(l + z) = 0.2, giving1 + z = e*2, s0x = %2 — 1.

(a) From the coefficients of the (z — 1) terms of the f's, we see that

i =1,  frQ)=-1 fi(1)=-2
From the (z — 1) terms of the fs, we see that
1)
2!
0 fi'(1) = =2, f2'(1) = 2, f3 (1) = 2.

= —]_,

589

Thus, f1 slopesup at z = 1 and f> and f3 slope down; f5 slopes down more steeply than f». This means that
the fsarein thefirst figure, since graphs |1 and I11 in the second figure have the same negative slope at point B.
By asimilar argument, we find
@) =-1 g(4)=-1, g@=1adg'4)=-2 g¢4)=2 gi4) =2
Thus, two of the gs slope down, one of which is concave up and one is concave down; the third g slopes up and is
concave up. This confirms that the gs are in the second figure.
(b) Since f1(1) = f2(1) = f3(1) = 3, thepoint A is(1,3).
Since g1(4) = g2(4) = g3(4) = 5, thepoint B is (4, 5).
(c) Inthefirst figure, graph | is f; since it opesup. Graph Il is f> since it lopes down, but less steeply than graph 111,
whichis fs.
In the second figure, graph | is g3, since it slopes up. Graph 1l is g» since it slopes down and is concave up.
Graph Il is g1 since it slopes down and is concave down.
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39. Let C, bethe coefficient of the n'" termin the series. Note that

d 22
0=C = E(mze ) ,
=0
and since
6
. dd?(x2ez)
— — z=0
P —
we have .
d 9 22 _ 6! _
ﬁ(l’ﬁ )EZO— D) —360

40. Let C, bethe coefficient of the n*™ term in the series. C, = f'(0)/1!,s0 f/(0) = 1!1C1 =1-1=1.
Similarly, f"(0) = 2!C> =2!- 1 =1;
f(0)=3IC3 =33 =21=2;
FU9(0) = 101C10 = 10! & = 1% = 91 = 362880.

41. We definee™ to be @ a8 @8 9 (i)
i0)° 6 6 i0 i0
2 Y T e e

Suppose we consider the expression cos # + i sin 8, with cos € and sin 6 replaced by their Taylor series:

62 o9t ¢ 6> °
c050+isin0:(1—§+I—a+-~~>+i<0——+—.—--->

e =1+i0+

Reordering terms, we have

. Lo 8% ie® et > 6°
COSH+151H0:1+Z€_§_§+I+H_§_”'
Using thefact that i> = —1, 4% = —i,i* = 1,¢° =i, - - -, we can rewrite the series as

i0)2  (i6)°  (i8)*  (18)°  (i6)°
(2!) +(3!) +(4!) +(5!) +(6!)

Amazingly enough, this seriesis the Taylor seriesfor e” with 6 substituted for x. Therefore, we have shown that

cosf +isinf =1+i6 +

cos@ +isinf = .

Solutions for Section 10.3

Exercises
1. We'll use
1 1 1\ /-1\ *
= 2 = — _ — Z
Vity=(Q1+y) 1+(2)y+(2)<2)2'
1\ /—=1\ /=3\ ¢°
+ (5) (7) (7) BT
v vy
BRI R ST

Subgtitute y = —2x.




(62}

~

10.3 SOLUTIONS
. Substitute z = 62 into series for cos z:
2y _ (6%, (6*)' _(8°)°
cos(0”)=1— o1 + T +
94 98 912
“leata et
. Substitutey:—a:intOe’v’:1+y+§+%—?+ We get
—a (—2)*  (—=x)®
e * =14+ (—z)+ TR TR
$2 $3
sl-etgr-gt
t -1 (=D(=2) >, (=1)(=2)(=3) 3
1+t—t(1+t) —t<1+( 1)t + —t + 3 t° +
=t—t"+t—t'+-.

=

3

. Substitutingz = —2y intoln(1 + z) =z — é + % — 5+ gives

(=29)°  (=2y)° (=2p)°
In(1 — 2y) = (—2y) — -
n(l—2y) = (-2y) 5t 3 T
= —2y—2y2—§y3—4y4—---
. Since 2 (arcsinz) = \/11—2 =1+ %2>+ 22" + 2%+ - integrating gives

arcsinz =c+x + lx?’—i— ixf’ + im
N 6 40 112

7+...

Sincearcsin0 = 0,c = 0.

. Substituting z = —z2 into Var=dhn (l+z)3=1- tx+22” — 2o’ + . gives
L2 232 _2\3
1 :1_(Z)+3(z)_5(z)+__
V122 2 8 16
1t Doy

212 2\4 2)6
¢* cos(¢”) = ¢ (1—(¢2;) + (¢4!) ‘(¢6!) - )
7 (/)11 (/)15
, _2\2 2\3
e;:ze “ =Z<1+(_ 2)+( ;l) +( ;) + )
s, 20 2
=z-2"+ 5 -+

591
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1o 2 3 3 5
t t t t t
V0l+tsint= 14+~ — =+ — —... .
(L+)sin <+2 s 16 )( 31 " )
Multiplying and collecting terms yields
t2 t3 t3 t4 t4
1+ t)sint=t+—— | =+ — - -
V(L+t)sint =t + 5 <3!+8>+<1 )+
1.5 7 .3 1 4
=t+ 7 — —t°— —t
+2 24 48 +
1 2 3 4 2 4 6
¢ _ >t 2ttt
ecost-(l—f-t-f-a-f-ﬁ-f-z-f----) <1—§+I—a+--->
Multiplying out and collecting terms gives
elcost=1+t+ ﬁ—ﬁ + ﬁ—ﬁ + ﬁ+ﬁ— t' + .-
- 20 2! 32! 4l 41 (2n2
2t
ti-g -+
12. Substituting the seriesfor sin 6 = § — & + & _ ... into

1 1, 14
]_ :1 — —_ = J— —_ ..
Vity=1+gy—cv’ +5v

gives

1o 53
o 80 480

13. Multiplying out gives (1 + z)® = 1 + 3z 4 32 + 3. Sincethis polynomial equals the original function for all z, it must
be the Taylor series. The general termis0 - ™ forn > 4.
14. Substituting ¢* into the series for sin 2 gives

SR i SN G MO o o G Sl

1 2 = _ e S
sin(t) =" - -+ 5 @k + 1)!
t6 th (_1)kt4k+2

—2—— —_ e e — ..
Steogt st ot ey

Therefore
t7 tll (—l)kt4k+3 a

. S AR R Sl S AN WV R
sttt e

11 (_1)kt4k+3

- _ i A f > 1.
ster T T T ork 2
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15. Using the Binomial theorem:

1
11—z
=(1-z)'?
14 (_%) (—2) + (—1/2)(—23!/2)(—:1:)2 - (—1/2)(—3/2)~~-£l!—§ —n+1)(—z)" o> L
Substituting > for z:
=)
1—1y92
:1+%y2+gy4+---+ (1/2)(3/2)---75’%+n—1)y2” +---forn > 1.

16.
L_ 110
2+x  2(1+%) 2 2
_1 1_£+(£)2_(£)3+
T2 2 2 2
17.
_1
a a _ 1+m_2 2
va? + x? a(1+z—§)% a’
. _1)£+1(_1) (-2) 2\’
a 2/ a2 2! 2 2/ \ a2
5 (9 () ) (5) -
31\ 2 2 2/ \ a2
S DR GO
- 2 \a 8 \a 16 \a
Problems

18. (a) Writing

and using the Binomia expansion, we have

122 b
(b) A graph of the upper half the ellipse is shown in Figure 10.7. Since the graph has a horizontal tangent at z = 0, the
coefficient of z is0.
(c) Theparabolais

bz>
y=bo o
Its z-interceptsare z = +/2a.
(d) The graphs of
2 2
y=f(z)=24/1-—= and y:2—x—
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are shown in Figure 10.8. The maximum difference occursat z = 0.1 or z = —0.1, s0

(0.1)* (0.1)2

Maximum error = 2 — 2415 ~3-10 .
Taylor polynomial: Ellipse:
y — 9 _ m2 -
y=2-2°/9 y y=2y/1-22/9
b S
l / R
x
—a a ! |
-3v2 -3 3 32

Figure 10.7: Graph of

y =by/1 —x2/a? Figure 10.8

19. The Taylor expansion about § = 0 for sin 6 is

93 95 97
T
3 5 7
. 0 0 0
1+Sm0:1+0_§+5_ﬁ+.”'
The Taylor expansion about # = 0 for cos 6 is

1
140

The Taylor expansion for about § = 0is

- —1- 2_g8 4L
T3 0+60"—6°+6
So, substituting —6? for 6:

L 2 2)2 243 24
1_92:1_(_9)+(—9) — (=) + (-6 +---

=1+6"4+0"+6°+6°+---.

For small 6, we can neglect the terms above quadratic in these expansions, giving:

1+sinf~1+86
92

~1— —

cosf ~ 5

For al 6 # 0, we have

Also, since % < 6 for 0 < 6 < 1, we have
0?2 2
1—7<1+9 <1l+6.
So, for small positive 6, we have

1 .
cosf < 1_—02 < 1+4sinf.
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20. Fromthe seriesfor In(1 + y),

ln(1+y)=y—y;+%—yz4+ ,

we get \ ] .
m(i+y") =y -5+ -4

The Taylor seriesfor sin y is , ; .

sinyzy—g!-f-%—y?—'-f-

> ooyt oy oyt
siny :y—§+ﬁ—7+~~

The Taylor seriesfor cos y is , \ ;
cosy:l—%+i—!—%+~~

> vyt
l—cosy25—1+a+~~

Near y = 0, we can drop terms beyond the fourth degree in each expression:

2 2 y4
In(l1+y )=y iy
2 2
siny” Ry
2 4
~Y _ Y
l—cosyNZ' T

(Note: These functions are all even, so what holds for negative y will hold for positive y.)
Clearly 1 — cosy issmallest, because the y? term has a factor of % Thus, for small y,

2 4 5 y4 5
o T SV Ty <Y

1—cosy < In(1 4 y°) < sin(y?).
. 1 .
21. The Taylor seriesabout O for y = T2 is
y=1+x2+x4+x6+~~~.

The seriesfor y = (1 + )'/* is, using the binomial expansion,

‘1+1+1(E)£+1(£)Cl)£+
Y= 2Tt T \Te) o T, 1) 3l '

Theseriesfory = /1 + g =(1+ 2)1/2 is, again using the binomial expansion,

._1+1.z_+1(_1).£i+1(_1)(_§).zi+.“
Y= T3'373\72) % "2(2)\72)

Similarly for y =

595
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Near 0, let’struncate these series after their 22 terms:

1
1 m2z1+x2,
3 .
1 VA gy 2 22
1+ —+—4x 32x,
xr 1 1 2
1+ 2 1420 =
to Rt T,
1 1 )
~1+4+ - =
T +2a:+8x

so(a)_l

I

The last two both have positive slope (i) and are concave down. Since (1 + x)% has the smallest second derivative
(i.e., the most negative coefficient of 2), (b) = IV and therefore (c) = I11.

22. Yy

@

1

2
1122 =1-a’+z' -2+

Notli ce that the first two terms are the samein both series.
b)) —— T a° is greater.
(c) Even, because the only termsinvolved are of even degree.

(d) The coefficientsfor e~ ** pecome extremely small for higher powers of x, and we can “counteract” the effect of these
powers for large values of x. The seriesfor has no such coefficients.

1+ T+z2
23. (a) The Taylor approximation to f(z) = cosh z about z = 0 is of the form
" 2 (n) n
coshz = cosh(0) + ' (0)z + (;)x +ot %

We have the following results:
f(x) =coshzx so f(0) =1,
f'(z) =sinhz so f'(0) =0,
F(z) = di (sinhz) = coshz 0 f7(0) =1,
" (x) =sinhz so f"(0) = 0.

The derivatives continue to aternate between cosh x and sinh x, so their values at 0 continue to alternate between 0
and 1. Therefore

2 3 4

h 1 1— —1
coshr~1+4+0- -2+ 2+0 3+ 4’
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so the degree 8 Taylor approximation is given by

2 1‘4 1‘6 1‘8

coshm~1+§+—+a+§

(b) We use the polynomial obtained from part (a) to estimate cosh 1,

1 1 1 1
coshlm=1l+4 -4+ -+ =+

stateTa = 1.543080357.

