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CHAPTER ELEVEN

Solutions for Section 11.1

Exercises

1. (a) (II1) Anidand can only sustain the population up to a certain size. The population will grow until it reaches this
limiting value.
(b) (V) Theingot will get hot and then cool off, so the temperature will increase and then decrease.
(c) (1) The speed of the car is constant, and then decreases linearly when the breaks are applied uniformly.
(d) (1) Carbon-14 decays exponentialy.
(e) (1V) Tree pollen is seasonal, and therefore cyclical.
2. We know that at time ¢ = 0 the value of y is 8. Since we are told that dy/dt = 0.5y, we know that at timet = 0 the
derivative of y is.5(8) = 4. Thusast goesfromOto 1, y will increaseby 4, soatt =1,y = 8 +4 = 12.
Likewise,att = 1, weget dy/dt = 0.5(12) = 6 sothat at ¢t = 2, weobtainy = 12 + 6 = 18.
Att =2, wehavedy/dt = 0.5(18) = 9 sothatat t = 3, weobtainy = 18 + 9 = 27.
Att = 3, wehavedy/dt = 0.5(27) = 13.5 sothat at t = 4, we obtainy = 27 + 13.5 = 40.5.
Thus we get the values in the following table

y | 8] 12|18 | 27 | 40.5

3. Sincey = *, we know that y' = 327, Substituting y = = andy’ = 322 into the differential equation we get

0=uzxy —3y
= z(3z%) — 3(z?)
= 3> — 34°

=0.

Since this equation istrue for al z, we see that y = 23 isin fact asolution.
4. Sincey = z> + k, we know that ¢’ = 2z. Substituting y = x> + k and ¢y’ = 2z into the differential equation, we get

10 = 2y — xy’
=2(z® + k) — z(2x)
= 22" + 2k — 22°
= 2k.

Thus, k = 5 isthe only solution.
5. If y satisfies the differential equation, then we must have

kx
% =10 — 2(5 + 3¢"™)
3ke’” =10 — 10 — 6"
3ker” = —6e*”
k= —2.

So, if k = —2 the formulafor y solvesthe differential equation.

6. |fP:P06t,then
dP d
E = E(Poet):POEt:P.
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7. Inorder to prove that y = A + Ce** isasolution to the differential equation

dy
&9 _ _A
o = kly—A),
we must show that the derivative of y with respect to ¢ isin fact equal to k(y — A):
y=A+Ce"
dy _ kt
i 0+ (Ce™)(k)
= kCe**

= k(Ce* + A — A)
=k ((Ce* + A) — A)
=k(y—A).

8. If Q = Ce*t, then

% = Cke*" = k(Ce*) = kQ.

We are given that % = —0.03Q, so we know that kQQ = —0.03Q. Thus we either have Q = 0 (inwhichcase C = 0
and k isanything) or k = —0.03. Noticethat if K = —0.03, then C can be any number.

9. If y = sin 2t, then % = 2 cos 2t, and o4 = —4sin 2.

Thus 24 + 4y = —4sin 2t + 4sin2¢ = 0.
10. If y = coswt, then
d*y

dy _ dy
dt?

= = —w?coswt
dt '

—wsinwt,

Thus, if 2% + 9y = 0, then

—w’ coswt + 9coswt = 0
(9 — w?) coswt = 0.
Thus9 —w? =0,0rw?> =9, 0w = +3.
11. Differentiating and using the fact that

i(cosh t) =sinht and %(sinh t) = cosht,

dt
we see that
dx R
i wC sinh wt + wC'2 cosh wt
d? . .
Wf = w?C4 cosh wt + w?Cs sinh wt

= w? (C1 coshwt + Cy sinhwt) .
Therefore, we see that
Lo _ e,
dez ‘
Problems

12. (a) If y = Cz™ isasolution to the given differential equation, then we must have

a:d (5; ) _ 3(Cz™) =0
#(Cnz"™ ") — 3(Cz™) =0
Cnz™ —3Cz"™ =0
C(n—3)z" = 0.

Thus, if C = 0, weget y = 0 isasolution, for every n. If C # 0, thenn = 3, and so y = C2® isasolution.
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(b) Because y = 40 for x = 2, we cannot have C' = 0. Thus, by part (a), we get n = 3. The solution to the differential

equation is
y = Cz>.
To determine C' if y = 40 when = = 2, we substitute these values into the equation.
0=C-2°
40=C-8
C =5.

So, now both C' and n are fixed at specific values.

13 (a) P = 1_"_% = (1 +6_t)_1

—t\ — — —t
L — _(14+e ") 2(—e t):m,

_ 1 1 _ 1 et _ _e”t _ dP
Then P(]' - P) T l4et (1 - 1+e*t) - (1+e*t) (1+e*t) T (l4e—t)2 T dt
(b) Asttendstooco,e™f goesto 0. Thus lim =1.
t—

[o%e}

_1
14e—t

14. () y=2sinz, dy/dx=2cosx, d’y/dx’>= —2sinz
(1) y=sin2z, dy/dx=2cos2z, d’y/dz® = —4sin2z
any y=-e>*, dy/dz = 27, d’y/dx’® = 4e*®
(V) y=e72" dy/de=—2e"7", d’y/dz® =4e™>®
and so:
(@ (V)
(b) (1)
(c) (1), (V)
(d) (In
15. Itiseasiest to begin by writing down the first and second derivatives for each possible solution:
() y=cosz,s0y’ = —sinz,andy” = —cosz.
() y =cos(—z),s0y" =sin(—=z),and y'" = — cos(—x).

(I y=2250y =2z andy” =2.

(V) y=e"+e7", SOy' =e® —e ", and y” =e¥ 4e .

(V) y=V2z, 0y = 1(22) /2.2 = 1/v2z, and " = —1(22)"¥/% - 2 = —(22) %/,
By substituting these into the given differential equations, we get following solutions:

@ (V)

(b) None

© V)

(d) (1), ()

(e) (1)

Solutions for Section 11.2

Exercises

1. There are many possible answers. One possibility is shown in Figures 11.1 and 11.2.
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Y

N

Figure 11.1

Figure 11.2

2. (a) SeeFigure11.3.

y
1
0-4 T
—1-4
Figure 11.3
(b) Thesolutionisy(z) = 1.
(c) Sincey’ =0andz(y — 1) = 0, thisisasolution.
3 @ y
4

=4

(b) The solution through (—1, 0) appears to be linear, so itsequationisy = —x — 1.

() Ify=—-z—1,theny = —-landz +y =z + (—z — 1) = —1, so this checks as a solution.



11.2 SOLUTIONS 645

Problems

4. (a) SeeFigurell.4.

(-5,1) ‘/ _/‘4,1)

(0,0)

Figure 11.4

(b) If 0 < P < 10, the solutionisincreasing; if P > 10, it isdecreasing. So P tends to 10.

5 (a) y
6
(i
x
-6 6
—6
Figure 11.5

(b) We can see that the slope lines are horizontal when y is an integer multiple of 7. We conclude from Figure 11.5 that
the solution isy = nr in this case.
To check this, we note that if y = nm, then (sinz)(siny) = (sinz)(sinnn) = 0 = ¢'. Thusy = nrisa
solution to iy’ = (sin )(sin ), and it passes through (0, n).

6. Notice that y' = i+ Y is zero when z = —y and is undefined when x = y. A solution curve will be horizontal

(slope= 0) when passing through a point with z = —y, and will be vertical (slope undefined) when passing through a
point with x = y. The only slope field for which thisistrueis slope field (b).
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7. (a), (b) SeeFigure11.6

9.

V) y

(i) (iv)

!

v

Figure 11.6

(c) Figure 11.6 shows that a solution will be increasing if its y-values fall in therange —1 < y < 2. This makes sense
since if we examine the equation ¢’ = 0.5(1 + y)(2 — y), wewill find that 4" > 0 if —1 < y < 2. Notice that if the
y-value ever getsto 2, then 3/ = 0 and the function becomes congtant, following the liney = 2. (The same istrue if
every = —1.)

From the graph, the solution isdecreasing if y > 2 or y < —1. Again, this aso follows from the equation, since
in either casey’ < 0.

The curve has a horizontal tangent if ¢/ = 0, which only happensif y = 2 or y = —1. Thisalso can be seen on
the graph in Figure 11.6.
(@) Sincey’ = —y, the Slope is negative above the z-axis (when y is positive) and positive below the z-axis (when y is

negative). The only slope field for which thisistrueisllI.
(b) Sincey’ = y, the Slope is positive for positive y and negative for negative y. Thisis true of both | and I11. Asy get
larger, the slope should get larger, so the correct dopefieldisl.
() Sincey’ = x, the slope is positive for positive z and negative for negative x. This corresponds to slope field V.
! ;1 . o - . .
(d) Sincey = —, the dopeis positive for positive y and negative for negative y. As y approaches 0, the slope becomes

larger in magnitude, which correspond to solution curves close to vertical. The correct dopefieldislll.
(e) Sincey’ = y?, the slopeis always positive, so this must correspond to slope field 1V.

@i OV ©Iv @ @IV

10. Theslopefieldsin (1) and (I1) appear periodic. (1) haszero dopeat = = 0, so (1) matchesy’ = sin z, whereas (1) matches

Solutions for Section 11.3

y' = cosz. The slopein (V) tends to zero as z — oo, so this must match y/ = e==". Of the remaining slope fields,
only (I11) shows negative slopes, matching ¢ = ze~*. Thedopein (IV)iszeroat z = 0, so it matchesy’ = z2e~°. This
leavesfield (V1) tomatchy’ = e~ *.

Exercises

1 (9

Table 11.1 Euler’s method for
y' =z +ywithy(0) =1

z |y Ay =(sope)Ax
0 |1 0.1 = (1)(0.1)
0.1 (1.1 0.12 = (1.2)(0.1)

0.2|1.22 | 0.142 = (1.42)(0.1)
0.3 | 1.362 | 0.1662 = (1.662)(0.1)
0.4 | 1.5282
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Soy(0.4) ~ 1.5282.

(b)
Table 11.2 Euler’'s method for
y =z +ywithy(—1) =0

T y Ay =(dope)Ax
-1 |o —0.1=(—1)(0.1)
—0.9 [ =0.1 | =0.1 = (=1)(0.1)
—0.8 | —0.2 | —0.1 = (—1)(0.1)
—-0.7 1 —0.3
: : Notice that y
0 -1 decreases by 0.1
: : for every step
0.4 —1.4

Soy(0.4) = —1.4. (Thisanswer is exact.)

2. (8
[
Figure 11.7
(b) y(0) = 1,

y(0.1) =~ y(0) + 0.1y(0) =1+ 0.1(1) = 1.1

y(0.2) = y(0.1) + 0.1y(0.1) = 1.1 + 0.1(1.1) = 1.21

y(0.3) =~ y(0.2) + 0.1y(0.2) = 1.21 + 0.1(1.21) = 1.331

y(0.4) ~ 1.4641

y(0.5) ~ 1.61051

y(0.6) ~ 1.77156

y(0.7) ~ 1.94872

y(0.8) ~ 2.14359

y(0.9) ~ 2.35795

y(1.0) =~ 2.59374
(c) SeeFigure 11.7. A smooth curve drawn through the solution points seems to match the slopefield.
(d) Fory =e®, wehavey =e® =yandy(0) =e° = 1.

Computed Solution
Tr_ | APProx. y(zn) | y(zn)
0 1 1
01|11 1.10517
02| 121 1.22140
03| 1331 1.34986
0.4 | 1.4641 1.49182
0.5 | 1.61051 1.64872
0.6 | 1.77156 1.82212
0.7 | 1.94872 2.01375
0.8 | 2.14359 2.22554
0.9 | 2.35795 2.45960
1.0 | 2.59374 2.71828
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3. (a) Theresultsfrom Euler’'s method with Az = 0.1 arein Table 11.3.

Table 11.3
Computed Solution
zn | Approx. y(zn) | y(@n)
0 0 0
0.1 0 0.000025
0.2 0.0001 0.0004
0.3 0.0009 0.002025
04 0.0036 0.0064
05 0.01 0.015625
0.6 0.0225 0.0324
0.7 0.0441 0.060025
0.8 0.0784 0.1024
0.9 0.1296 0.164025
1.0 0.2025 0.25
(b) We have
$4
so that y(0) = 0 gives C' = 0, and the required solution is therefore
$4
y(z) = 4

Thisis shown in the 3rd column of Table 11.3.
(c) The computed solution underestimates the real solution since the solution is concave up and is approximated in every
interval by the tangent which is beneath the curve. See Figure 11.8.

Y
x
Figure 11.8
4. (a)
Table 11.4
z |y Ay = (dope)Ax
0 |0 0
02]0 0.0016

0.4 0.0016 | 0.0128
0.6 | 0.0144 | 0.0432
0.8 | 0.0576 | 0.1024
1 |0.1600

Atz =1,y = 0.16.
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(b) y

<——— true answer

0.25 e

0.16 —————————— 747 approximation
|
|

T
1

(c) Our answer to (a) appears to be an underestimate. Thisis aswe would expect, since the curve is concave up.

Problems

5 (@ (i)
Table 11.5 Euler’s method for
y' = (sinz)(sin y), starting at (0, 2)

T y Ay =(sope)Ax

0 |2 0 = (sin 0)(sin 2)(0.1)
0.1]2 0.009 = (sin 0.1)(sin 2)(0.1)
0.2 | 2.009 | 0.018 = (sin 0.2)(sin 2.009)(0.1)
0.3 | 2.027

(i)
Table 11.6 Euler’s method for

!

y' = (sinz)(siny), starting at

(0, )
z |y Ay =(slope)Ax
0 | x| 0= (sin0)(sinm)(0.1)
0.1 | 7| 0={(sin0.1)(sinm)(0.1)
0.2 | 7| 0=(sin0.2)(sinm)(0.1)
03|

(b) The slope field shows that the slope of the solution curve through (0, ) is always 0. Thus the solution curve is the
horizontal line with equation y = .

6. (a)
Table 11.7

t y | slope= % Ay = (slope)At = %(0.1)
1 {0 1 0.1
1101 0.909 0.091
12019 0.833 0.083
13| 0.274 0.769 0.077
1410351 0.714 0.071
15| 0.422 0.667 0.067
1.6 | 0.489 0.625 0.063
1.7 | 0.552 0.588 0.059
1.8 | 0.610 0.556 0.056
1.9 | 0.666 0.526 0.053
2 0.719
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(b) If & =1 theny =Int| + C.
Startlngat(l,o) meansy = 0whent =1,s0C =0andy = In [¢|.

Aftertensteps, ¢t = 2,0y = In2 = 0.693.

(c) Approximate y = 0.719, Exact y = 0.693.
Thus the approximate answer istoo big. Thisis because the solution curve is concave down, and so the tangent lines
are above the curve. Figure 11.9 shows the Slope field of 3 = 1/t with the solution curve y = In ¢ plotted on top of
it.

Figure 11.9
7. (8 Az =0.5

Table 11.8 Euler’s method for

y' =2z, withy(0) =1
T y Ay =(slope)Ax
0 |1 |0=(2-0)0.5)
05|1 |0.5=(2-0.5)(0.5)

1.5
Ax =0.25

Table 11.9 Euler’'s method for
y' = 2z, withy(0) =1

T y Ay =(dope)Ax
0 |1 0=(2-0)(0.25)
0.25 | 1 0.125 = (2 - 0.25)(0.25)

0.50 | 1.125 | 0.25 = (2 - 0.5)(0.25)
0.75 | 1.375 | 0.375 = (2 - 0.75)(0.25)
1 1.75

(b) General solutionisy = z? 4+ C, and y(0) = 1 givesC = 1. Thus, the solutionisy = z* + 1. So the true value of y
whenz =1lisy=1>4+1=2.

() When Az = 0.5, error = 0.5.
When Az = 0.25, error = 0.25.
Thus, decreasing Az by afactor of 2 has decreased the error by afactor of 2, as expected.

8. For Az = 0.2, we get the following results.

y(1.2) ~ y(1) + 0.2sin(1 - y(1)) = 1.168294

y(1.4) = y(1.2) + 0.2sin(1.2 - y(1.2)) = 1.365450
y(1.6) = y(1.4) + 0.2sin(1.4 - y(1.4)) = 1.553945
y(1.8) = y(1.6) + 0.2sin(1.6 - y(1.6)) = 1.675822
y(2.0) ~ y(1.8) + 0.2 sin(1.8 - y(1.8)) = 1.700779
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Repeating thiswith Az = 0.1 and 0.05 gives the resultsin Table 11.10 below

Table 11.10
Computed Solution

z-value | Az = 0.2 | Az = 0.1 | Az = 0.05
1.0 1 1 1

11 1.084147 1.086501
1.2 1.168294 | 1.177079 1.181232
13 1.275829 1.280619
14 1.365450 | 1.375444 1.379135
15 1.469214 1.469885
1.6 1.553945 | 1.549838 1.546065
1.7 1.611296 1.602716
1.8 1.675822 | 1.650458 1.637809
1.9 1.667451 1.652112
2.0 1.700779 | 1.664795 1.648231

The computed approximations for y(2) using step sizesAz = 0.2,0.1,0.05 are 1.700779, 1.664795, and 1.648231,
respectively. Plotting these points we see that they lie approximately on a straight line.

y(2)
2 -
H/’.
1.5
1 -
0.5
0.1 0.2 0.3
Figure 11.10

In thelimit, as Az tends to zero, the results produced by Euler’s method should converge to the exact value of y(2).
Thislimiting value is the vertical intercept of the line drawn in Figure 11.10. This gives y(2) =~ 1.632.

9. (a) Usingonestep, 52

year.