Compared to the actual value of cosh 1 = 1.543080635 . . ., the error islessthan 1075,

(c) Since % (cosh z) = sinh z, we have

=Sttt o

24. (a) f@)=(1+az)(1+bx)"" = (1+az) (L —bx+ (bz)’ — (bx)’ +---)
=14 (a—Db)x+ (b> —ab)z’ + -

©) " =1+a+2 +...
Equating coefficients:

wl»—A

Solving givesa =
25, Q
-1

1O
=

1 1
E=kQ ((R— 02 (R+ 1)2>
-2 (o)
RP\(1-5)? (1+5)?
Since |%| < 1, we can expand the two terms using the binomia expansion:
1 1\72
CE=ESE (1-%)

=1-2(=5) + (-3 TEL + (<239 L+

@:(”%)2

=1-2 (l) + (—2)(—3)(?) +(=2)(=3)(—4)

Substituting, we get:

kQ 3 4 2 3 4 kQ( )
E= 1 2= 1- 24+ 2 = 4.
R2 +R+R2+R3+ ( Rim ®m )} r\rT®

using only the first two non-zero terms.

597
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26.

27.

28.

Chapter Ten /SOLUTIONS

Using the binomia expansion we have

o\ 1/2
vVat+zr2=a <1+ 2—2>
o (110 R0 uCYNCYD )

2 a? 2! at 3! ab

Similarly, we have

Combining gives

; ; ; 12° 1 2° ? 1z
z=\/az—l—asz—\/az—x2:a<2-§a—2+2-ﬁﬁ+~-> =;+§—5+~~~

This time we are interested in how a function behaves at large values in its domain. Therefore, we don’t want to expand
V =2wo(v/R? 4+ a® — R) about R = 0. We want to find a variable which becomes small as R getslarge. Since R > a,

it is helpful to write
a2

We can now expand a series in terms of (2)2. This may seem strange, but suspend your disbelief. The Taylor series for

,/1+;;—22is

a
R

Ll e ('

2 2\ 2
SOV = R2no [ 1+ %% - é (%) 4+ = 1). For large R, we can drop the—%;—i term and terms of higher
order, so ,
ToQa
V&R

Notice that what we really did by expanding around (%)2 = 0 was expanding around R = co. We then get a series that
converges for large R.

(@ If¢ =0,
leftside=b(1+14+1)=3b=0
so the equation is almost satisfied and there could be a solution near ¢ = 0.
(b) Wehave
3 5
sing = ¢ — oy +or —
_, ¢, ¢
cosp =1— or + o

2 4 2 4
cosz¢:<1—%+%—~~> (1—%—}—%—---).

Neglecting terms of order ¢ and higher, we get
sin g & ¢

cosp ~ 1

cos? o=~ 1.

So¢p+b(l+1+1) =0, whence ¢ ~ —3b.
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29. (a) Factoring the expression for ¢; — t2, we get

At =t —ty = 21> _ 2l _ 2l N 201
c(l —v?/c?) c\/1—112/c2 c\/l —v2fc2  c(l—v?/c?)
- Z(ll +l2) 2(l1 +l2)
Tl —v?/?) cy/1—v?/c?

- Z(ll +l2) 1 _ 1
B c 1—v2/c? /1= 02/ '

Expanding the two terms within the parentheses in terms of v? /¢* gives

1 v vt WS
e +c—2+c—4+c—6+~-
LV (B E) (=), B E) (),
c? - 2 c? 2! c? 3! c?

—1+1£+§U_4+if+

- 2¢2  8ct 16 c6

Thus, we have
2(l1+l2)

1+ S+l D 2L 2T

- c ( c c c 2¢2 8c* 16cf

2t S 102 3 vt 5 v >

v

ot
N(l1+l2) v 5v
At c 02+4c4 ’

(b) For small v. we can neglect all but the first nonzero term, so

2
At & (I +12) v (Is +lz)v2.
c c? c3
Thus, At is proportional to v> with constant of proportionality (I; + I2)/c®.
mM
m+M’
. mM

If M >> m, then the denominator m + M ~ M , SO ju =~ 7 m.

®) .
M i 1
= () =n (55g) = (%)

We can use the binomial expansion since 77 < 1.

wem g G ()

1 m
So afirst order approximation to x would give . = m(1 — 0.000545). The percentage difference from p = m is
—0.0545%.

31. (a) Fora/h < 1, wehave

30. (@ p=

SE

1 _ 1 _Ll(,_la® 3a'
@2+ k)12~ h(l+a2/h2)/2 " h on2 T8R1 )
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Thus

2GMmh< 1a®> 3a* )
=2 114+ -2 — .

2
_2GMm1a® 1_§a_2 _ GMm 1_§a_2_
T a2 2h2 4h2° ) T R2 4n2 )

(b) Taking only the first nonzero term gives

GMm
h2
Notice that this approximation to F' is independent of a.
(©) 1fa/h = 0.02, then a®/h® = 0.0004, SO

F =~

GMm 3 GMm
Fa = (1- 1(0'0004)) =73 (1 —0.0003).
Thus, the approximations differ by 0.0003 = 0.03%.

32. (a) If hismuch smaller than R, we can say that (R + h) =~ R, giving the approximation

_ mgR? - mgR? — mg

(R+h)? " R?

(b)
_ ng2 _ mg _ o
F=ane = W nme =m0 ThE)
_ (=2) (hY , (=2)(=3) (h\* | (=2)(=3)(=4) (I?
—mg<1+T (E) AT (E) T (E) *)
R R? R?

(c) Thefirst order correction comes from term —2h/R. The approximation for F isthen given by

2h
F =~ 1-——).
mg( R)

If the first order correction alters the estimate for F' by 10%, we have

% =010 S0 h=0.05R = 0.05(6400) = 320 km.

The approximation F' ~ mg is good to within 10% — that is, up to about 300 km.
33. (a) Wetake theleft-hand Riemann sum with the formula

Left-hand sum = (1 4 0.9608 + 0.8521 + 0.6977 + 0.5273)(0.2) = 0.8076.

Similarly,
Right-hand sum = (0.9608 + 0.8521 + 0.6977 + 0.5273 + 0.3679)(0.2) = 0.6812.
(b) Since
= x> z3
L2 _22)2 —22)3
e z1+(—m2)+(2!) +(3!)
4 6
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(©
/le_xzdxz/l (1—:1:2+%4—%6>d:1:
0 0
1
= <x — %3 + T—; - i—;) = 0.74286.
(d) We can improve the left and right sum values by averaging them to get 0.74439 or by increasing the number of

0
subdivisions. We can improve on the estimate using the Taylor approximation by taking more terms.
34. (@) TheTaylor seriesfor1/(1 —z)=1+z 42> +2>+...,50

1 # _ 2 3
558 = T g0z = L (0:02) +(0.02) + (0.02)° + ..

= 1.020408 ...

(b) Sinced/dx(1/(1 —x)) = (1/(1 — z))?, the Taylor seriesfor 1/(1 — z)? is

%(1—}—304—:1:24—:1:34—...):1+2:1:+3:1:2+4:1:3+---

Thus

1 1
0997 = 001 = 1+ 2(0.01) + 3(0.0001) + 4(0.000001) + - - -

= 1.0203040506 . . .

Solutions for Section 10.4

Exercises

1. Let f(z) = (1—2)/3,50 £(0.5) = (0.5)"/3. The error bound in the Taylor approximation of degree 3for £(0.5) = 0.53
about z =0 is:

M-0.5—-0/* M(0.5)*

4l - a
where | f*) (z)| < M for0 < z < 0.5. Now, f*) () = —£(1 — z)~(**/*), By looking at the graph of (1 —z)~ /%),
we seethat | f*) ()| is maximized for z between 0 and 0.5 when z = 0.5. Thus,

|Es| = |£(0.5) — P3(0.5)] <

—(11/3) 80
@) < 80 (l) _ 80 s
171 < 81 \2 81 2 ’
= 11/3 4
|Es| < 80-2 - (0.5)" ~ 0.033.

81-24

2. Let f(z) = In(1 4 z). Theerror bound in the Taylor approximation of degree 3 about z = 0 is:

\Ex| = |£(0.5) — Py(0.5)] < M08 =01 _ M(0.5)°

4! 24
where | f) (z)| < M for 0 <z < 0.5. Since f) (z) = ﬁ and the denominator attains its minimum when z = 0,
we have | f* (z)| < 3!, s0
31(0.5)"
|E4| < 057+ 0.016.
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1

3. Let f(z) =1+ m)*% = The error bound for the Taylor approximation of degree three for f(2) = % about

; Vits:
r=0Is

M-2-0" M-2*
(B3] = |(2) — Py(2)) < L2200 A2

where [f*)] < M for0 < z < 2.Since f(z) = 225 (1+2)~ /), weseethat if z isbetween 0 and 2, | f (D z)| < 205,
Thus,

105 2% 105
< — . — = — =4.375.
< 16 24 24 375
Again, thisis not a very helpful bound on the error, but that is to be expected as the Taylor series does not converge at

x = 2. (Atz = 2, we are outside the interval of convergence.)

|E3

Let f(x) = tan z. The error bound for the Taylor approximation of degree threefor f(1) = tan1 about z = 0 is:

M-t1-o* M

|Es| = |f(1) — P3(z)| < al 24

where | £ (z)| < M for0 < z < 1. Now, f¥)(z) = 18sn2 4 % From agraph of ) (z), we seethat £ (z)
isincreasing for « between 0 and 1. Thus,

1@ @) < 114 (1)) = 396,

396
< —=— =16.5.
|Bs| < 5 =165
Thisis not a very helpful error bound! The reason the error bound is so huge is that + = 1 is getting near the vertical

asymptote of the tangent graph, and the fourth derivative is enormous there.

Problems

5. (a) The Taylor polynomial of degree 0 about t = 0 for f(t) = ¢’ issimply Py(x) = 1. Sincee’ > 1 on [0, 0.5], the

approximation is an underestimate.
(b) Using the zero degree error bound, if | f/(¢)] < M for 0 < ¢ < 0.5, then

|Bol < M -|t] < M(0.5).
Since |f'(t)| = |ef| = e' isincreasing on [0, 0.5],
If'(1)] <e®® < V=2

Therefore
|Eo| < (2)(0.5) =1.

(Note: By looking at a graph of f(¢) and its 0*" degree approximation, it is easy to see that the greatest error occurs
whent = 0.5, and the error ise®® — 1 ~ 0.65 < 1. So our error bound works.)

6. (@) The second-degree Taylor polynomia for f(t) = e’ is P(t) = 1 + t + t?/2. Since the full expansion of e! =

1+t+12/2+t3/6 +t*/24 + - - - isclearly larger than P (t) for t > 0, P2(t) isan underestimate on [0, 0.5].
(b) Using the second-degree error bound, if | f®) (¢)] < M for 0 < ¢ < 0.5, then

M 3 _ M(0.5)?
|Bo < 57 - It < =

Since | f® (t)| = €', and e isincreasing on [0, 0.5],

FO@) < < Va=2.

|Es| <

M < 0.047.
6
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(a) O isthefirst degree approximation of f(6) = sin 6; it isalso the second degree approximation, since the next termin
the Taylor expansion is 0.
P;(8) = 6 isan overestimate for 0 < # < 1, and isan underestimate for —1 < 6 < 0. (This can be seen easily from
agraph.)

(b) Using the second degree error bound, if |f*)(8)| < M for —1 < 6 < 1, then

M0 M
B <—— < —.
Bl < =5 <%
For what value of M is|f® (6)| < M for —1 < 6 < 1?Well, | f®)(6)| = | — cos ] < 1.S0|E»| < & = 0.17.

3
(@ 66— % isthe third degree Taylor approximation of f(6) = sin 8; it isalso the fourth degree approximation, since the

next term in the Taylor expansion is 0.

P;(0) is an underestimate for 0 < # < 1, and is an overestimate for —1 < 6 < 0. (This can be checked with a

calculator.)
(b) Using the fourth degree error bound, if |f®)(9)| < M for —1 < 8 < 1, then

5
M) < %
5! — 120

For what value of M is|f®®(8)| < M for —1 < § < 1?Since f®) () = cosf and | cos §] < 1, we have

|Es| <

1
E4| < — <0.0084.
|Ea| < 355 < 0-008

(a) Thevertical distance between the graph of y = cosz and y = Pio(z) a = 6 isno more than 4, so
|Errorin Pio(6)] < 4.

Sinceat z = 6 thecos z and P»o(x) graphsareindistinguishablein thisfigure, the error must be lessthan the smallest
division we can see, which is about 0.2 so,

|Error in Py (6)] < 0.2.