(b) Withtwo steps, At = 0.5 and we have

(c) Keeping track to the nearest hundredth with A¢ = 0.25, we have

22 =0.05, 0 AB = (§2) At = 50. Therefore we get an approximation of B ~ 1050 after one

Table 11.11

t | B AB = (0.05B)At
0 [w000 |25

05| 1025 | 2563

1.0 | 1050.63

AB = (0.05B)At

Table 11.12
t B
0 1000
0.25 | 1012.5
05 | 1025.16
0.75 | 1037.97
1 1050.94

125

12.66
12.81
12.97

(d) In part (a), we get our approximation by making a single increment, AB, where AB isjust 0.05B. If we think in
terms of interest, AB isjust like getting one end of the year interest payment. Since A B is 0.05 times the balance
B, itislike getting 5% interest at the end of the year.
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(e) Part (b) is equivalent to computing the final amount in an account that begins with $1000 and earns 5% interest
compounded twice annually. Each step is like computing the interest after 6 months. Whent = 0.5, for example, the
interestis AB = (0.05B) - 3, and we add this to $1000 to get the new balance.

Similarly, part (c) is equivalent to the final amount in an account that has an initial balance of $1000 and earns
5% interest compounded quarterly.

10. Assume that z > 0 and that we use n steps in Euler's method. Label the z-coordinates we use in the process

Zo,X1,...,ZTn, Wherezo = 0 and z,, = x. Then using Euler's method to find y(x), we get
Table 11.13
z Y Ay = (dope)Ax
Py | 0=xa9 0 f(l'o)A:E
Py 1 f(zo)Az f(z1)Az

P T2 flzo)Az + f(z1)Az f(z2)Azx

n—1
P, | z=uxy, Z f(ZL‘I)AI
i=0

n—1
Thus the result from Euler’s method is Z f(z;)Az. Werecognize this as the left-hand Riemann sum that approxi-
=0

mates [ f(t) dt.

Solutions for Section 11.4

Exercises
dP _ ol dP _
1. 4> =0.02P impliesthat %5 = 0.02 dt.

[ 4£ = [0.02dt impliesthat In | P| = 0.02¢ + C.

|P| = e%0%%C impliesthat P = Ae%%% where A = +¢©.
We are given P(0) = 20. Therefore, P(0) = Ae(®020 = A = 20. So the solution is P = 20e°-¢,

2. Separating variables gives
1
/de_ —/Zdt,

In|P|=-2t+C.

SO

Therefore
P(t) = +e 7MY = g2
Theinitial value P(0) = 1 gives1 = A, 0

P(t) =e *".
3. Separating variables gives
/PdP e /dt
so that )
P
5 = t+C
or
P=xV2t+ D
(where D = 2C).

Theinitia condition P(0) = 1 implies we must take the positive root and that 1 = D, so

P(t) =2t + 1.
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dQ _ Qi H dQ __ dt
Sr = % impliesthat T =5

[ = [ “impliesthatIn|Q| = 1t + C.

S0 |Q| = e3¢ = e5te” impliesthat Q = Ae3!, where A = €. From the initial conditions we know that
Q(0) = 50,50 Q(0) = Ae3)° = A = 50. Thus Q = 50e5".
Separating variables and integrating both sides gives

1 1

1

or

This can be written
L(p) = 4o (/2P0 _ pop/2

Theinitial condition L(0) = 100 gives 100 = A, s0
L(p) = 100e”/?.

dy Y — (i iecdy — _u i dy _ 1
.+ 4 =0implies % = —4 implies [ % = — [ 2 dx.

Integrating and moving terms, we have y = Aem 3, Sincey(0) = A = 10, wehavey = 10e~3°.

. 4m — 3. Asinproblems 1 and 4, we get

at = .
m = Ae”".

Sincem = 5whent = 1, wehave5 = Ac®, 0 A = 5. Thusm = 5e® = 5¢* 2

. 4L = 0.27 impliesthat 4L = 0.2 dz impliesthat [ 4L = [ 0.2 dz impliesthat In |I| = 0.2z + C.

dzx

SoI = Ae®?®, where A = +e. According to the given boundary condition, I(—1) = 6. Therefore, I(—1) =
Ae®2D = 4792 = 6 impliesthat A = 6e%2. Thus I = 622 = 602+,

14z — 5 implies & =5 dt.

Integrating and moving terms, we have z = Ae®. Using the fact that z(1) = 5, wehave z(1) = Ae® = 5,0 A = 5.

Therefore, z = e = 5™ 7°.
Separating variables gives
/ ldm = /ds.
m
Injm|=s+C

Hence

which gives
m(s) = e 7Y = Ae*.
Theinitia condition m(1) = 2 gives2 = Ae' or A = 2/e, S0

2 —
m(s) = Ees =27,

1
/;dz—/ydy

1 .
ln|z|:§y2+C

Separating variables and integrating gives

which gives

or
z(y) = eI/ HC _ gov*/2,
Theinitial conditiony = 0, z = 1 gives A = 1. Therefore

2(y) = ev?/2,
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12.

13.

14.

15.

16.

17.

18.
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Separating variables gives

1 1

or

1 1

= §t+C.

Theinitial condition givesC = —1 and so
1
u(t) =
D=1
= P + 4 impliesthat -2 P+4 =dt.

2 = [dtimpliesthat In |P + 4| =t + C.

P +4 = Ae’ impliesthat P = Ae’ — 4. P = 100 whent = 0, 50 P(0) = Ae® — 4 = 100, and A = 104. Therefore
=104e’ — 4.

dy—zy 4 =2(y—2).
d

Factoring out a2 makestheintegration easier: =% = delmpllesthatf dy = f2dx|mpl|esthatln|y 2| =2z+C.

y—
ly — 2| = e**+C impliesthat y — 2 = Ae®® whereA +e“. The curve passes through (2,5), which means 3 = Ae?,

A =2 Thus y =2+ Ze* =2+3e> %

Factorl ng out the 0.1 gives d”; = 0.1m + 200 = 0.1(m + 2000).
=0.1dt impliesthat [ —2m— = [0.1dt, s0ln|m + 2000] = 0.1¢ + C. Som = Ae”'* — 2000. Using the

m+2000 m-+2000

initial condition, m(0) = Ae(®"° — 2000 = 1000, gives A = 3000. Thusm = 3000t — 2000.
4B + 2B =50 implies 42 = —2B + 50 = —2(B — 25) implies [ 22 = — [ 24t

B25

After integrating and doing some algebra, we have B — 25 = Ae™ ', Using the initial condition, we have 75 = Ae™2,
S0 A = 75 Thus B = 25 + The’e ™" = 25 + 75e° .
We know that the general solution to a differential equation of the form
dy
A
o = Ry —A4)
is
y = Ce™ + A.

Thus, in our case, we get
y = Ce'’? + 200.

We know that at ¢ = 0 we have y = 50, so solving for C' we get
y = Ce'’* 4200
50 = Ce®? + 200
—150 = Ce°
C = —150.

Thus we get
y = 200 — 150/,

We know that the general solution to a differential equation of the form

aQ _

= kQ-4)

H=Ce" + A.
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22.

23.
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To get our equation in this form, we factor out a0.3 to get

d
d—‘f —03 (Q - %) — 0.3(Q — 400).

Thus, in our case, we get
Q = Ce3 + 400.

We know that at ¢ = 0 we have Q = 50 so solving for C' we get

Q = Ce™® 4400

50 = Ce®*® 4 400
—350 = Ce°

C = —350.

Thus we get
Q = 400 — 350”3,

1

—ln|l-R|=r+C

Rearrange and write

or

which can be written as
1—-R=4e 9" =A™

or
R(ry=1—Ae ".
Theinitia condition R(1) = 0.1 gives0.1 =1 — Ae™! and so
A =0.9e.
Therefore
R(r)=1-0.9¢"".
Write
1 1
Zdy = | ——
Y y 3+t
and so
Inlyl=mn3+¢t/+C
or

In|y| =In D|3 +¢|

whereln D = C'. Therefore
y=D(3+1).
Theinitial condition y(0) = 1 gives D = 1 and so

(3+1).

W=

y(t) =

92 = te” impliese *dz = tdt implies [ e~ " dz = [tdt implies—e > = % +C.
Since the solution passes through the origin, z = 0 when ¢t = 0, we must have —e™° = g + C,s0C = —1. Thus
—e % = é —l,orz=—In(1-— %)

dy/dz = 5y/xz implies [dy/y = [5dz/z. Soln|y| = 5ln|z| + C = 5Inz + C implies|y| = e?nre? and thus
y = Ax® where A = +e©. Sincey = 3whenz = 1,50 A = 3. Thusy = 3z°.

2 = y?(1 +t) impliesthat [ ‘;—g =[(+1) dtimpliesthat — =t + % + C impliesthat y = —m.
ENwe
Sincey = 2whent = 1,then2 = —-7-=. S02C +3 = —1,and C = —2. Thusy = —z—— = — 5.
2 5 -
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24,

25.

26.

27.
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. 9N\ - . - . . . . . 3
b — o 42t = 2(1+ %) impliesthat [ % = [(1+¢*)d¢ impliesthat In |2| = ¢ + & + C impliesthat z = Ae!*5.

3
z=5whent=0,504=>5andz = 5e't 7.