(b) The maximum error occurs at the ends of theinterval, that is, at z = -9,z = 9. Atz = 9, thegraphs of y = cosz
and y = P»o(x) are no more than 1 apart, so

Maximum error in Pso () <1
for—9 <z <9 -

(c) We are looking for the largest z-interval on which the graphs of y = cosx and y = Pio(z) are indistinguishable.
Thisishard to estimate accurately from the figure, though —4 < z < 4 certainly satisfies this condition.

The maximum possible error for the n*™ degree Taylor polynomial about = = 0 approximating cosz is |E,| <

ool N . .
%, where | cos™*h x| < M for 0 < z < 1. Now the derivatives of cos x are simply cos z, sin z, — cos z, and
‘E‘"+1

— sin . The largest magnitude these ever tekeis 1, 0 | cos"" ™) ()| < 1, and thus | Ex| < Eigy; < grpyp- Thesame
argument works for sin x.

By the results of Problem 10, if we approximate cos 1 using the n‘" degree polynomial, the error is at most ﬁl),

For the answer to be correct to four decimal places, the error must be less than 0.00005. Thus, the first n such that
ﬁ < 0.00005 will work. In particular, when n = 7, & = 5= < 0.00005, so the 7*" degree Taylor polynomial
will give the desired result. For six decimal places, we need ﬁ < 0.0000005. Since n = 9 works, the 9*" degree
Taylor polynomial is sufficient.

(@
Table 10.1 Table 10.2
E, =sinz —x E) =sinz —=x
T sinx E T sin x E
—0.5 | —0.4794 | 0.0206 0 0 0
—0.4 | —0.3894 | 0.0106 0.1 ] 0.0998 | —0.0002
—0.3 | —0.2955 | 0.0045 0.2 | 0.1987 | —0.0013
—0.2 | —0.1987 | 0.0013 0.3 ] 0.2955 | —0.0045
—0.1 | —0.0998 | 0.0002 0.4 | 0.3894 | —0.0106
0.5 0.4794 | —0.0206
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(b) See answer to part (a) above.
@ 0.03 +———————-

———- —0.03 +-————-—-

The fact that the graph of E; lies between the horizontal lines at +0.03 shows that |Ey| < 0.03 for —0.5 <
z < 0.5.

13. (a) Yy

—0.01+

The graph of E; looks like a parabola. Since the graph of E; is sandwiched between the graph of y = 2 and
the z axis, we have
|Ei| <z® for |z| <0.1.

(b) Yy

/
/ —0.001 +

The graph of E> looks like a cubic, sandwiched between the graph of y = 2® and the z axis, so
|E2| < 2® for |z| <0.1.

(c) Using the Taylor expansion

2 3
z T T
ef=lta+ o+t
we see that
z x> z> z!
E1=6 —(1+$):§+§+E+
Thusfor small z, the 2 /2! term dominates, so
2
T
El ~ E,
and so E; isapproximately a quadratic.
Similarly
2 3 4
= N T
Ez—e —(1+$+7)—§+E+
Thusfor small z, the 2 /3! term dominates, so
3
T
E2 ~ ?

and so E is approximately a cubic.
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15.

16.
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0.01

—0.01+
The graph of Ej looks like a parabola, and the graph shows
|Eo| < 0.01 for |z| <0.1.

(Infact |Eo| < 0.005 on thisinterval.) Since

_ 1‘2 1’4 1’6
cosT=loort g et
2 4 6
xr xr xr
EOZCOS$—1=—§+I—E+'H.
So, for small z,

1‘2
EO%—T,

and therefore the graph of Ej is parabolic.

Since f(x) = e, the (n+1)** derivative f("*Y () isalso e”, no matter what n is. Now fix anumber = and let M = e,
then |f(" TV ()| < e' < e” ontheinterval 0 < t < z. (Thisworksfor z > 0; if z < 0 then we can take M = 1.) The
important observation is that for any = the same number M bounds all the higher derivatives f™ V) (z).

By the error bound formula, we now have

M|z|"H

|En(z)] = |e” — Pu(x)] < )T for every n.
To show that the errors go to zero, we must show that for afixed = and a fixed number M,
(77J]_:_/11)!|mc|"Jrl —0 a n— oo
Since M isfixed, we need only show that
(n—fl- 1)!|9L‘|"Jrl —0 a n— oo

This was shown in the text on page 456. Therefore, the Taylor series 1 + « + 2% /2! + - - - does converge to ¢”.

1’3 1’5 & m2k+1

3! 5!
(Noticethat (—1)* = 1if kisevenand (—1)* = —1if k isodd.) We want to show that if = isfixed, B, — 0 ask — co.
Since f(z) = sin z, al the derivatives of f(z) are £ sinz or £ cos z, o we havefor al n and dl =

|F D (@) < 1.

+ E,.

Using the bound on the error given in the text on page 456, we see that

o
|En| < m|$|2 +2

By the argument in the text on page 456, we know that for al z,
|x|2k+2 |x|n+1
k+2)!  (n+1)!

Thus the Taylor series for sin « does converge to sin z for every z.

—0 a n=2k+1— 0.
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Solutions for Section 10.5

Exercises

. No, aFourier series has terms of the form cos nz, not cos™ x.

. Not a Fourier series because terms are not of the form sin nz.

. Yes. Thisisa Fourier series where the cos nz terms al have coefficients of zero.

1
2
3. Yes. Terms are of the form sin nz and cos nz.
4
5

1 T 1
ao—%/_ﬂf(x)dx—%

a1 = l/ f(x)cosxdr =
™ -

Similarly, a2 and a3 are both 0.

3=

—sinz

0 T
/ —1dx—+—/ 1dx} =0
-7 0
0 T
/ —cosxdx—l—/ cosa:dx]
-7 0

0
+sinz

-

=0.
0

(Infact, notice f(z) cos na isan odd function, so [”_ f(z) cos nx = 0.)

b1 = l/ f(z)sinzdr =
T —m

1
i

b2 = —/7r f(x)sin 2z dx

™

1

b3=—/ f(z)sin 3z dr

s

Thus, Fi(z) = Fy(z) = 2 sinz and F5(x)

S

3=

1 0 T
{/ —sinxda:—l—/ sin:z:da:}
- 0
1{
Cos T

0
+ (—cosz)

71':|_é
0 ™

-

0 T
/ —sin 2z dz + / sin 2z dx]
—m 0

1
— cos 2x

0
+ (—% cos 2z)

-7

|-
0

0 T
/ —sin 3z dx + / sin 3x dm]
—m 0

% cos 3x

0
+ (—é cos 3zx)

-7

0 3w

4 4 o
~sinz + 5 sin 3z.

-1

F3(z) = L sinz + % sin 3z

™
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6. First,
0

T 0 ™ 2
1 1 1 x

Tofind the a;'s, we use the integral table. Forn > 1,

= %/:r F(x) cos(nz) do = = VO ¢ cos(na) dz + /Owa:cos(nx)dx]

-

= % {( - %sin(nx) — % cos(nx))

+ (% sin(nz) + % cos(na:))

0

0:|
1 1

B 1 1 1
== -=+ = cos(—nm) + e cos(nm) — =

T n2

2
= W(cosmr —-1)

Thus, a; = —2,a2 = 0, and as = —z=. To find the b;’s, note that f(z) is even, so for n > 1, f(x) sin(nz) is odd.
Thus, / f(x)sin(nz) = 0,soal theb;’'sare0. F1 = F» = § — %cosx,Fg =Z- %cosx — % cos 3x.
™+ w4
_r T -7 ™
1 1 T 1 1 T
Fl(x):Fg(x):%—%cosx Fg(:v)zg—%cosx—%cos?)x

™

E:l/ (f(x))zda:zl/ a:2dxzia:3
T ) T ) 3T

_2r 2

-

1 3 3 2
= — — (= =— =—-7"=6. 4.
3 (" = (—7")) Fy 37 6.5797
From Problem 6, we know al the b;,’sare 0 and ap = 3, a1 = —%, ay =0,a3 = ——9‘;. Therefore the energy in the

constant term and first three harmonicsis
A5+ AT + A3 + A3 = 203 +a} + a3 +a3
2 16 16

™

=2 <Z> +—5 + 0+ g = 6.57596

6.57596
6.57974

a = 7Talczda:—i x_3
> IEZANE]

Tofind a,,n > 1, we usetheintegral table (111-15 and 111-16).

= 0.99942 =~ 99.942% of the total energy.
o
—T B 3
2

1 [ 2 2
an = — /,,, z® cosnzx de = {% sin(nz) + n_f cos(nz) — e sin(nx)}

which means that they contain

8. First, wefind ao.

™

1|2 2r
=—|= cos(nm) + ey cos(—n)

% cos(nm)
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Again, cos(nm) = (—1)" for al integers n, s0 a, = (—1)" 5. Note that

1 ™
bnz—/ z° sin nz dz.

z? isan even function, and sin nz is odd, so z2 sin nx is odd. Thus ffw z2sinnz de =0, and b, = 0 for al n.
We deduce that the n*" Fourier polynomial for f (wheren > 1) is

Fu(e) =T+ Z(—l)i% cos(iz).

In particular, we have the graphs in Figure 10.9.

NN »

Figure 10.9

1 [T 1 [T m
=5 _Trh(x)da:—% i xdx—z

Asin Problem 10, we use the integral table (111-15 and I11-16) to find formulas for a,, and b,, .

ao

™

an = = /,,, h(z) cos(nz)dx = % /0 zcosnxdr = % (% sin(nz) + % cos(nx))
1(1 1
= ; (F COS(’I’LTF) — ﬁ)

= # (cos(mr) — 1>.

0

Note that since cos(nm) = (—1)",a, = 0 if nisevenand a,, = — 3 if nisodd.
1 [7 1 [T .
bn = —/ h(zx) cos(nz) dx = —/ zsinzx dr
m -7 m 0

™

_ ! ( — % cos(nz) + % sin(na:))

™

= % ( — % cos(mr))

1
=- cos(nm)

0

(=)™ ifn>1

S|
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We have that the n*" Fourier polynomial for i (for n > 1) is

- n —1)"* ! sin(iz
H,(z) = 1 + Z <% <cos(i7r) — 1> - cos(ix) + Lf”)

i=1
This can also be written as

: @ :21)27r cos((2¢ — 1)x)

Y

Figure 10.10

10. To find the n*" Fourier polynomial, we must come up with ageneral formulafor a,, and b,,. First, wefind ao.

|-

™

1 [ 1 [ 1 [a®
a0 = 5 Wg(m)dx—%/wmdm—ﬁ{7

Now we use the integral table (111-15 and I11-16) to find a,, and b,, for n > 1.

I 1(z 1
n== de = = L ;=
a [ x cosnx dx (n sin(nz) — cos(nm))

™ ™
™

-

_1 (% cos(nm) — % cos(—mr)) =0

s

(Note that since = cos n is odd, we could have deduced that [*_« cos ne = 0.)

™

1 [7 1 1
bn = — / rsinnrdr = — < _— cos(nz) + — sin(nx))
. ™ n n

— l < _ E cos(nﬂ') — % COS(—Tlﬂ'))

™ n

-

2
=- cos(nm)

Notice that cos(nm) = (—1)" for al integersn, 0 b, = (—1)""'(2).
Thus the nt" Fourier polynomial for g is

Gn(z) = Z(—l)i+1%sin(ia:).

In particular, we have the graphs in Figure 10.11.
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Problems

11. (a) Thegraph of g(z)is

First find the Fourier coefficients: ao isthe average value of g on [—, 7] so from the graph, it is clear that

or analyticaly,
ap =
ar =
by =
So,

i,

Figure 10.11

-7

—7/2

1 1
GOZ%(WXI):E,
b /2 w/2
1 1 1 (m T
— de = — ldz = — :_(__(__
or | 9@de= oo P AT Y. 2
1 1
%(ﬂ-)_ 57
1 B 1 /2 1 /2
—/ g(z) coskx dr = —/ coskrdr = — sinkx
T T . km
-7 —7/2 —7/2

— (sink—7T —sin (—k—w)) -1 (ZSink—W)
km 2 2 T km 2 /)’
1 g 1 /2 1 /2
—/ g(z)sinkx dr = —/ sinkx dr = —— coskzx
TJ_. L k )2
o (cos——cos (—]%T)) Z—%(O)—O

ay = 1 (ZSin E) = z,

T 2 T
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1 .2

a2 = oo (251n 7) =0,
a _ L (25in3—7r) -2
7 3 2) " 3

which gives
Fi(z) = 3 + %cosx — % cos 3.
1 Fg(l’)
, i 9(z)
I I
I I
I I z
- /2 /2 ™

(b) There are cosines instead of sines (but the energy spectrum remains the same).

12. Wehave f(z) = 2,0 < z < 1. Let¢t = 2wz — m. Notice that as z varies from 0 to 1, ¢ varies from —= to 7. Thus
if we rewrite the function in terms of ¢, we can find the Fourier series in terms of ¢ in the usual way. To do this, let
g(t) = f(z) =z = L= on —z < ¢ < 7. Wenow find the fourth degree Fourier polynomial for g.

1 [" 1 [Tt4m 1 (¢
= — Bt = — [ ldt= — =+t
0= o7 | 9 27r/ 2 (2w)2<2+”>

-7

™

1

-

Notice, a¢ isthe average value of both f and g. For n > 1,

an = l/ t+m cos(nt)dt = 2—12 / (t cos(nt) + wcos(nt))dt
—r m -

™ 2w

™

= 2—711_2 [% sin(nt) + % cos(nt) + %sin(nt)]
1 /" t
1

1
=53 [—% cos(nt) + 3 sin(nt) — % cos(nt)}

-

+ 7

=0
™

sin(nt) dt = 21—2 / (tsin(nt) + wsin(nt)) dt
n —m

™

1, 4« 2 2 n
= ﬁ(—; cos(mn)) = - cos(mn) = %(—1) +,
We get the integrals for a,, and b,, using the integral table (formulas I11-15 and 111-16).
Thus, the Fourier polynomial of degree 4 for g is:

1 2 . 1 . 2 . 1
Ga(t) = 5+ p sint — = sin 2t + 3. sin 3t — I sin 4t.
Now, since g(t) = f(z), the Fourier polynomial of degree 4 for f can be found by replacing ¢ in terms of z again. Thus,
Fu(x) = % + %sin(Zwm —7) — %sin(llmv —2m) + % sin(6rz — 3mw) — % sin(8wx — 4m).

Now, using the fact that sin(z — ) = —sin z and sin(x — 27) = sin z, €etc., we have:

1 1 2 1

Fy(x) = = — = sin(2wz) — — sin(4nx) — — sin(6mx) — — sin(8nwx).
2 0w ™ 3 2
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13. Since the period is 2, we make the substitution ¢ = 7z — «. Thus, z = “E=. We find the Fourier coefficients. Notice
that al of the integrals are the same as in Problem 12 except for an extra factor of 2. Thus, ap = 1, a, = 0, and
by = 2 (=1)"*!, sor

Ga(t)y =1+ 4 sint — 2 sin 2t + 4 sin 3t — 1 sin 4¢.
m m 3m m
Again, we substitute back in to get a Fourier polynomial in terms of x:
4 . 2 .
Fy(z)=1+ p sin(mx — ) — p sin(2mrx — 2m)
4 . 1 .
+—sin(3wx — 3w) — — sin(4nz — 4r)
3T g

4 2 4 1
=1— —sin(nz) — —sin(27z) — — sin(37z) — — sin(47zx).
T T 3T T

Noticein this case, the termsin our series are sin(nwz), not sin(27nz), asin Problem 12. In general, the terms will
be sin(n2~x), where b isthe period.

14. The signal received on earth isin the form of a periodic function h(¢), which can be expanded in aFourier series

h(t) = ao + a1 cost + az cos 2t + azcos 3t + - - -
+bysint + basin 2t + b3 sin 3t + - - -

If the periodic noise consists of only the second and higher harmonics of the Fourier series, then the origina signa
contributed the fundamental harmonic plus the constant term, i.e.,

ao + ajcost+bisint = Acost
_/_/ N’

constant term  fundamental harmonic ~ original signal

In order to find A, we need to find ao, a1, and b; . Looking at the graph of h(t), we see

ao = averagevalue of h(t) = = Area above the z-axis— Areabelow the z-axis
2
m

5 [0(5) - (0 () + o0 (5) +20 (3) + 0 (5))]

() ()]0

1 ™
ap = —/ h(t) costdt
LU -

—3m/4 —7/2 —7/4
[/ —50costdt+/ 0costdt+/ —30costdt
-7 —3r/4 —7/2

m/4 /2 3r/4 n
+/ 80costdt+/ —30costdt—+-/ Ocostdt+/ —50costdt]
—7/4 /4 /2 3mr/4

—3m/4 —7/4
—30sint

3=

—50sint

3=

—7/2



b1

1

iy

NN

1

™

3=

3=

—_

3=
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/4 /2
—30sint —50sint

—x/4 /4 3#/4]

(o) (L-n)en(2-(-9)
(- 5) (- 2)

+80sint

[25V2 + 15V2 — 30 + 40v2 + 40v/2 — 30 + 15V/2 + 25V/2]

[160V2 — 60] = 52.93,

/ h(t)sintdt

r p—3m/4 —7/2 —7/4
/ —505intdt+/ Osintdt + / —30sintdt
-7 —3m/4 —7/2

m/4 /2 3r/4 n
+/ 80sin t dt + / —30sintdt + / Osintdt + / —50 Sintdt:|
—7/4 /4 /2 3mr/4

i —3m/4 —7/4 /4 /2 ™
50 cost + 30 cost —80cost + 30 cost + 50 cost
L - —7/2 —n/4 /4 3mr/4

50 (—? - (—1)> +30 (? —0) — 80 (Q - ?)

2
+30 (0 - g) +50 (-1 - (-?))}

1
[-25v/2 + 50 +15v2 = 0 - 15v/2 = 50 + 25v/2] = —(0) = 0.

Also, we could have just noted that by = £ ["_h(t) sin ¢ dt = 0 because h(t)sin ¢ isan odd function.
Substituting in, we get

So A = 52.93.

ao +aicost+bisint =0+ 52.93cost+ 0 = Acost.

613

15. The energy spectrum of the flute shows that the first two harmonics have equal energies and contribute the most energy
by far. The higher harmonics contribute relatively little energy. In contrast, the energy spectrum of the bassoon shows the
comparative weakness of the first two harmonics to the third harmonic which is the strongest component.

16. Let f(z) = ax cos kx + by, sin kz. Then the energy of f isgiven by

. 1 [ .
(f(x) dz = ;/ (ax cos kx + by sin kz)® dx

= l/ (a} cos® kx — 2ayby, cos kx sin kx + b, sin® kz) dx
T —m
1 2 T 2 T . 2 T .2

== ak/ cos ka:dx—Zakbk/ coska:smkxda:—l—bk/ sin kxda:j|
1
™

[aiﬂ' —2akbg -0 + biﬂ'] =a} + b3.

17. Since each square in the graph has area (5 ) - (0.2),

ao = %/W f(z)dz
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= % - (g) - (0.2) [Number of squares under graph above z-axis

— Number of squares above graph below z axis|
1

~ 5o () (0.2) - [13 411~ 14] = 0.25.

Approximate the Fourier coefficients using Riemann sums.

/ f(z)coszdr

P [f( ) cos(— )+f( )cos( )+f(0)cos(0)+f(g) cos (g)] .

= ; [(0.92)(=1) + (1)(0) + (=1.7)(1) + (0.7)(0)] - g
=-131

0ol

Similarly for b;:

/ f(z)sinz dz
- [f( ) sin(— )+f( )sm( )+f(0)sin(0)—+—f(g) sin (g)] .

= ; [(0.92)(0) + (1)(=1) + (=1.7)(0) + (0.7)(1)] - g
= —0.15.

o] 3

So our first Fourier approximation is

Fi(z) = 0.25 — 1.31 cos & — 0.15 sin 2.

ANTANS
S ARVAR
—9

Similarly for as:

S
¥}
I

/7T f(z)cos2zdx

Q

A== =

[f(—w) cos(—2m) + f ( ) cos(—m) + f(0) cos(0) + f (g) cos(—w)] .

[092)(1) + (1)(=1) + (~1.7)(1) + (0.7) (- D) - 2
=-1.24

/ f(x)sin 2z dx

[f( ) sin(— 27r)+f( )sm( )+f(0)sin(0)+f(g)sin(—ﬂ')}~
[(0.92)(0) + (1)(0) + (=1.7)(0) + (0.7)(0)] -

v 3

Similarly for ba:

Q
.°=l|»—*=l|
N
eI
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So our second Fourier approximation is

F>(z) =0.25 —1.31cosz — 0.15sinz — 1.24 cos 2z.

y
= F:
91 y = Fa(z)
1 M M -z
-2 - ™ 2
-2

Asyou can see from comparing our graphs of Fi and F» to the original, our estimates of the Fourier coefficients are
not very accurate.

There are other methods of estimating the Fourier coefficients such as taking other Riemann sums, using Simpson’s
rule, and using the trapezoid rule. With each method, the greater the number of subdivisions, the more accurate the
estimates of the Fourier coefficients.

The actua function graphed in the problem was

-3
sin(z
(5) sin 2

1 2 1
y=—-—13cosx — sinz — = cos 2z — =
™

4

=0.25 —1.3cosx — 0.18 sinxz — 0.63 cos 2z — 0.057 sin 2x.

18. The Fourier seriesfor f is
f(@)=ao+ Y arcoskr+ Y bysinkaz.
k=1 k=1

Pick any positive integer m. Then multiply through by sin mz, to get

[e ) [e )
f(z)sinmz = ap sinmzx + E ay cos kx sin mz + E by, sin kx sin mzx.
k=1 k=1

Now, integrate term-by-term on the interval [—, 7] to get

™ ™ oo oo
/ f(z)sinmzdr = / (ao sinmz + Z ay, cos kx sinmx + Z by, sin kx sin mm) dzx

k=1 k=1

:ao/ sinma:da:—l—z <ak/ coskxsinmxdx)

+ Z <bk / sin kz sin mx da:> .
k=1 -

Since m is a positive integer, we know that the first term of the above expression is zero (because f ; sinma dx = 0).

Since ["_ cos kz sin ma dx = 0, we know that everything in thefirst infinite sum is zero. Since [*_sin ka sin ma dz =
0 where k # m, the second infinite sum reduces down to the case where k = m so

/ f(z)sinmz dr = by, / sin ma sin mz de = b, .

Divide by = to get
bm = l/ f(z)sinmez dz.
0 —_m
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19. (a)

]

—3m —2m - 2w 3T

The energy of the pulsetrain f is

Next, find the Fourier coefficients:

ao = averagevalue of f on[—m, 7] = %(Area) =—(1)=—

1 (" 1 [V 1 1/2
ak=—/ f(m)coskmdx:—/ coskrdr = — sinkzx
TJon TJ1/2 km —1/2
= i (sin (E) — sin (—E)) 1 (ZSln(k))
T kw 2 2 km 2/))’
1 1 1/2
by = — / f(zx smkmdm——/ sin kx dr = —— coskx
™) 1) km 12

- o §) o (-5) - =

The energy of f contained in the constant termis

2
A(";:za;‘;:z(i) -1
21

whichis , )
Ao _ 1/27T _ 1 .
E - Ur o N 0.159155 = 15.9155% of thetotal.

The fraction of energy contained in the first harmonic is
2sin% 2
a_a_ ()

The fraction of energy contained in both the constant term and the first harmonic together is

A3 A7
T + 7~ 0.159155 + 0.292653 = 0.451808%.

(b) Theformulafor the energy of the k*™ harmonic is

2sin£\? . 4gin%k
Az:az+bz=< ,mz) o o A0S

By graphing it as a continuous function for k& > 1, we seeitsoverall behavior as k getslarger. See Figure 10.12. The
energy spectrum for the first five terms is graphed below as well in Figure 10.13.
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y AR
0.1 0.1
0.08 0.08
0.06 0.06 1
0.04 27
0.02 |
k ! k
1 5 10 15 20 o 1 2 3 4 5
Figure 10.12 Figure 10.13

(c) The constant term and the first five harmonics are needed to capture 90% of the energy of f. This was determined by
adding the fractions of energy of f contained in each harmonic until the sum reached at least 90% of the total energy
of f:
A2 AT A3 AL AT A2
E+E+F+E+ﬁ+§~901995%

25sin(1) n( ) 1n( )

(d) Fs5(z) = % + ——2-cosz + S‘“l cos 2z + cos 3z + S‘“2 cos 4r + ——2- cos bx
1 -~ F5(.’t)
il i i\ f(@) i i
i\ iy il
I
|1 ] I
LN Ll AL 1 "
\/ \v4 \J v N/ \v4
-3 —2m - _1'1 ™ 2T 3
22
20. (a)
n n
I I
I I
I I
I I
I I
I I
I I
Ll Ll z
-3 —27 —m ™ 2w 3w

Next, find the Fourier coefficients:

ao = averagevalue of f on [—m, 7] = %(Area) =— (2) _ L
™

1 [" 1 [ 1 Ve
ak:—/ f(m)coskmdx:—/ coskxdr = — sinkx
™) . T™J 15 km —-1/5
L (sin (E) _sin (_E)) L (zsin (E))
" kx 5 5 " kw 5 ’
1 (7 . 1 1 v
b = — f(z)sinkxdr = = smkmdx:——coskx
T _ m™J_1/5 km —1/5

iz (o (5) o (5)) =m0 =0
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The energy of f contained in the constant termis

‘ ‘ 1\2 2
Aj =2 2:2(—) =_"_
0= 24 5 2572

whichis , o
Ao _ 2/25m B 1 - .
E - 2 o 0.063662 = 6.3662% of thetotal.