2% = Gw’sin 6’ implies that [ 4% = [@sin6>df impliesthat —= = —3 cos#” + C. According to the initial
conditions, w(0) = 1,50 -1 = —1 + CandC = —L. Thus =L = —Lcos6® — L impliesthat 1 = 226”41 jmpljes
that w = m.

z(x+1)2 = u” implies [ &% = I% =[(t- h%ﬂ)dximplies—% =lnlz|-Injz+1/+C.

u(l)=1,0—1 =In|1|—In[1+1|+C.S0C =In2—1. Solvingfor u yields =% = In|z| —In|z +1|+In2—1 =
2

In 2Lzl —
Jz+1] In| 25 |-1

Separating variables and integrating with respect to ¢ gives

1 .
/de:/dwoswzdw.

1 1
/Edwz §/costdt

—1,s0u =

Now set 1? = ¢, then this becomes

and so 1 1
—— =<=sint+C
w 2
or
. -2
" sin(t)+ D
_ —2
T sing? 4+ D’
Using theinitial conditions give D = —2, so the solution is
_ —2
T osing? — 27
Problems

28.

29.

30.

3L

32.

33.

4B — kR impliesthat 22 = kdt which impliesthat [ 22 = [kdt. Integrating gives In |R| = kt + C, s0 |R| =

eMtHC = efte’ R = Ae* where A = +eC.

€ 9 = 0s0 92 = £ Thisisnow the same problem as Problem 30, except the constant factor on the right is £

instead of k. Thusthe solutionis@ = Ae®t for any constant A.

4L = P —q,implyingthat 2 = dt so [ 22 = [ dt. Integrating yieldsIn |P —a| =t +C,s0 |P —a| = ¢'t9 =
ete’. P =a+ Ae!,where A = +e or A = 0.

49 — b — Q impliesthat ;%% = dt which, in turn, implies [ 2% = [ dt. Integrating yields —In|b — Q| =t + C, s0
b—Ql=e D =ete ¢ . Q=b—Ae !, where A=+e “or A=0.

2P = k(P —a),s0 A& = kdt, 0 [ 22 = [ kdt. Integrating yieldsIn|P — a| = kt + C' s0 P = a + Ae*" where

dt P—a a
1
dP = | dt.
/aP+b /

A==4e0rA=0.
Separating variables and integrating gives
1
~InjaP+bl=t+C
a
In|aP +b| =at + D

aP + b= +e®tP = A

Thisgives

or
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34. 4B — gR +b.If a = 0, then thisisjust 2% = b, where b isa constant. Thusin this case R = bt + C' is asolution for
any constant C.
Ifa#0,then 28 = (R + 2).
Now thlSlSjust the same as Problem 32, except here we have a in place of k and —g in place of a, so the solutions are
R = —1% 4 Ae* where A can be any constant.

35. Separating variables and integrating gives
1
/?dy=/k(1+t2)dt

or 1 1
—Z =k(t+ 2t} +C.
” ( +3 )+
Hence,
-1
y(t)

36. Separating variables and integrating gives

/R2+1dR / adx

arctan R = ax + C

or

o that
R(z) = tan(az + C).

37. Separating variables and integrating gives

/—dL /k(m+a)dm

In|L — b|—k( T —i—am)—f-C.

or

Solving for L gives
L(z) = b+ Ae*(z"+an),

38. 2 = y(2 — y) which implies that % = —dt, implying thatfm =—[dt,0—5 [( —;5)dy =

— [ at.
Integrating yields £ (In |y — 2| — In|y|) = —t + C,SOIH% = -2t +2C.

Exponentiating both sidesyields[1 — 2| = e 2H20 o 2 =1—Ae * where A = +e’“. Hencey = —2— . But
y(0) =25 =1,04=-1,andy =

2
1 14e—2t "

39. t92 = (1+2Int)tanz impliesthat o — (1£2Int) gt whichimpliesthat [ <252 dg = [(4 + 2I2t) gt
In|sinz| =Int + (Int)> + C.
|sinz| = e tHint)’+C temt)"teC = t(t"™t)eC. Sosinz = At where A = +eC. Therefore z =
arcsin (At ¢+1).
dr __ zlnz

40. 4z = sof

= [“ andthusIn|lnz| = In|t| + C, 50 |Inz| = e et = ¢C|t|. Therefore Inz = At,

tlnz -

WhereA +eY sox = et
ndy dy  _
41. Since & = —yln( ), Weha\/eTE’—> dt,sothatfyT]E’%—> = [(—dt).

Substituting w = In(%), dw = 7 dy gives.

[ fen

In |w| :ln‘ln (%)‘ =—t+C.
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Sincey(0) =1,wehaveC =In|ln 3| =In| —In2| = In(In2). Thusln |In(4)| = —t + In(In 2), or
‘ln (g) ‘ =g tHnln2) (In2)e”"
Again, sincey(0) = 1, we seethat —In(y/2) = (In2)e " and thusy = 2(2~°" ). (Notethat In(y/2) = (In 2)e " does

not satisfy y(0) = 1.)
42. (a) Separating variables and integrating gives
1
/100—ydy_/dt
~In|100 —y| =t +C

S0 that
or

y(t) = 100 — Ae™".
(b) SeeFigure11.11.

110

25

Figure 11.11

(c) Theinitia condition y(0) = 25 gives A = 75, so the solution is
y(t) =100 — 75"

Theinitial condition y(0) = 110 gives A = —10 so the solution is

y(t) = 100 + 10e "

(d) Theincreasing function, y(¢) = 100 — 75e~¢.

43. (a) Thedopefieldfor dy/dxz = zy isin Figure 11.12.
y Yy

Figure 11.12 Figure 11.13

(b) Some solution curves are shown in Figure 11.13.

(c) Separating variables gives
1
—dy = [ zdx
Jin=]

1 -
Iny| = ixz +C.

or

Solving for y gives
2
y(z) = Ae”

N el VRN ~ VRS Y 279 N
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44. (a) Theslopefieldfor dy/dz = y/x isin Figure 11.14.

Figure 11.14 Figure 11.15

(b) SeeFigure 11.15.
(c) Separating variables gives

/ldy:/lda:
Y T

Inly|=In|z|+C

or

which can be written as
In|y| =In|z| +1n|D|

so that
y = Dx.

Thus, the solutions are lines through the origin, as shown in part (b).
45. (a), (b)

Y

> < |
(0) Since & = z, we have [ydy = [« dz and thus% = % + C, or y?> — % = 2C. Thisis the equation of the
hyperbolas in part (b).
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46. (a), (b)

(c) 4 =—% whichimpliesthat [ % = — [ £ soln|y| = —In|a|+C impliesthat |y| = e~ ™ 11T = (jz|)~"e .
y =2 where A = +e.

47. By looking at the slope fields, we see that any solution curve of y/ = % intersects any solution curveto y = —Z.
Now if the two curves intersect at (x,y), then the two slopes at (z,y) are negative reciprocals of each other, because
—E—}y = —£. Hence, the two curves intersect at right angles.

Solutions for Section 11.5

Exercises

1. @ = (1), (b) =(V), (c) = (ll). Graph (I1) represents an egg originaly at 0° C which is moved to the kitchen table (20°
C) two minutes after the egg in part (8) is moved.
2. (@ ()
(b) (IV)
(o) (1) and (1V)
(d) (1) and (111)

3. (a) Theequilibrium solutions occur wherethe slopey’ = 0, which occurs on the slope field where the lines are horizontal ,
or (looking at the equation) at y = 2 and y = —1. Looking at the slope field, we can see that y = 2 is stable, since
the slopes at nearby values of y point toward it, whereasy = —1 isunstable.

(b) Draw solution curves passing through the given points by starting at these points and following the flow of the slopes,
as shown in Figure 11.16.

Y

\
—

Figure 11.16
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4. (a) We know that the equilibrium solutions are the functions satisfying the differential equation whose derivative every-
where is 0. Thus we have

dy_
%—0

0.2(y —3)(y +2) =0
(y—3)(y+2)=0.

Thesolutionsarey = 3andy = —2.
(b) y

Figure 11.17

Looking at Figure 11.17, we see that the line y = 3 is an unstable solution, whilethe liney = —2 isastable
solution.

5. Theequilibrium solutions of adifferential equation are those functions satisfying the differential equation whose derivative
is everywhere 0. Graphically, this means that afunction is an equilibrium solution if it is a horizontal line that lies on the
slope field. Looking at the figure in the problem, it appears that the equilibrium solutions for this problem areat y = 1
and y = 3. An equilibrium solution is stable if a small change in the initial value conditions gives a solution which
tends toward equilibrium as¢ — oo. we see that y = 3 is a stable solution, while y = 1 is an unstable solution. See
Figure 11.18.

y
5
t
-5 5
-5
Figure 11.18
H : dH _ dH _ —
6. (a) Separating variables, we have ;44 = —kdt, so [ 742 = [ —kdt, whenceln |H — 200| = —kt + C, and

H — 200 = Ae™ where A = +¢“. The initial condition is that the yam is 20°C at the time ¢ = 0. Thus
20 — 200 = A, s0 A = —180. Thus H = 200 — 180e~**.

(b) Using part (a), we have 120 = 200 — 180e~*(*%). Solving for k, we have e %% = =50 giving

k=5 0027
T30 T

n

fobe

Note that this k is correct if ¢ isgiven in minutes. (If ¢ isgiven in hours, k =

~ 1.62.)

|
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Problems

7. (a) Sincethe growth rate of the tumor is proportional to its size, we should have

s

E—ks.