The fraction of energy contained in the first harmonic is

2sin L 2
ﬁ_ﬁ_(wﬁ
E E 2

57
The fraction of energy contained in both the constant term and the first harmonic together is
AZ
E
(b) Theformulafor the energy of the k*™ harmonic is

~ 0.12563.

A2
+ Fl ~ 0.06366 + 0.12563 = 0.18929 = 18.929%.

2sin§ 2+02 _ 4sin2§
km T k22

By graphing this formula as a continuous function for & > 1, we see its overall behavior as k gets larger in Fig-
ure 10.14. The energy spectrum for the first five termsis shown in Figure 10.15.

quﬁ+%:<

y AR
0.02 - 0.02 -
0.015 0.015 |-
0.01 0.01 [
527
0.005 0.005
20 30 40 0 1 2 3 4 5
Figure 10.14 Figure 10.15

(c) The constant term and the first five harmonics contain

A2 A} A3 A2 A3 A2
ETETETE T E T B N 01520%
of thetotal energy of f.

(d) Thefifth Fourier approximation tofis
F5()__+Zsln() S()

n(

cosx + —2= cos 2x + cos 3z + 2252 cos 4 + 2sinl S‘“ 1 cos Hx.

-3 27 -7 _

11
55
For comparison, below is the thirteenth Fourier approximation to f.

~— Fu(g

_ \ L __
1 7" 2w 3w
5

-3 —27r - _

o=
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21. (a)

s

—
8

N

= om———————

—3m —2m - —1 ‘

The energy of the pulsetrain f is

™ 1
1 ) 1 , 1 2
E== dr== [ 1?==(1-(-1) ==
L[ gera=2 [ e-to-cn=2
Next, find the Fourier coefficients:
ao = averagevalue of f on [—m 7r]—i(Area)—i(2)—l
0 x T o T T
1 (" 1 [ 1 '
akz—/ f(m)coskxdxz—/ coskxdr = — sinkzx
T . T kw .
1, . 1.
= —(sink — sin(—k)) (2sink),

m

km

1

™ 1
by = l/ f(x)sinkzrdr = l/ sinkacdar::—L coskx
T J)_. o . km .
= —i(cosk —cos(—k)) = L(0) =0
T krm T kw o

The energy of f contained in the constant termis

whichis ) )
Ao _2/m 13183 = 31.83% of thetotal.
E 2/ W

The fraction of energy contained in the first harmonic is

. 2
A2 2 2sinl
Fl - % = u ~ 0.4508 = 45.08%.

Bl

The fraction of energy contained in both the constant term and the first harmonic together is

A7 | A7
20 1 21 % 0.7691 = 76.91%.
7+ 5~ 0.7691 = 76.91%

(b) Thefraction of energy contained in the second harmonic is

i 2
2 2 sm2)
A2 _2_ ( ™

E E 2

™

~ 0.1316 = 13.16%

so the fraction of energy contained in the constant term and first two harmonicsis

A2 A A
E + E + E 0.7691 + 0.1316 = 0.9007 = 90.07%.

Therefore, the constant term and the first two harmonics are needed to capture 90% of the energy of f.

619
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(0) ) . .
Fy(z) = l " 2sin1 J— sin 2 0s 2 + 2sin 3

os 3z

3

-~ Fg(l’)

-3 —27 - =1 1 ™ 2 3

22. Asc getscloser and closer to O, the energy of the pulse train will also approach 0O, since

oot [t [ ra=l(-(5)-F

The energy spectrum shows the relative distribution of the energy of f among its harmonics. Thefraction of energy carried
by each harmonic gets smaller as c gets closer to 0, as shown by comparing the k™" terms of the Fourier series for pulse
trainswith ¢ = 2, 1, 0.4. For instance, notice that the fraction or percentage of energy carried by the constant term gets
smaller as ¢ gets smaller; the same istrue for the energy carried by the first harmonic.

If each harmonic contributes less energy, then more harmonics are needed to capture a fixed percentage of energy.
For example, if ¢ = 2, only the constant term and the first two harmonics are needed to capture 90% of the total energy of
that pulsetrain. If ¢ = 1, the constant term and the first five harmonics are needed to get 90% of the energy of that pulse
train. If ¢ = 0.4, the constant term and the first thirteen harmonics are needed to get 90% of the energy of that pulsetrain.
This means that more harmonics, or more terms in the series, are needed to get an accurate approximation. Compare the
graphs of the fifth and thirteenth Fourier approximations of f in Problem 20.

23. By formulall-11 of the integral table,

™

/ cos kx cosmzx dr = ﬁ (m cos(kz) sin(mz) — k sin(kx) cos(mm))

Again, sincesin(nm) = 0 for any integer n, it is easy to see that this expression issimply 0.
24. We make the substitution v = mx, dz = - du. Then

™ u=mm
2 1 2
cos"mrdr = — cos” udu.
- m U=—mm

By Formula|V-18 of the integral table, this equals

1[1 " 11 (™ 1
— | = cosusinu + —- ldu =04+ —u
m |2 m2 J_ 2m

mm

mm

—mm —mm

1
2m( mmr) =

25. The easiest way to do thisisto use Problem 24.

/sinzma:da::/ (1—c052mx)da::/ dx—/ cos” mx dx

=27 — 7w using Problem 24

= T.
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26. By formulall-12 of the integral table,

™
/ sin kx cos mx dx
—_T

™

1 . .
T — k2 <m sin(kz) sin(mx) + k cos(kx) cos(mx))

-

- : 2 {m sin(kn) sin(mm) + k cos(km) cos(mr)
m? —

—msin(—kmx) sin(—mn) — k cos(—km) cos(—mﬂ')} .

Since k and m are positive integers, sin(kw) = sin(mm) = sin(—kw) = sin(—mmx) = 0. Also, cos(kw) = cos(—km)
since cos z is even. Thus this expression reduces to 0. [Note: since sin kz cos mx is odd, so ffﬂ sin kx cos mz dxr must
be0.]

27. Using formulall-10 in the integral table,

™

/ sin kz sinmaz dx = ﬁ {k cos(kx) sin(mz) — msin(kz) cos(mm)]

-

Again, sincesin(nm) = 0 for all integers n, this expression reduces to 0.
28. (a) Toshow that g(t) isperiodic with period 27, we calculate

b(t+2 bt bt
glt+2m) = f (%) =1 (3 +8) =5 (35) =90
s 21 21
Since g(t + 2m) = g(t) for al ¢, we know that g(t) is periodic with period 2. In addition

o (52) =1 (M52) = o

(b) We make the change of variable t = 2wz /b, dt = (27 /b)dz in the usual formulas for the Fourier coefficients of
g(t), asfollows:

T b/2 b
1 1 2z 27 1 /2
= — t)dt = — SN 2T gy = = d
w0=5r ) Wdt=5 rfwg( b ) p =y ) f@d
- - 2
™ b/2
ap = l/ g(t) cos(kt) dt = l/ g (271'_90) cos (Zﬁkx) 2r d
T t=—m 0 r=—b/2 b b b
b/2
=2 f(z)cos (ZW’H) dx
b/ 4 b
™ b/2
1 . 1 2rx\ . (2mkx)\ 27
by = = /tz_ﬂg(t)sm(kt) dt = p /Iz_b/zg (T) sin ( b ) Td

= %/”/2 f(x)sin (Zkam) dx

—b/2

(c) By part (8), the Fourier series for f(z) can be obtained by substituting ¢ = 27z /b into the Fourier series for g(t)
which was found in part (b).
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Solutions for Chapter 10 Review.

Exercises

(x—1)°
1

1L e"=1+e(z—1)+

N o

2. lnx%ln2+l(x—2)——(x—2)

2 8

vz ve\"T1

3. sinz ~

2

L( +z>2
2v/2 !

4. Differentiating f(x) = tan x, weget f'(z) = 1/ cos® z, f"(x) = 2sinx/ cos® x.

Since tan(w/4) = 1, cos(n/4) = sin(n/4) = 1/v/2, we have f(r/4)

7 _201/V2)
f (7'['/4) - (1/\/5)3

=4,%0

e ()7 (5) (-5) -

=142

5. f'(z) =3z>+ 14z — 5, f'(z) =

Notice that if you multiply out and

L, f'(w/4)

(=) a(e-5) =1e2(e-)

6x + 14, "' (x) = 6. The Taylor polynomial about z = 1 is
12 20 6
g(x -1’ + y(x —1)®

=44 12(x — 1)+ 10(z — 1)° + (z — 1)°.
collect termsin Ps (), you will get f(z) back.

6.
2 2 g2 (6*)?2 , (6*)" _ (°)°
0" cosf” =6 (1— 51 + TR 4.
. 96 910 914
_ 2
A I TR T
A v vy
7. Substitutingy = t?insiny =y — = + = — = 4 ... gives
ETRTI
. t6 th t14
c42 2
sint” =t —54—?—?
8.
_1
1 _ 1 _ 1=\ "7
Vi—zx 2¢1—§ 2 2
VNGRS N AR AVARE YA
) 2/\ 2 2! 2 2/\ 2
RYAR YA AR AVEARN
3! 2 2 2 )\ 2
Ll 3.2 5 s
T 28 64 256

I . 1
9. Substituting y = —422 into
1+y

=l-y+y’ -y’ + - gives
1

1/1/V2)?* = 2,
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sty =(+) 2 () ()
a+b a(1+§) - a a a
11.
R—r=vVR (:1 - %%:) ’

~VE(5 (-5) +5(3) (3 (-5)

+5(3) () (53) (5) +)

(TR
Problems

12. (a) Factoring out 7(1.02)* and using the formula for the sum of a finite geometric serieswith a = 7(1.02)% and r =
1/1.02, we see
7 7 7

_ 3 2 ey
sum = 7(1.02)% + 7(1.02) + 7(1.02) + 7 + Ty T T T

3 1 1 1
= 7(1.02) <1 ooy Taor T (1.02)103>

(1 )
(1.02)
1.02
_ s [ (1.02)1°% —11.02
= 7(1.02) ( (1.02)%F 0.02
_7(1.02'%" —1)
©0.02(1.02)100

(b) Using the Taylor expansion for e® with z = (0.1)?, we see

: 1)* 1)°
Sum =7+ 7(0.1)* + 7(02,1) + 7(03| ) 4.
_ 2 (0.1)*  (0.1)°
_7<1+(0.1) g
_ 76(0.1)2
— 760.01.
13. Infinite geometric serieswitha = 1,z = —1/3, 0
1 3
Sum = =-.
1-(-1/3) 4

14. Finite geometric series which can be rewritten as

1—1/2™
8(1+1+1+1+...+L):8(7/):16(1_L).

2 4 8 213
15. Thisisthe seriesfor e” with z = —2 substituted. Thus
4 8 16 (—2)*

1—2+5—§+Z+"'=1+(—2)+




624 Chapter Ten /SOLUTIONS

16. Thisisthe seriesfor sin z with z = 2 substituted. Thus

, 8,32 128 2 2 7 — i
—54‘5—74—"'— —§+a—ﬁ+'~~—51n.

17. Factoring out a 3, we see
1 1 1 1 1
3(1+1+5+§+I+a+'“):36 = 3e.

18. Factoringout a0.1, we see

01 (0.1 _(0.1)° N (0.1)>  (0.1)7

. -5 +--->:0.lsin(0.1).

19. The second degree Taylor polynomial for f(z) around x = 3 is

@)~ F3) + F @) —3) + LD ()2

2!
:1+5(x—3)—¥(m—3)2:1+5(x—3)—5(m—3)2.

Substituting z = 3.1, we get

F(3.1) 145(3.1—3)—5(3.1—3)> =1+5(0.1) — 5(0.01) = 1.45.

20. Write out series expansions about z = 0, and compare the first few terms:

3 5

o x T
smm_x——?)!_q_ﬁ_’_...
2 3
x x
In(1 i _
n(l+z)==x 5 + 3
2 4 2 4
x x T T
1—cosm=1—<1—§+1—--.>:E_Z+...
2 3
T _ x x
S T T
arctan z = _dr  _ -z’ +2" - )de
1+ z2
x> x® . .
=x——3 +—5 + - (note that the arbitrary constant is 0)

mvl_m:ff(l—x)lﬂ:m(1_%m+wm2+..->

2z

=z— o+t

So, considering just the first term or two (since we are interested in small )

1—cosz<zvVl—2z<In(l+z)<arctanz <sinz <z <e” —1.

21. The graph in Figure 10.16 suggests that the Taylor polynomials convergeto f(z) = 1 !

ontheinterval (—1,1). The
T
Taylor expansion is

1

f(x)=1+—$=1—x+x2—x3+x4—---,
so theratio test gives
" —1 n+1,,n+1
lim [ +1] = lim M = |z|.

Thus, the series convergesiif |z| < 1;thatis—1 < z < 1.
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|

|

|

|

| f(l') = 1-#1—1

‘ — T

-1 1

i Py (z)

i P5 (I)

} P3 (.T)
Figure 10.16

22. First we use the Taylor series expansion for In(1 + ¢),

1, 15 1.4
In(l+t)=t— >+ =t5— >t* + ...
n(l+1t) 5 +3 1 +

to find the Taylor series expansion of In(1 + z + z?) by putting t = = + z°. We get

1 2 1
In(1 2y _ 12 3
n(l+z+az°) T+ 5T — 3¢ +4x +-
Next we use the Taylor seriesfor sin z to get
sinzm:(sinx)Q:(x—%x?’ﬂ-%ms—---f:mz—%m4+-~~
Finaly,
In(1 2y — R A o T A |
n( +a:42—x) T_2 31 4 — =, as z=—0
sin” x x2—§$4+... 2
23. (a) Theseriesfor S22 js

sin20 1 20—(29)3 (20)° 2_@ 46
6 0 3! 5! B 3 15
. sin26
Soghm g =2
(b) Near # = 0, we make the approximation
sin 26 _ éez
0 3
so the parabolaisy = 2 — 56°.
24. (a) f(t) = te'.
Use the Taylor expansion for e’ :
3
flt) = <1+t+—+§+ >
2!
=t+t to gt
(b) T T T t3 t4
fydt= [ te'dt= t+t+ gt dt
!
0 0 0 3!
N t° ’
2tz tratsate .
1‘2 1‘3 1‘4 1’5
e T3 tratsa

625



626 Chapter Ten /SOLUTIONS

(c) Subgtitutez =1:

1ttdt—1+1+L+L+
, T 23T Ty

Intheintegral above, to integrate by parts, let u = ¢, dv = e! dt, S0 du = dt, v = e.
1

1 1
/ te' dt = te' —/ eldt=e—(e—1)=1
0 o Jo

L
2 3 4.2 5.3 o

25. (a) Sincev4 — z2 = 24/1 — x2/4, we use the Binomial expansion
1 a2 1 /1 1 22\’
p— 2N a— _— JE— p— —_— _—
V4 “:’“2(”2( 4>+2!(2)<2)< 4))

2 4 2 4
=92 1_1‘__1‘_ :2_1'__1'_.
8 128 4 64

(b) Substituting the Taylor seriesin the integral gives

1 1 2 4 3 51
xr xr xr xr
41— 2dy ~ 9 T % ) gp—or— T _Z | — 10135
/0 vmar /0< 1 64> T T 12 7 3200,

(c) Sincexz = 2sint, wehavedz = 2costdt; inadditiont = 0whenz = 0and¢ = n/6 whenz = 1. Thus

1 /6
/ 4—x2dm=/ 4 —4sint-2costdt
0 0

/6 /6
:/ 2.2 1—sin2tcostdt:4/ cos> tdt.
0 0

Hence

Using the table of integrals, we find
/6
4/ cos’tdt =4-
0

(d) Using acalculator, (v/3/3) + (m/3) = 1.9132, so the answers to parts (b) and (c) agree to three decimal places.
26. (a) Since [(1 —z?)~'/?dz = arcsin z, we use the Taylor seriesfor (1 —z®)~'/* to find the Taylor series for arcsin

(costsint +t)

/6
:2(coszsinz+z)—£
6 6 6 2

LT
.

N =

0

_ 1 3 5 35
log)y-t2 g 1t2. 34,9 6, 39 s
(1—27) T gt T tst T

o o212 1 e 354 D7y 35 pop
arcsmm—/(l z”) dm—m+6m +40m +112x +1152x+

(b) From Example 4 in Section 10.3, we know

arctanx—x—lm3+lx5_lx7+
] 5 7
so that , . ]
arctanx r—to® + L% — L1274

= —1, as z —0.
i 1.3 3.5 5 .7 35 .9 1 ... !
arcsin x T+ e’ + 5 + e’ + e’ +
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27. (a) TheTaylor polynomial of degree 2 is

VN (0) 9

Vi(z) = V(0)+V'(0)x + 5T

Sincez = 0 isaminimum, V'(0) = 0 and V" (0) > 0. We can not say anything about the sign or value of V'(0).
Thus "
(b) Differentiating gives an approximation to V' (z) at points near the origin

V(z) = V(0) +

V'(z) = V"(0)z.
Thus, the force on the particle is approximated by — V"' (0)z.
Force= —V'(z) =~ —=V" (0)z.

Since V" (0) > 0, the force is approximately proportiona to = with negative proportionality constant, —V"' (0). This
means that when z is positive, the force is negative, which means pointing toward the origin. When z is negative, the
force is positive, which means pointing toward the origin. Thus, the force always points toward the origin.

Physical principlestell usthat the particleis at equilibrium at the minimum potential. The direction of the force
toward the origin supports this, as the force is tending to restore the particle to the origin.

28. (a) Sincethe expression under the square root sign, 1 — 2—2 must be positive in order to give areal value of m, we have

2
v
1—-—=>0
2
2
v
- <1
2
v2<02,
SO —c<v<ec

In other words, the object can never travel faster that the speed of light.
(b) m

o - __

2

—1/2
(6) Notice that m = my (1 — Z—2> . If we substitute v, = —’;—z, we get m = mo(1 +u)~'/?

and we can use the

binomial expansion to get:

m:m0<1_%u+wuz+...>

Y PR SR
= mo 2¢2  8ct '

(d) Wewould expect this series to converge only for values of the original function that exist, namely when |v| < c.
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29. (a) Tofind when V takes on its minimum values, set £~ = 0. So
6 12
e (2(3)'- (2)°) -o
dr r r
Vo (—12rgr "+ 12r5°r %) =0

6, —7 12, —13
12rgr " = 12r5°r

6 6
To =T
r=T7To.

.. ’ 127"8‘/0 To 6 / !
Rewriting V'(r) as — 1- (7) ,weseethat V'(r) > 0 forr > ro and V'(r) < 0 for r < ro. Thus,
7

V= -1 (2(1)% — (1)'?) = -V, isaminimum.
(Note: We discard the negative root —r( since the distance » must be positive.)

(b)
V(r)=-% (2 (2)6 - (Q)l2> V(ro) = —Vo
" " V,(To) =0
V/(r) = —Vo(=12rSr™7 4+ 121%™ %) V(o) = 72Vira

V' (r) = =Vo(84rgr=® — 156r5°r~ )
The Taylor seriesisthus:

V(T)Z—Vo+72V07"62-(r—r0)2-%+---

(c) The difference between V' and its minimum value —14 is

_ 2
V—(-W)= 36V07(r IO) + -
To
which is approximately proportional to (r — 7o) since terms containing higher powers of (r — o) have relatively
small values for r near ro.
(d) From part (a) we know that dV/dr = 0 when r = ro, hence F = 0 when r = ro. Since, if we discard powers of

(r — ro) higher than the second,
_ 2
V(r) = —Vo <1 - 36@)
To

giving
av — —
F=-n72 50 (V) = —T2n T

Ty To

So F is approximately proportional to (r — ro).
30. (a) F =S4 + 2

R (R+r)2
_ GM Gm 1
(b) F_ R2 + R2 (1+%>2

Since < 1, usethe binomial expansion:

R MR TS

2
GM Gm r r\?
F="g +W{1‘2(E)+3(E) ‘}

(c) Discarding higher power terms, we get

_GM  Gm 2Gmr

Frfmt o

G(M +m) 2Gmr
R? R3

Looking at the expression, we see that the term W isthe field strength at a distance R from a single particle

of mass M + m. The correction term, —ZC]';#, is negative because the field strength exerted by a particle of mass

(M + m) at adistance R would clearly be larger than the field strength at P in the question.
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31. Sinceexpanding f(z + h) and g(z + h) in Taylor series gives

Fx+h) = fz)+ f(@)h+ P T,

g(x+h) = g(z)+ ¢ (x)h +
we substitute to get

flz+h)g(z+h) — fx)g(x)
_ @+ f’(ff)’};+ 317 (@)h* +..)(g(2) + g'(2)h + 39" (@)h* + ...) — f(2)g(2)
f@)g(@) + (f'(@)g(x) + f(x)g'(x))h f Termsin 4” and higher powers — f(x)g(z)
hux@gmy+ﬂmyu»+Temmnhw%mmammaQ
=f%@gmy+ﬂmyu»+Té%mnhmdmmammas

Thus, taking thelimit ash — 0, we get

© f oo  tim 1+ +R) = F@)(x)

% h—0 h

= f'(2)g(z) + f(z)g' (x).

32. Expanding f(y + k) and g(z + h) in Taylor series gives

f”(y) 2

Tk 4,

g”(x) 2
2! h

fly+k) = fly)+ Wk +
g(z +h) = g(z) +g'(x)h + N

Nowlety = g(z)andy + k = g(z + h). Thenk = g(xz + h) — g(z) S0

’ g"(x) >
k=g (z)h+ o h™+---

Substituting g(z + h) = y + k andy = g(z) inthe seriesfor f(y + k) gives
FloCe +m) = flg(@) + F (a@)k + L0
Now, substituting for k, we get

Fla(a+ 1) = Fg@) + £ (o)) - (¢ @+ Ln? 4 LI iy g2

= f(g9(2)) + (f' (g(x))) - ¢’ (x)h + Termsin h? and higher powers.

So, substituting for f(g(x + h)) and dividing by h, we get

flg(z + 1)) — fg(@))
h

and thus, taking thelimitash — 0,

= f'(g(x)) - ¢'(z) + Termsin h and higher powers,

d _ o flglz+h) = flglx)
Ef(g(x))—}g}) b

= f'(9(=)) - g'(2).

629
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33. (a) Noticeg’'(0) = 0 because g hasacritical point at z = 0. So, for n > 2,

" nr
g"(0 g" (0 9" (0) .
g(z) = Pa(z) = ¢g(0) + #1‘2 + %1‘3 +- 4 %x .
(b) The Second Derivative test saysthat if g’ (0) > 0, then Oisalocal minimum and if g’ (0) < 0, Oisaloca maximum.

"
(©) Letn = 2.Then Py(z) = g(0) + 92—(’0):1:2. So, for z near 0,

If " (0) > 0, then g(x) — g(0) > 0, aslong as = stays near 0. In other words, there exists a small interval around
x = 0 such that for any z in thisinterval g(z) > g(0). So g(0) isalocal minimum.
The case when g” (0) < 0 istreated similarly; then g(0) isalocal maximum.

34. Thesituation is more complicated. Let’sfirst consider the case when g’ (0) # 0. To be specific let g"’ (0) > 0. Then

!J”I(O) .

9(a) ~ Pa(a) = g(0) + L

" nr
S0, g(z) — g(0) ~ Z 350) z>. (Notice that % > 0 is a constant.) Now, no matter how small an open interval I

mnr

around z = 0 is, there are always some z; and z» in I such that 1 < 0 and z» > 0, which means that 93—('0)95? <0
" )

and £ 0) x5 > 0,i.e g(z1) — g(0) < 0and g(z2) — g(0) > 0. Thus, g(0) is neither alocal minimum nor a local

3!
maximum. (If g"’(0) < 0, the same conclusion still holds. Try it! The reasoning is similar.)
Now let's consider the case when g’ (0) = 0. If gt (0) > 0, then by the fourth degree Taylor polynomial approxi-
mationto g at x = 0, we have

(4)
o) — g0 ~ P 5 0

for z inasmall open interval around z = 0. So ¢(0) isalocal minimum. (If g (0) < 0, then g(0) isalocal maximum.)
In general, suppose that g (0) # 0, k > 2, and all the derivatives of g with order less than k are 0. In this case

g looks like cz* near z = 0, which determines its behavior there. Then g(0) is neither a local minimum nor a local

maximum if % is odd. For k even, g(0) isalocal minimum if g®)(0) > 0, and g(0) isalocal maximum if g*)(0) < 0.