(b) We can solve this differential equation by separating variables and then integrating:

ds

— = [ kdt
[5-]
In|S|=kt+ B

S =CeM.
(c) Thisinformation isenough to allow usto solvefor C:
5= Ce%
C =5.

(d) Knowing that C' = 5, this second piece of information allows us to solve for k:

3k

= be
1 8
k==In|=) ~0.1567.
3n(5) 0.1567

So the tumor’s sizeis given by
S — 560'156”.

8. (a) Sincewe aretold that the rate at which the quantity of the drug decreases is proportional to the amount of the drug
left in the body, we know the differential equation modeling this situation is

dQ _
= kQ.

Since we are told that the quantity of the drug is decreasing, we know that k£ < 0.
(b) We know that the general solution to the differential equation

aQ _
@ M
Q = Cert.

(c) We aretold that the half life of the drug is 3.8 hours. This means that at ¢ = 3.8, the amount of the drug in the body
is half the amount that was in the body at ¢ = 0, or, in other words,

0.5Q(0) = Q(3.8).
Solving this equation gives
0.5Q(0) = Q(3.8)

0.5Ce"® = k8
0.5C = CeFG®

0.5 = ek'(?>.8)
In(0.5) = k(3.8)
In(0.5)

29 gk
3.8

k ~ —0.182.
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(d) From part (c) we know that the formulafor Q is
Q — 06_0'18%.
We are told that initially there are 10 mg of the drug in the body. Thus at ¢ = 0, we get
10 = 06—0.182(0)
so
C =10.

Thus our equation becomes ‘
Q(t) — 106—0.18%.

Substituting ¢t = 12, we get

Q(t) — 106—0.182t
Q(12) — 10670.182(12)
— 10672.184

Q(12) ~ 1.126 mg.

9. (a) SupposeY (t)isthequantity of ail inthewell at timet. Weknow that the oil in the well decreases at arate proportional
toY (t), so

dy
— = —kY.
dt k

Integrating, and using the fact that initially Y = Y, = 10°, we have
Y = Yoe * = 10%7F.

Insix years, Y = 500,000 = 5 - 10°, s0
5-10° = 10%7*5

Sel

WhenY = 600, 000 = 6 - 105,

Rate at which oil decreasing = ¥

o | = kY = 011556 - 10%) = 69,300 barrelslyear.

(b) We solve the equation

5 - 104 — 106670.1155t

0.05 = ¢ 01155t
In 0.05
t = ————— =259 years.
—0.1155 y

10. (a) Assuming that the world's population grows exponentialy, satisfying dP/dt = c¢P, and that theland in use for crops
is proportional to the population, we expect A to satisfy dA/dt = kA.

(b) Wehave A(t) = Aot = (1 x 10°)e*!, wheret isthe number of years after 1950. Since 2 x 10° = (1 x 10%)e*(0,

wehave ¢®* = 2,50k = 122 ~ 0.023. Thus, 4 ~ (1 x 10°)e®°2**_ We want to find ¢ such that 3.2 x 10° =

30
A(t) = (1 x 10°)e®-223, Taking logarithms yields

_In(3.2)
t= £ 22~ 50.6years

Thus this model predicts land will have run out by the year 2001.
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11. (@) Letting k be the constant of proportionality, by Newton's Law of Cooling, we have

dH

(b) We solve this equation by separating variables:

dH
/ 651 / e dt
—In|68—H| =kt +C
68 — H = e **
H =68 — Ae "'
(c) Wearetold that H = 40 when ¢t = 0; thistellsus that
40 = 68 — Ae ()
40=68—-A
A =28.
Knowing A, we can solve for k using the fact that H = 48 whent = 1:

48 = 68 — 28¢ *(V
0 _
28
20
k=-1 (—) = 0.33647.
"\28
So the formulais H (t) = 68 — 28 %-33647¢ '\We calculate H whent = 3, by
H(3) =68 — 28¢ **%047(®) — 57 8°F.

12. (a) Therate of growth of the money in the account is proportional to the amount of money in the account. Thus

aM
v
a

/dﬁM:/rdt
In|M|=rt+C

M =e"t0 = 4e™, A =e°.

(b) Solving, we have dM /M = rdt.

When t = 0 (in 2000), M = 1000, so A = 1000 and M = 1000e"".

() M
20000 M = 1000e0-10¢
5000 M = 100060.05t
1000 Lo

2000 2030
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13. (a % = 165 B- The constant of proportionality is 155 -
(b) Solving, we have
dB _ rdt
B 100
dB r
B / 100 %
r
In|B|=—t+C
n Bl = 5ot +

B = (r/100)t+C _ 4,(r/100)t

A=e°.

A istheinitial amount in the account, since A isthe amount at timet = 0.

(©

B = 1000¢0-15¢

14.

15.

16.

20,000 B = 1000¢°-10¢
10,000 |
B = 1000¢0-04¢
1000 ‘ |

t

15 30

Since it takes 6 years to reduce the pollution to 10%, ancther 6 years would reduce the pollution to 10% of 10%, which is
equivalent to 1% of the original. Therefore it takes 12 years for 99% of the pollution to be removed. (Note that the value
of Qo does not affect this.) Thus the second time is double the first because the fraction remaining, 0.01, in the second
instance is the square of the fraction remaining, 0.1, in the first instance.

Michigan:
aQ  r 158 -
@ T V0T g x i@ ™ T0032¢
so
Q — Q0670.032t
We want to find ¢ such that ‘
OlQO — Q0670.032t
% In(0.1
t= % ~ 72 years.
Ontario: 40 209
r _
Tt T V9T a0 ? T 0131€
so
Q — Q0670.131t
We want to find ¢ such that
0.1Q0 = Qoe—o.lslt
0 In(0.1
t= % ~ 18 years.

L ake Michigan will take longer because it is larger (4900 km? compared to 1600 km®) and water is flowing through
it at a slower rate (158 km?®/year compared to 209 km?/year).

Lake Superior will take the longest, because the lake is largest (V' is largest) and water is moving through it most slowly
(r issmallest). Lake Erie looks as though it will take the |east time because V' is smallest and r is close to the largest. For
Erie, k = r/V = 175/460 = 0.38. Thelake with the largest value of r isOntario, where k = r/V = 209/1600 = 0.13.
Since e ~** decreases faster for larger k, Lake Erie will take the shortest time for any fixed fraction of the pollution to be
removed.

For Lake Superior,
65.2

dQ B
- 12,200

dt

r
_VQ = Q = —0.0053Q
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17.

18.
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)
Q — Q06—0.0053t
When 80% of the pollution has been removed, 20% remains so Q = 0.2(Q). Substituting gives us

OZQO — Q0€70.0053t

In(0.2)
0.0053
(Note: The 301 is obtained by using the exact value of {> = 5535, rather than 0.0053. Using 0.0053 gives 304 years))
For Lake Erie, asin the text

t=—

~ 301 years.

aQ _ r 175 0
G T v T i@~ 038
')
Q — Q0670.38t
When 80% of the pollution has been removed
0.2Q0 = Qoe—o.sst
t=— lrt)(g':) = 4 years.

Sotheratiois . )
Time for Lake Superior 301

Timefor LakeErie ~ 4
In other words it will take about 75 times as long to clean Lake Superior as Lake Erie.

@ Q
Qo

75.

Q — Q0670.0187t

0 22 = ko

() Since 25% = 1/4, it takes two half-lives = 74 hours for the drug level to be reduced to 25%. Alternatively, @ =
Qoe " and 1 = e7*(*7) we have
In(1/2)
k=— =~ 0.0187.
37
Therefore Q = Qoe™ " '8, We know that when the drug level is 25% of the original level that Q = 0.25Qq.
Setting these equal, we get

0.25 = 670.0187t

giving
In(0.25)
=—-—"—-~ 74h S .
t 00157 ours ~ 3 days

(@) We know that the rate at which morphine leaves the body is proportional to the amount of morphine in the body at
that particular instant. If welet Q be the amount of morphine in the body, we get that

Rate of morphine leaving the body = kQ,

where k isthe rate of proportionality. The solution is Q = Qoe** (neglecting the continuously incoming morphine).
Since the half-lifeis 2 hours, we have

1 .2
QQO = Qoe"?
and so

In(t
k= n(22) — —0.347.

(b) 22 = —0.347Q + 2.5
oy . . d .
(c) Equilibrium will occur when d—? =0,i.e,when0.347Q = 2.50r Q = 7.2 mg.



19. (a)
(b)
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dT

i —k(T — A), where A = 68°F is the temperature of the room, and ¢ istime since 9 am.

A [
In|T — Al = -kt +C
T = A+ Be™*.
Using A = 68, and T'(0) = 90.3, we get B = 22.3. Thus
T =68 +22.3¢ .
Att =1, wehave
89.0 = 68 + 22.3¢7*
21 =22.3¢ F
21

=—In— = 0.06.
k N3 0.06

ThusT = 68 + 22.3e~ 296,
We want to know when T" was equal to 98.6° F, the temperature of alive body, so

98.6 = 68 + 22.3¢ 0:06¢

30.6

1 30.6

L= (‘ 0.06> 53
t~ —5.27.

The victim was killed approximately 5% hours prior to 9 am, at 3:45 am.
The differential equation is

dr
= —k(T - 4),

dr
Thenln|T — A| = —kt + C,0T = A + Be *. Thus
T =10 + 58¢~**.

where A = 10°F isthe outside temperature.
Integrating both sidesyields

Since 10:00 pm correspondsto ¢ = 9,
57 = 10 + 58¢ "

AT _ o
58
47
In — = —9k
158
1. 47

At 7:00 the next morning (¢ = 18) we have

T = 10 + 58¢8(70-0234)
=10 + 58(0.66)
~ 48°F,

so the pipes won't freeze.

667

We assumed that the temperature outside the house stayed constant at 10°F. This is probably incorrect because the
temperature was most likely warmer during the day (between 1 pm and 10 pm) and colder after (between 10 pm and
7 am). Thus, when the temperature in the house dropped from 68°F to 57°F between 1 pm and 10 pm, the outside
temperature was probably higher than 10° F, which changes our calculation of the value of the constant k. The house

temperature will most certainly be lower than 48°F at 7 am, but not by much—not enough to freeze.
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21.

22.

23.

Solutions for Section 11.6
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The rate of disintegration is proportiona to the quantity of carbon-14 present. Let Q be the quantity of carbon-14 present
at timet¢, with¢ = 0in 1977. Then

Q= Qoe ™",
where Qo isthe quantity of carbon-14 present in 1977 when ¢t = 0. Then we know that

Qo —k(5730)
g = Qe

In(1/2)
k=— =0. 121.
S5- = 0.000

so that

Thus
Q — Q06—0.000121t

The quantity present at any time is proportional to the rate of disintegration at that time so
Qo = 8.2 and Q =cl3.5
where ¢ isaconstant of proportionality. Thus substituting for @ and Qo in
Q — Q06—0.000121t
gives
c13.5 = ¢8.2¢ 0000121

* In(13.5/8.2)
n . .

t= T 0000121 ~ —4120.

Thus Stonehenge was built about 4120 years before 1977, in about 2150 B.C.

(@ If ¢’ = —kC, and then C' = Coe**. Since the half-life is 5730 years, +Co = Coe>"*°*. Solving for k, we have
—5730k = In(1/2) so k = =20/ ~0.000121.

(b) From the given information, we have 0.91 = e~*!
=091 ~ 779.4 years.

(a) Since speed isthe derivative of distance, Galileo’s mistaken conjecture was ‘fi—]f =kD.

(b) We know that if Galileo’s conjecture were true, then D(t) = Doe**, where Do would be the initial distance fallen.

But if we drop an object, it starts out not having traveled any distance, so Dy = 0. Thiswould lead to D(t) = 0 for
al t.

, where ¢ is the age of the shroud. Solving for ¢, we havet =

Exercises

1

2.

Since mg isconstant and a = dv/dt, differentiating ma = mg — kv gives

m@ = —k@ = —ma
dt —  Tdt ’
Thus, the differential equation is
da _ _k
dt~ m
Solving for a gives
_ —kt/m
a = ape .

Att = 0, we have a = g, the acceleration due to gravity. Thus, ap = g, SO

a= gefkt/m.

(@ If B = f(t), wheret isin years,
dB
dt
dB
dt

= Rate of money earned from interest + Rate of money deposited

= 0.10B + 1000.
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(b) We use separation of variables to solve the differential equation

dB
— = 0.1B + 1000.
7t 0 + 1000

1
—— ___dB= [ dt
/ 0.1B + 1000 /

1
57 m10-1B +1000] = ¢ + C

0.1B + 1000 = Coe’"
B = Ce”'" — 10,000
Fort =0, B = 0, hence C = 10,000. Therefore, B = 10,000¢°'* — 10,000.
3. (a) There aretwo factors that are affecting B: the money leaving the account, which is at a constant rate of —2000 per
year, and the interest accumulating in it, which accrues at arate of (0.08)B. Since

Rate of change of balance = Ratein — Rate out,

the differential equation for B is

aB = 0.08B — 2000.
dt

(b) We solve the differential equation by separating variables and then integrating:

dB
/0.08B—2000 B /dt

12.51n|0.08 B — 2000| =t + C

In |0.08B — 2000 = 1;—5 +C

0.08B — 2000 = +¢%%%*+¢
B = 25,000 + Ae” %%,
(¢) (i) If theinitia deposit is 20,000, then we have B = 20,000 when ¢ = 0, which leadsto A = —5000. Knowing
A, wecan find B(5) as:
B(5) = 25,000 — 5000¢’°*) = $17,540.88.
(i) Now B = 30,000 whent = 0 leadsto A = 5000, giving B(5) = $32,459.12.

4. (a) By Newton'sLaw of Cooling, we have

dH
YT k(H—
7 ( 50)

for some k. Furthermore, we know the juice’s original temperature H(0) = 90.

(b) Separating variables, we get
dH
/7@_50) - /kdt.

In|H — 50| = kt + C
H-50=¢". A
H =50 + Ae™.
Thus, H(0) = 90 gives A = 40, and H (5) = 80 gives

We then integrate:

50 + 40e* = 80

5k — 30
40
5k = In(0.75)

k= %ln(0.75) ~ —0.05754.

Therefore
H(t) = 50 + 40e~ >0,
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(c) Wenow solvefor ¢ at which H(t) = 60:

60 = 50 + 40~ %0754

1 — 005754
4
In(0.25) = —0.05754¢
t = 24 minutes.

Problems
5. Let D(t) bethe quantity of dead leaves, in grams per square centimeter. Then % =3—0.75D, wheret isinyears. We
factor out —0.75 and then separate variables.

dD
& = _0.75(D -4
dt 0.75( )

dD
D_1 —/—0.75dt

In|D —4| =-0.75t + C
|D — 4] = e 0THHC — o075t ,C

D=4+ Ae %™ where A = +¢°.

If initially the ground is clear, the solution looks like the following graph:

t

The equilibrium level is 4 grams per square centimeter, regardless of the initial condition.
6. (a) Sincetherate of change of the weight is equal to

1 L .
m(lntake — Amount to maintain weight)
we have aw .
2~ 35001~ 20W)-
(b) Starting off with the equation
aw 2 I
FRE T
we separate variables and integrate:
aw / 2 .
W — L 350
Thus we have
wiw - L= 20
20 350
so that I
2
— — — Ae~ 0t
w 20 e
or in other words 7
= — 350 ¢
W 20 + Ae

Let us call the person’sinitial weight W at ¢ = 0. Then Wy = &= + Ce® 0 C = Wy — . Thus

I I 2
v (o)
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(c) Using part (b), we have W = 150 + 10e~ 355, Thismeansthat W — 150 ast — oo. See the following figure.

w
160
150

|
100 days

7. Let the depth of the water at time ¢ be y. Then dy = —k,/y, where k is a positive constant. Separating variables,

dt
dy
=2 = [ kat,
%
SO
2y =—kt+C.

Whent =0,y =36;2v36 =—-k-0+C,s0C =12.
Whent =1,y =35;2v35 = —k + 12,50k ~ 0.17.
Thus, 2,/y ~ —0.17t + 12. We are looking for ¢ such that y = 0; this happens when t ~ 52 = 71 hours, or about 3
days.
8. We are given that the rate of change of pressure with respect to volume, dP/dV is proportiona to P/V, so that

r _ P

v ="V’
Using separation of variables and integrating gives

ap _ ., [ dv

P V'

Evaluating these integral gives
InP=kInV +c¢

or equivalently,
P = AV*
9. We are given that
BC =20C.
If the point A has coordinates (z, ) then OC = z and AC = y. The dope of the tangent line, 3/, is given by
r_AC _ Yy
Y =BC ~ BC
so
Bo=2.
Y
Substitution into BC' = 20C gives
5 = 2z,
so
y_ 1
y 2z

Separating variables to integrate this differential equation gives

dy _ [ do
y 2z

In|y| = %ln|x|+0=ln\/|x|+lnA
lyl = A/ ||
y = £(AVr).

Thus, in the first quadrant, the curve has equation y = A\/z.
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10. Let C(t) bethe current flowing in the circuit at time ¢, then

ac
E =—aC

where a > 0 isthe constant of proportionality between the rate at which the current decays and the current itself.

The general solution of this differential equation is C(t) = Ae™*! but since C'(0) = 30, we have that A = 30, and

so we get the particular solution C(¢) = 30e™*.

When ¢t = 0.01, the current has decayed to 11 amps so that 11 = 30e~*°-°! which givesa = —1001n(11/30) =

100.33 so that,

11. (a)
(b)

12. (a)

(b)

13. (a)

(b)

14. (a)

C(t) — 3067100.33t.

Since the rate of change is proportional to the amount present, dy/dt = ky for some constant k.

Solving the differential equation, we have y = Ae*t, where A isthe initial amount. Since 100 grams become 54.9
gramsin one hour, 54.9 = 100e*, 0 k = In(54.9/100) ~ —0.5997.

Thus, after 10 hours, there remains 100e(~-299710 ~ (0.2486 grams.