35. Let usbegin by finding the Fourier coefficientsfor f(z). Since f isodd, [*_f(z)dz =0and [”_ f(z)cos nz dz = 0.
Thusa; = 0 for all # > 0. On the other hand,

T 0 T
b = 1 / f(z)sinnz dr = 1 [/ —sin(nz) dz +/ sin(nz) da:}
T —m m -7 0
0 ™
_1 [l cos(nz)| — 1 cos(nz) ]
m|n _n o

-1 {cos 0 — cos(—nm) — cos(nx) + cos 0}
nmw

= % <1 — cos(mr)).

Since cos(nm) = (—1)", thisis0if n iseven, and -~ if n isodd. Thus the n'" Fourier polynomial (where n is odd) is
4 . 4 . 4
F.(z) = —sing + 3. sin3x + -+ — sin(nz).
Asn — oo, the n®™® Fourier polynomial must approach f(z) on the interval (—, ), except at the point z = 0 (where f
is not continuous). In particular, if z = 7,
4

™ 4 4 5 4
( ) Sin 2 + 3 sin + 5 sin 2 + 7 2

4 1 1 1 o1 1
=2 (1-Z 42— 4. 4(-1 — .
( 55 7t +(=1) )

3T . 4 . nmw
— Sin — + -+ + —sin —
2 nm 2

™ 2n+1
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But F, (1) approaches f(3) = 1 asn — oo, SO
1 1 1 1

an(l):1—_+___+.“+(_1)2n+1 5

T T
3 5 7 2n +1 4 T4

36. Lett = 2z — m. Then, g(t) = f(z) = e*™™ = e'*™. Notice that as = varies from 0 to 1, ¢ varies from —m to «. Thus,
we can find the Fourier coefficients for g(¢):

_ 1 T _ 1 T t+m _]. t+ﬂ.Tr _6271-_1
do = on 77rg(t)dt— 2T [We dt = o ¢ . DY
1 T T T
an = —/ et cos(nt)dt = £ / e’ cos(nt)dt.
m -7 m -7
Using the integral table, Formulall-8, yields:
= i#et(cos(nt) + nsin(nt)) ’
T m241 .
et 1 x o
= T (e™ — e ™) (cos(nm))
_ (=1 (="
- ™ n?+1
1 T T T
by, = —/ e sin(nt)dt = e_/ e’ sin(nt)dt.
0 —_m 0 i o
Again, using the integral table, Formulall-9, yields:
= % T 1et(sin(nif) — ncos(nt)) B
e" n . o
= +1(e —e ") cos(nm)
. (627r _ 1) (_1)n+1n
N ™ n? +1
Thus, after factoring a bit, we get:
T —1/1 1 1 1 2 1 3
S (e = si Zcos2t — Zsin2t — — 2 s .
Gs(t) - (2 2cost+251nt+5cos t 7 sin t 10c053t+105m3t)
Now, we substitute  back in for ¢:
2m
e —1,1 1 1. 1
Fi(z) = - (5 —3 cos(2mx — ) + 3 sin(2rx — ) + 5 cos(4mx — 2m)
—% sin(4rzr — 2m) — ILO cos(6mz — 3m) + % sin(6wz — 3m)).
Recalling that cos(z — m) = — cos z, sin(z — w) = —sin z, cos(z — 2m) = cos z, and sin(x — 27) = sin z, we have:
T_1(1 1 1 1 2
Fs5(x) = = - §+§C052ﬂ-$_ Esin27rx+gcos4m:— gsin4mc

1 3 .
+ 10 cos b — 0 sin 67rx> .

300 -
200

100
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37. (a) Expand f(z) intoits Fourier series:
f(z) =ao+aicosz +azcos2x +azcos3z +-- -+ apcoske + - - -
+bysinx +bosin2x +bzsin3z +--- +bpsinkx + - -
Then differentiate term-by-term:
f'(z) = —a1sinz — 2as sin 2z — 3az sin 3z — - - — kay sinkx — - - -
+b1 cosx + 2bz cos2x + 3bzcos3x + - - - + kbg coskx + - -
Regroup terms:

f'(x) = +b1 cos z + 2bs cos 2z + 3bz cos 3z + - - - + kby, coskx + - - -

—ay sinx — 2as sin2x — 3agsin3x — - -+ — kapsinkx — - - -

which forms a Fourier series for the derivative f'(x). The Fourier coefficient of cos kz is kby, and the Fourier coeffi-
cient of sin kz is —kay. Note that there is no constant term as you would expect from the formula ka;, with k& = 0.
Note also that if the k*® harmonic f is absent, so isthat of f'.

(b) If the amplitude of the ™ harmonic of f is

Ak:\/ai"‘bi, k>1,
then the amplitude of the £t harmonic of f’ is
V(kbi)? + (—kar)? = \/k2(b] + a2) = k\/al + b = kA;.

(c) Theenergy of the k™ harmonic of f’ isk? timesthe energy of the k*® harmonic of f.
38. Letry, and s, be the Fourier coefficientsof Af + Bg. Then

— {Af(mBg(x)} dx

o o
a2 [ pwyde] v 8|2 [ g
I P Pr
= Aag + Beco.

Similarly,

1 /7T [Af(m) + Bg(x)} cos(kz) dz

iy

A{%/ f(m)cos(kx)dx} —i—B[%/ g(x)cos(kx)dx}

= Aay + Beg.

Tk

And finally,

Sk = 1 /’“ {Af(a:) + Bg(a:)} sin(kz) dx

™

=A [% /7T f(z) sin(kx) dx] +B {% /T’ g(z) sin(kx) da:}
= Acy, + Bdy.

39. Sinceg(z) = f(x + c), wehavethat [g(x)]* = [f(z + ¢)]?, 50 g* is f? shifted horizontally by c. Since f has period 27,
so does f2 and ¢2. If you think of the definite integral as an area, then because of the periodicity, integrals of f2 over any
interval of length 27 have the same value. So

T+c

Energy of f = /7’ (f(x))z dr = / (f(x))z dx.

—m4c
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Now we know that
Energy of g = 1 / (g(x))” dz
n -7

! /j (f(z +¢))’ da.

™
Using the substitution ¢ = z + ¢, we see that the two energies are equal.
CAS Challenge Problems

40. (a) The Taylor polynomials of degree 10 are

4 6 8 10
. 2x T 2x
For sin? P 2T 2T T
sine, - Puole) =2 -5+ T5 — 3E 4 15
4 6 8 10
For cos? , Qlo(x)zl_x2+x__2i+m__ 2z

3 45 315 14175

(b) Thecoefficientsin Pio(x) arethe negatives of the corresponding coefficients of Q10(z). The constant term of Pio(z)
is 0 and the constant term of Q1o(x) is 1. Thus, Pio(z) and Q10 (z) satisfy

Q1o(z) =1 — Pro(x).
This makes sense because cos® z and sin? z satisfy the identity
2 .2
cos"x =1—sin" x.

41. (a) The Taylor polynomials of degree 7 are

z3 z° z’

For sin z, P —r -4 = _
Sm e @) ==+ 750~ 5010
243 2z° 427

For si , —r_Z 42 _
sin x cos T Q7(z)==x 3 + 5 315

(b) The coefficient of 2® in Q7 () is —2/3, and the coefficient of = in P;(z) is—1/6, so theratiois

—2/3 _
-1/6
The corresponding ratios for z° and 7 are
2/15 —4/315
—— =16 and ——— =64.
1/120 —1/5040

(c) It appearsthat the ratio is always a power of 2. For 2®, itis4 = 22; for 2°, itis 16 = 2%; for 27, itis64 = 2°. This
suggests that in general, for the coefficient of z™, itis2”~".

(d) From the identity sin(2z) = 2sin z cos z, we expect that Pr(2z) = 2Q7(z). So, if a,, is the coefficient of z™ in
Pr(x), and if b, isthe coefficient of z™ in Q~(x), then, since the z" terms Pr(2z) and 2Q~(x) must be equal, we
have

an(2z)" = 2b,x".
Dividing both sides by =™ and combining the powers of 2, this gives the pattern we observed. For a,, # 0,

ba

Qn

— 2n71



634 Chapter Ten /SOLUTIONS
42. (a) For f(z) = x> wehave f'(z) = 2z so thetangent lineis

y=fQ)+f2)(z-2)=4+4(x-2)
y =4z —4.

For g(z) = 2* — 42® 4+ 8z — 7, wehave g'(x) = 3z — 8z + 8, so the tangent lineis

y=g)+4)(z-1)=-2+3(x—-1)
y =3z —5.

For h(z) = 22° + 42® — 3z + 7, wehave b’ (z) = 62> + 8z — 3. So the tangent line is

y=h(=1)+h(-1)(z+1) =12 -5(z+1)
y=-—-5c+7T.

(b) Division by aCAS or by hand gives

f(z) z’ dr — 4

CEDE TS A
g(r) 2 —42®+8x -7 _ 3z —5 o
o1 @-1)¢ =z—-2+ @=1) 0 r(z)=3z-35,
h(zx) 22% + 4z —3x + 7 —br +7
EFIE EFSIE z + CESE r(z) 5z +7

(c) Ineach of these three cases, y = r(z) isthe equation of the tangent line. We conjecture that thisistrue in general.
(d) The Taylor expansion of afunction p(z) is

p"(a) >, p"(a)
3!

p(z) = p(a) +p'(a)(z — a) + (¢ —a)’ +---
Now divide p(z) by (z — a). On the right-hand side, all terms from p” (a)(z — a)?/2! onward contain a power of
(z—a)? and divide exactly by (z—a)? to giveapolynomial ¢(x), say. Sotheremainder isr(z) = p(a)+p' (a)(z—a),
the tangent line.

43. (a) The Taylor polynomial is

1_2 $4 1_6 1_8 $10

Pio(@) =1+ 35 = 730 + 30220 ~ 1209600 T 27900160
(b) All the terms have even degree. A polynomial with only terms of even degree is an even function. This suggests that
f might be an even function.

(c) Toshow that f iseven, we must show that f(—z) = f(x).

—x —z x x ze” x
= =ty =172 w12
_ we® — Lz(e” — 1)
et —1

_ze” — fze® + 1z . trze® +iz  lz(e®-1)+=z
N et —1 Toem—1 et —1

1
= o4 —2 L +£=f(x)

2 T e 1 T ee—1 72
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44. (a) The Taylor polynomial is
3 7 11

T T T
Pul@) =3 -5+ 50
(b) Evauating, we get
13 17 111
Pu(l) = 5 — 5 + 7359 = 0310281

1
S(1) :/ sin(t”) dt = 0.310268.
0

We need to take about 6 decimal places in the answer as this allows us to see the error. (The values of P;1(1) and
S(1) start to differ in the fifth decimal place.) Thus, the percentage error is (0.310281 — 0.310268)/0.310268 =
0.000013/0.310268 = 0.000042 = 0.0042%. On the other hand,

23 27 211

Pi1(2)=— - >+

3 12 T 13ap 17096

2
S(2) :/ sin(t?) dt = 0.804776.
0

The percentage error in thiscase is (1.17056 — 0.804776)/0.804776 = 0.365784/0.804776 = 0.454517, or about
45%.

CHECK YOUR UNDERSTANDING

False. For example, both f(z) = 2% and g(z) = 2% + 2° have P (z) = 2.

False. The approximation sin @ = § — 6®/3! holds for 6 in radians, not degrees.

Fase P2 (z) = f(5) + f'(5)(z — 5) + (' (5)/2)(x — 5)> = €® + €°(z — 5) + (*/2)(z — 5)°.

False. Since —1 isthe coefficient of 22 in P»(x), we know that £/ (0)/2! = —1, so f/(0) < 0, which impliesthat f is
concave down near x = 0.

A w D

5. False. The Taylor seriesfor sin  about z = « is calculated by taking derivatives and using the formula

fla) + f @) —a)+ L@ a4
The seriesfor sin z about x = 7 turns out to be
3 5
—(z—7)+ (z _3'7T) _ (z _5'7T)

6. True. Since f iseven, f(—z) = f(z) for al z. Taking the derivative of both sides of this equation, weget f' (—z)(—1) =
f'(z), whichat z = 0 gives—f'(0) = £'(0), so f'(0) = 0. Taking the derivative again gives f"'(—z) = f"(z),i.e, f"
is even. Using the same reasoning again, we get that f/(0) = 0, and, continuing in this way, we get £ (0) = 0 for all
odd n. Thus, for all odd 7, the coefficient of z™ in the Taylor seriesis f(™)(0)/n! = 0, so al the terms with odd exponent
are zero.