If P = pressure and h = height, & = —3.7 x 107°P, 0 P = Poe=3 73107k Now P, = 29.92, since pressure

at sealevel (when i = 0) i529.92, s0 P = 29.92¢ =3 710" "1 At the top of Mt. Whitney, the pressure is
P = 29.92¢ 371077 (14500) 17 50 inches of mercury.

At the top of Mt. Everest, the pressureis
P = 29.92¢ 371077 (29000) 10 93 inches of mercury.

The pressure is 15 inches of mercury when

15 = 29 926—3.7><10’5h

Solving for h gives h = === In(555;) ~ 18,661.5 feet.

If I isintensity and [ isthe distance traveled through the water, then for some k& > 0,
dl
— = —klI.
dl K

(The proportionality constant is negative because intensity decreases with distance). Thus I = Ae™*!. SinceI = A
when ! = 0, A represents theinitial intensity of the light.

If 50% of the light is absorbed in 10 feet, then 0.504 = Ae ', soe~'% = 1, giving
po 3 _ 2
10 10
In 20 feet, the percentage of light left is
e~ 020 _ p=2In2 _ (P =277 = %,

s0 2 or 75% of the light has been absorbed. Similarly, after 25 feet,
671;'—02-25 — o 2582 _ (61112)7% _ 273 ~ 0.177.
If A issurface area, we know that for some constant K

v
— =—-KA.
dt

If r isthe radius of the sphere, V = 477 /3 and A = 4%, Solving for r interms of V givesr = (3V/47)*/?, so

ﬂ__ o (ﬂ)Z/S
7 K(4nr®) = —K4n yp

av

— _y/B
dt v

where k is another constant, k = K (47)/33%/3,
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(b) Separating variables gives
/ % = - / kdt
VY3 = —kt + C.

SinceV =V whent = 0, wehave 3V,/® = C, s0

3V = —kt +3V,/%
Solving for V' gives

V= (—§t+ V01/3)3.
Thisfunction is graphed in Figure 11.19.

v
Vo

=t

3V, /3 [k
Figure 11.19
(c) The snowball disappears when V' = 0, that iswhen
—gt +Vv3? =0
giving
_ %"

=%

15. (a) Quantity of A present at timet equals (a — z).
Quantity of B present at time ¢ equals (b — ).

So
Rate of formation of C' = k(Quantity of A)(Quantity of B)
gives
dr _ k(a —z)(b—x)
dt

(b) Separating gives

| e = [ Fe

Rewriting the denominator as (a — z)(b— z) = (z — a)(z — b) enables usto use Formula 26 in the Table of Integrals
provided a # b. For some constant K, this gives

1
a_b(ln|x—a|—ln|x—b|):kt—l—K.
Thus
x
In ‘z(a—b)kt—f-K(a—b)
T —
r—ay _ eK(a—b)e(a—b)kt
z—b
T —a

= M@k \where M = 45(@0),

r—>b
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Sincez = O whent = 0, wehave M = ¢. Thus
rT—a 4 (a—b)kt
z—b b '
Solving for x, we have
bz — ba = ae'® V" (z — b)
z(b — ae 7Pkt = qb — abel@™PH

_ ab(l _ e(afb)kt) ab(ebkt _ eakt)

b — qela—bkt —  pebkt _ geakt °

16. Quantity of A left at timet = Quantity of B left at timet equals (a — ).

Thus
Rate of formation of C' = k(Quantity of A)(Quantity of B)
gives
dr _ _ _ _ _ 2
7t =k(a—z)(a—z)=k(a —2x)".
Separating gives

_dz [
(x —a)?
—(x—a) ' =kt + K.
Whent =0,z =0s0 K =a*. Solving for z:

Integrating gives, for some constant K,

—(x—a) ' =kt+a !

1
Ckt+a-!
_ a _ a’kt
_a_akt+1 T akt+1

r—a=

17. (a) The quantity and the concentration both increase with time. As the concentration increases, the rate at which the
drug is excreted also increases, and so the rate at which the drug builds up in the blood decreases; thus the graph of
concentration against time is concave down. The concentration rises until the rate of excretion exactly balances the
rate at which the drug is entering; at this concentration there is a horizontal asymptote. (See Figure 11.20.)

¢ (mg/ml)
0015 F—————————— =

c=0.015(1 — ¢=0:082t)

| | Lo
20 40 60

Figure 11.20

(b) Let'sstart by writing a differential equation for the quantity, Q(¢).

Rate at which quantity of drug changes = Ratein — Rate out

dQ
— =43.2 - 0.082
= 3.2 — 0.082Q
where @ ismeasured in mg. We want an equation for concentration ¢(t) = Q(t)/v, wherec(t) ismeasured in mg/ml

and v isvolume, so v = 35,000 ml.

LG _ 182 0,0
v dt v v

giving
de _ 432 4 089c.

dt 35,000
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(c) Factor out —0.082 and separate variables to solve.

dc
— = —0.082(c — 0.01
7 0.082(c — 0.015)

dc
——— = —0.082
/c—0.015 0.08 /dt

In|c —0.015] = —0.082t + B
c—0.015 = Ae %% where A= +e®

Sincec = 0 whent = 0, wehave A = —0.015, so
¢ =0.015 — 0.015e %% = 0.015(1 — e~ *%%).
Thusc — 0.015 mg/ml ast — co.

18. (a) % = —k(y — a), wherek > 0 and a are constants.

(b) /ydTya = /—kdt,soln ly—a| =In(y—a) = —kt+C.Thus,y—a = Ae™*" where A = ¢ . Initially nothing

has been forgotten, so y(0) = 1. Therefore, 1 —a = Ae® = A, s0y —a= (1 —a)e " ory =(1—a)e " +a.
(€) Ast — o0, e — 0,50y — a.
Thus, a represents the fraction of material which isremembered in the long run. The constant & tells us about the rate
at which material isforgotten.
19. (a) Wehave
dp *
£ = _k(p—
7 (p—p"),
where k is constant. Notice that k > 0, sinceif p > p* then dp/dt should be negative, and if p < p* then dp/dt

should be positive.
/ dp :/—kdt.
p—p*

(b) Separating variables, we have
Solving, wefindp = p* + (po — p*)e**, where po istheinitial price.
(c) SeeFigure11.21.

po > p*

po < p*

Figure 11.21

(d) Ast — co,p — p*. We seethisin the solution in part (b), since ast — oo, e™** — 0. In other words, ast — oo, p
approaches the equilibrium price p*.

20. (a)
9 —og--sta-1)
ek
n|Q-L|=-at+C
Q-1 =Ae
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Whent =0,Q =0,50A4 == and
T —at
:—1—
Q=-(1-e")
So,

Qoo = lim Q==
t

— 00

(b) Doubling r doubles Q. Since Q« = r/a, thetimeto reach %Qoo is obtained by solving

(1—e™)

Figure 11.22

(©) Qoo ishalved by doubling «, and so isthetime, t = 22 to reach Q.

[e%

. . Quantity in room
21. (a) Concentration of carbon monoxide = ~—olume

If Q(t) represents the quantity of carbon monoxide in the room at time ¢, c¢(t) = Q(¢)/60.

Rate quantity of
carbon monoxide in room = ratein — rate out
changes
Now
Ratein = 5%(0.002m® /min) = 0.05(0.002) = 0.0001m® /min.
Since smoky air isleaving at 0.002m® /min, containing a concentration c(t) = Q(t)/60 of carbon monoxide

Rate out = 0.002%
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Thus dQ 0.002
Since ¢ = @/60, we can substitute @ = 60c, giving
d(60c) 0.002
- 0.0001 50 (60c)
dc _ 0.0001 0.0020
dt 60 60
(b) Factoring the right side of the differential equation and separating gives
de _0.0001

o= 3 (c—0.06) 3 x 107%(c — 0.05)

de -5
% 1
/0_0.05 /3>< 077dt

Injc—0.05] = =3 x 10 °t + K
c—0.05 = Ae_?’Xl(rSt whereA = +e¥.

Sincec = 0 whent = 0, wehave A = —0.05, s0

¢ =0.05 — 0.05¢ 3X107°¢
(©) Ast — 00, e~ 3107t 5 0s0c — 0.05.
Thusin the long run, the concentration of carbon monoxide tends to 5%, the concentration of the incoming air.
22. ¢ =0.05 — 0.05¢ X107t
We want to solve for ¢ when ¢ = 0.001
0.001 = 0.05 — 0.05¢3%10 "t
—0.049 = —0.05¢3%10 "t

e~ 31077 — 98

_ —In(0.98) —_ .
= 3xi0— = 673 min = 11 hours 13 min.
23. (a) Now
% = (Rate at which salt enters the pool) — (Rate at which salt leaves the pool),

and, for example,

enters the pool sdt solution sdt solution
(gramg/minute) = (gramg/liter) x (liters/minute)

< Rate at which salt > _ ( Concentration of > < Flow rate of >

Rate at which salt enters the pool =
(10 gramg/liter) x (60 liters/minute) = (600 grams/minute)
The rate at which salt leaves the pool depends on the concentration of salt in the pool. At time ¢, the concentration is

5(t) ) (
W’ where S(t) is measured in grams.
us

Rate at which salt leaves the pool =
S(t) grams y 60 liters _ 3.5(¢) grams
2 x 106 liters © minute ~ 10° minutes’

Thus s 35
ar ~ 000 100,000
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b % — _Wgooo(s — 20,000,000)
dt

ds
In S — 20,000,000 = — 555t + C

= ([_-_3 _
$—20,000,000 f 100,000
3¢

S = 20,000,000 — Ae 00,000
3
Since S =0att =0, A= 20,000,000. Thus S(¢) = 20,000,000 — 20,000,000¢ ~ T00.000 "

(c) Ast — o0, e” 0,000 ¢ 0, so S(t) — 20,000,000 grams. The concentration approaches 10 gramg/liter. Note that
this makes sense; we'd expect the concentration of salt in the pool to become closer and closer to the concentration
of salt being poured into the pool ast — oo.