7. True. Since the Taylor series for cos z has only even powers, multiplying by z* gives only odd powers.

8. True. The coefficient of 27 is—8/7!, so
f7©) _ -8
7

giving f(7(0) = —8.
9. False. Thederivative of f(z)g(x)isnot f'(z)g’(z). If this statement were true, the Taylor seriesfor (cos z)(sin z) would
have all zero terms.
10. True. Since the derivative of a sum isthe sum of the derivatives, Taylor series add.

11. False. For example the quadratic approximation to cos x for = near 0 is 1 — 2?/2, whereas the linear approximation
is the constant function 1. Although the quadratic approximation is better near O, for large values of x it takes large
negative values, whereas the linear approximation stays equal to 1. Since cos = oscillates between 1 and —1, the linear
approximation is better than the quadratic for large = (although it is not very good).
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12.

13.

14.
15.
16.

17.

18.

10.

20.

21.

22.

23.
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False. The Taylor series converges on itsinterval of convergence, whereas f may be defined outside thisinterval.
For example, the series

. 1
l+z4+2 42>+ convergesto -
— T

for |z| < 1.

But 1/(1 — x) isdefined for |z| > 1.

True. For large z, the graph of Pio(z) looks like the graph of its highest powered term, 2*°/10!. But e” grows faster than
any power, so ® gets further and further away from z'°/10! = Pio(z).

False. For example, if a = 0 and f(z) = cos z, then P1 (z) = 1, and P;(z) touchescos x at x = 0, 27, 4, . . ..
False. If f isitself apolynomia of degree n thenit isequal toits n'" Taylor polynomial.

True. By Theorem 10.1, | E, (2)| < 10|z|"/(n + 1)L Since lim, o0 || /(n 4+ 1)! = 0, En(x) — 0 880 — oo,
so the Taylor series convergesto f(x) for al .
True

True. Since f iseven, f(z) sin(mz) isodd for any m, so
1 [T .
bm = — / f(z)sinz(mz)dz = 0.
n -7

Fase. Since f(—1) = g(—1) the graphsof f and g intersect at 2 = —1. Since f'(—1) < ¢’(—1), the lope of f isless
than theslope of g at = = —1. Thus f(z) > g(z) for all = sufficiently closeto —1 ontheleft, and f(z) < g(z) for al =
sufficiently close to —1 on theright.

True. If
(=1
—5—
g"(=1)
5

P»(x) = Quadratic approximationto f = f(—=1) + f'(=1)(z + 1) + z+1)*

Q2 (z) = Quadratic approximationto g = g(—1) + ¢'(=1)(z + 1) + z+1)°

then Po(z) — Q2(x) = (f"(—=1) — ¢"(=1))(x +1)*/2 < 0foral & # —1. Thus Px(z) < Q2(z) for al = # —1. This
implies that for z sufficiently closeto —1 (but not equal to —1), we have f(z) < g(z).

True. We have

Li(2) + Lz2(x) = (f1(0) + f1(0)x) + (£2(0) + f3(0)z) = (f1(0) + f2(0)) + (£1(0) + f3(0))z.
Theright hand side is the linear approximation to fi + f» near z = 0.
False. The quadratic approximation to fi (z) f2(z) near x = 0 is

4 110200 +2£1(0) £2(0) + £1(0)£5(0) .
2

2
T .

£1(0)£2(0) + (£1(0) £2(0) + f1(0) f2(0))=
On the other hand, we have
Li(z) = f1(0) + fi(0)z, La(z) = f2(0) + f3(0)z,
so

Li(z)La(z) = (£1(0) + f1(0)z)(f2(0) + £2(0)z) = f1(0) f2(0) + (£1(0) f2(0) + f3(0) f1(0))z + £1(0) £3(0)".

The first two terms of the right side agree with the quadratic approximation to fi (z) f-(x) near x = 0, but the term of
degree 2 does not.

For example, the linear approximation to e” is 1+ z, but the quadratic approximation to (e”)? = e** is1+ 2z 4222,
not (1 + )% = 1 + 2z + z°.
False. The Taylor series for f near x = 0 always converges at x = 0, since Ez‘;o Crz™ a x = 0isjust the constant
Co.
True. Whenz = 1,

— £ o £
Z al L :Z ol
n=0 n=0

Since f(”>(0) > nl, the terms of this series are all greater than 1. So the series cannot converge
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24. False. For example, if £(")(0) = n!, then the Taylor seriesis

SOy

n=0 n=0

which convergesat z = 1/2.

PROJECTS FOR CHAPTER TEN

1. (a) A calculator gives4 tan—*(1/5) —tan—'(1/239) = 0.7853981634, which agreeswith 7 /4 to ten decimal
places. Notice that you cannot verify that Machin’s formulais exactly true numerically (because any cal-
culator has only afinite number of digits.) Showing that the formulais exactly true requires a theoretical
argument.

(b) The Taylor polynomial of degree 5 approximating arctan x is
.773 .775
arctanz ~ r — — + 5

3
4 | 4arcta 1 — arcta
= I n I n
g 239
1 1 1/1\° 1 1/1\ 1/1Y\°
%44————%——— rc— 3033 ) t3lom
5 3\5 5\ D 239 3\ 239 5 \ 239
~ 3.141621029.
Thetruevalueism = 3.141592653 . . ..
(c) Becausethevauesof z, namely z = 1/5 and x = 1/239, are much smaller than 1, the termsin the series

get smaller much faster.
(d) (i) If A =arctan(120/119) and B = — arctan(1/239), then

Thus,

120 1
A== B=__—_
tan 119 and tan 539"
Substituting
120/11 1/2
tan(A + B) = (120/119) + (~1/239) _ 1.
1—(120/119)(—1/239)
Thus
A+ B =arctanl,
)

¢ 120 ¢ 1\ tan 1
arctan 119 arctan 539 = arctan1.

(ii) If A = B = arctan(1/5), then

tan(A + B) = O E /D) _ 5

1—(1/5)(1/5) 12
Thus .
A+ B = arctan (E) ,

2 arctan 1 = arctan i
5) 12)°
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If A= B =2arctan(1/5),thentan A = tan B = 5/12, s0

(5/12) + (5/12) 120

B) = ==
tan(A+B) = 15 i 5/12) ~ 119
Thus 190
A+B= ke
+ arctan <119> ,
SO

saretan (LY = arctan (120
arctan 5 = arctan 119 -

(iif) Using the result of part (a) and substituting the results of part (b), we obtain

4 arct 1 arcta L arctan 1 T
ctan | — — ar n —_— = ar n = —.
ar 5 239 4

2. (a) (i) UsingaTaylor series expansion, we have

3 fIII (560)

o — ) = Flao) — Flaoyh+ L0y I7
So we have "
f(zo) — i(fﬂo -h) £(z0) ~ f (;O)h+
This suggests the following bound for small h:
f(zo) — flwo —h) Mh
5 = f'(®o)| < 5

where |f"(z)| < M for |z — zo| < |h|.
(il) We use Taylor series expansions.

Flao + 1) = fzo) + £z + L0 2 o TG0y
flao = h) = f(zo) = f'(xo)h + f"(;o)h2 fm?ffo)m .
Subtracting gives
Fwo+ 1) — f(zo — h) = 2f'(wo)h + 2f’;§x°)h3 e
=2f"(zo)h + éf"'(xo)m T
So

f(@o +h) = f(zo — h)
2h
This suggests the following bound for small A:

= (o) + 7fméx°)h2 TR

fl@o+h) = flwo-h) Mh?
oh = f'(z0)| < 5

where|f"'(z)| < M for |z — zo| < |h.

h3 ...
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(iii) Expanding each term in the numerator is a Taylor series, we have
4
f(@o + 2h) = f(z0) + 2f'(xo)h + 2f" (z0)h” + gf'"(f'?t))hg

4
+§f(4) (z0)h* + 1—5f(5) (zo)h® + -+~

Flaa+h) = fao) + f'(zo)h+ ”(5””)112 +1 "'§f°>h3
+f(4)4(!;1:o)h4+ f(5)5(!xo)h5+_‘_’

Flao =) = Fla) - Fao)h + LGy L7000,
+f<4)4(!a:o)h4 _ f(5)5(!;1:0)h5 .

4
fwo — 2h) = f(xo) — 2f'(wo)h + 2f" (wo) R — gf'"(l“o)h3
2 4
+§f(4)($0)h4 - 1—5f(5)($0)h5 toe
Combining the expansionsin pairs, we have
8 2
8f(wo +h) = 8f(wo — h) = 16" (wo)h + 2 " (w0)h* + = P (wo) h® + -+

Flao +20) — Flao — 2h) = 4 (o) + 5 f" (o) + 2 FO (o) + -+

Thus,

— F(wo + 2h) + 8 (w0 + h) — 8F(z0 — h) + f (w0 — 2h) = 12 (o) — ~= FO) () + -

SO

—f(xo + 2h) + 8f(xo + h) — 8f(xo — h) + f(xo — 2h)

12h
This suggests the following bound for small A,

—f(xo + 2h) + 8f(xo + h) — 8f(xo — h) + f(xo — 2h)

12h
where | ) (z)| < M for |z — 20| < |h|.
(®) (@ h (f(zo) — f(zo — h))/h Error
107" 0.951626 4.837 x 1072
1072 0.995017 4.983 x 1073
1073 0.9995 4.998 x 1074
10~* 0.99995 5x107°

The errors are roughly proportional to h, agreeing with part (a).

5) (g
— fl(xO) _ f ( 0)

— f'(@0)| < ——

(i) h (f(zo + k) — f(zo — h))/(2h) Error
107! 1.00167 1.668 x 1073
1072 1.00001667 1.667 x 10~°
1078 1.0000001667 1.667 x 1077
10~* 1.000000001667 1.667 x 107°

The errors are roughly proportional to k2, agreeing with part (a).

639



640 Chapter Ten /SOLUTIONS

(i) h | (—f(zo + 2h) + 8f(zo + h) — 8f(zo — h) + f(zo — 2h))/(12h) Error
107! 0.99999667 3.337 x 1076
1072 0.9999999999667 3.333 x 1010
1073 0.99999999999999667 3.333 x 101
10~* 0.999999999999999999667 3.333 x 10 1#

The errors are roughly proportional to A4, agreeing with part (8). Thisisthe most accurate formula.

© O h (f(zo) — f(zo — h))/h Error
107" 1.0001 x 10° 1.00 x 10'°
1072 1.0001 x 107 1.00 x 10%°
1073 1.0101 x 10® 1.01 x 10*°
10~* 1.11111 x 10° 1.11 x 10*°
1075 Undefined Undefined
1076 —1.11111 x 10*° —1.11 x 10°
107 —1.0101 x 10%° —1.01 x 10®
1078 —1.001 x 10%° —1.00 x 107
107° —1.0001 x 10%° —1.00 x 10°
(i) h (f(xo+h) — f(xo — h))/(2h) Error
107" 1 x 102 1 x 10
1072 1% 10* 1x 10
1072 1.0001 x 10° 1.0001 x 10'°
1074 1.0101 x 10® 1.0101 x 10%°
1073 Undefined Undefined
10°° —1.0101 x 10 —1.01 x 108
1077 —1.0001 x 10*° —1.00 x 10°
1078 —1.000001 x 10*° —1.00 x 10*
107° —1.00000001 x 10° —1.00 x 102
(iff) h | (—f (20 + 2h) + 8/ (20 + h) — 8f (20 — ) + f(zo — 2h))/(12h) | Error
107! 1.25 x 102 1.00 x 10'°
1072 1.25 x 10% 1.00 x 10'°
1073 1.25013 x 10° 1.00 x 10*°
10~* 1.26326 x 108 1.01 x 10'°
1075 Undefined Undefined
10°° —9.99579 x 10° 4.21 x 10°
1077 —9.9999995998 x 10'° 4.00 x 102
1078 —9.99999999996 x 10*° 4.00 x 1072
107° —9.999999999999996 x 10'° 4.00 x 107

For relatively large values of h, these approximation formulas fail miserably. The main reason is that
f(x) = 1/z changes very quickly at 7o = 1075, Infact, f(z) — oo asx — 0. SO we must use very
small values for k when estimating alimit (involving f and zo = 107°) ash — 0. Here, h > 10~ istoo
big, since the values of zy — h cross over the discontinuity at =z = 0. For smaller values of h, that make
sure we stay on the good side of the abyss, these formulaswork quite well. Already by » = 10 —6, formula
(c) isthe best approximation.