24. (a) Newton'sLaw of Motion says that
Force = (mass) x (acceleration).

Since acceleration, dv/dt, is measured upward and the force due to gravity acts downward,

mgR? dv

R+h2_ "at

dv gR?

dt — (R+h)?
(b) Sincev = %, the chain rule gives
dv _dv dh _dv.
dt ~ dh dt — dh
Substituting into the differential equation in part (a) gives
dv gR?

V— = ——

dh ~  (R+h)?

__ [ _gr
/Udv— /(R+h)2dh

(c) Separating variables gives

v? gR?
2 " ®menm T C
Sincev = vo whenh = 0, , , ,
v _ gk i _ v
5 _(R+0)+C gives C = 5 gR,
so the solution is
v2 gR2 vo?
i —~ _gR
2 " @®+n) T2 Y
2 2 29R2
= S A —
im0t oy 2R
. 9 ! - . 29R?
(d) The escape velocity v ensures that v > 0 for all A > 0. Since the positive quantity R+h) —+0ash =+ oo, to

ensure that v> > 0 for all h, we must have
vo> > 2gR.

When vo® = 2gR sovo = /2gR, we say that vy isthe escape velocity.
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Exercises

1. A continuous growth rate of 0.2% means that

1dP
—— =02% = 2.
T 0.2% = 0.00

Separating variables and integrating gives

2. (a)

(b)
©

(d)

3. (@

/dP /0002dt

P 0002t_<66x10 ) 0002t.

RRSORRRS

t
1 2

Thevaue P = 1 isastable equilibrium. (See part (d) below for a more detailed discussion.)

Looking at the solution curves, we see that P isincreasing for 0 < P < 1 and decreasing for P > 1. The values of
P =0, P =1 areequilibria. In the long run, P tends to 1, unless you start with P = 0. The solution curves with
initial populations of lessthan P = % have inflection pointsat P = % (This will be demonstrated algebraicaly in
part (d) below.) At the inflection point, the population is growing fastest.

ap
dt

0.75 + \
P
1'\

Since 42 t =3P —3P% = 3P(1 — P), the graph of agalnst P is aparabola, opening downwards W|th P
interceptsat 0 and 1. The quantlty ispositivefor 0 < P < 1, negativefor P > 1 (and P < 0). The quantlty
isOaP=0and P =1, and maximum at P = 1. Thefactthat 22 =0a P =0and P =1 tells us that these
are equilibria. Further, snce P >0for0< P < 1, we see that solutlon curves starting here will increase toward
P=1.

If the population startsat avalue P < 1, itincreases at an increasing rate up to P = 1. After this, P continues
to increase, but at a decreasing rate. The fact that ‘“’ has a maximum at P = * tells us that there is a point of

inflection when P = % Similarly, smce <0 for P > 1, solution curves startmg with P > 1 will decrease to
P=1.Thus, P =1 isastableequmbrlum

At t = 0, which corresponds to 1935, we have

1
= 1+ 2.968¢-00275(0)

showing that about 25% of theland wasin usein 1935.

=0.252
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(b) Thismodel predicts that as ¢ gets very large, P will approach 1. That is, the model predicts that in the long run, all
the land will be used for farming.

(c) To solve this graphically, enter the function into a graphing calculator and trace the resulting curve until it reaches a
height of 0.5, which occurswhen t ~ 39.6. Sincet = 0 correspondsto 1935, t = 39.6 correspondsto 1935+ 39.6 =
1974.6. According to this model, the Tojolobal were using half their land in 1974. Alternatively, we solve for ¢:

1
1+ 2.968¢ 700275t — 9
2.968¢ " =1
o~ 0:0275¢t _ L
2.968
_ In(1/2.968)
T —0.0275

=0.5

= 39.6 years.

(d) The inflection point occurs when P = L/2 or at one-half the carrying capacity. In this case, P = % in 1974, as
shown in part (c).

Problems

4. The US population in 1860 was 31.4 million. If between 1860 and 1870 the population had increased at the same rate as

previous decades, 34.7%, the population in 1870 would have been (31.4 million)(1.347) = 42.3 million. In actuality the
US population in 1870 was only 38.6 million. Thisisashortfall of 3.7 million people.

History records that about 618,000 soldiers died (total, both sides) during the Civil War (according to Collier's
Encyclopedia, 1968). This accounts for only & (roughly) of the shortfall. The rest of the shortfall can be attributed to
civilian deaths and a decrease in the birth rate caused by absent males and an unwillingness to have babies under harsh
economic conditions and political uncertainty.

Table 11.14
dP . P(Fl0)_P(i-10)
1790 39
1800 53 (7.2 -3.9)/20 = 0.165

)

1810 7.2 (9.6 — 5.3)/20 = 0.215
1820 96 (12.9 — 7.2)/20 = 0.285
1830 | 129 (17.1 — 9.6)/20 = 0.375
1840 | 17.1| (23.2— 12.9)/20 = 0.515
1850 | 232| (31.4—17.1)/20 = 0.715
1860 | 31.4| (38.6 —23.2)/20 = 0.770
1870 | 386| (50.2 —31.4)/20 = 0.940
1880 | 502 | (62.9 — 38.6)/20 = 1.215
1890 | 629 | (76.0 —50.2)/20 = 1.290
1900 | 76.0| (92.0 — 62.9)/20 = 1.455
1910 | 92.0| (105.7 — 76.0)/20 = 1.485
1920 | 105.7 | (122.8 — 92.0)/20 = 1.540
1930 | 122.8 | (131.7 — 105.7)/20 = 1.300
1940 | 131.7 | (150.7 — 122.8)/20 = 1.395
1950 | 150.7

According to these calculations, the largest value of dP/dt occursin 1920 when the rate of change is% = 1.540
million peoplelyear. The population in 1920 was 105.7 million. If we assume that the limiting value, L, is twice the
population when it is changing most quickly, then L = 2 x 105.7 = 211.4 million. This is greater than the estimate of
187 million computed in the text and closer to the actual 1990 population of 248.7 million.

Rewriting the equation as £ 42 = (199=F) e see that this is a logistic equation. Before looking at its solution, we
dP

explain why there must always be at least 100 individuals. Since the population begins at 200, 7 isinitialy negative,

so the population decreases. It continues to do so while P > 100. If the population ever reached 100, however, then ‘fi—’t’
would be 0. This means the population would stop changing — so if the population ever decreased to 100, that’'s where it
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would stay. The fact that % will always be negative also shows that the population will always be under 200, as shown
bel ow.

7. (@)

(b)

(©

100 F==—==——==== =

The solution, as given by the formula derived in the chapter, is

B 20000
~ 200 — 100e—#/10

We know that alogistic curve can be modeled by the function
L
P= 1+ Ce—kt

where C' = (L — Py)/(Po) and P isthe number of people infected by the virus at a particular time ¢. We know that
L isthelimiting value, or the maximal number of people infected with the virus, so in our case

L = 5000.
We are also told that initially there are only ten people infected with the virus so that we get
Py = 10.

Thus we have

L—-P
P

5000 — 10

- 10

= 499.

C =

We are aso told that in the early stages of the virus, infection grows exponentially with k = 1.78. Thus we get that

the logistic function for people infected is
5000

T 1+499e 178

5000 f——————

2500 ————

Looking at the graph we see that the the point at which the rate changes from increasing to decreasing, the inflection
point, occurs at roughly ¢ = 3.5 giving avalue of P = 2500. Thus after roughly 2500 people have been infected, the
rate of infection starts dropping. See above.



682 Chapter Eleven /SOLUTIONS

8. (a) Thelogistic model isareasonable one because at first very few houses have aV CR. As movie rentals become popular
and as VCRs get cheaper, more people will buy VCRs. However, we know that the rate of VCR buying will start
slowing down at some point asit isimpossible for more than 100% of houses to have VCRs.

(b) To find the point of inflection, we must find the year at which the rate of VCR buying changes from increasing to
decreasing. The following table shows the rate of change in the years from 1978 to 1990.

Year 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984
% Change per year | 0.2 06] 07| 1.3 241 5.1 10.2
Year 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991
% Change peryear | 15.2 | 12.7| 9.3| 6.6| 7.3 0

Looking at the table, we see that the rate of percent change per year changes from increasing to decreasing in
the year 1986. At this time 36% of households own VCRs giving P = (1986, 36). Since at the inflection point we
expect the vertical coordinate to be L/2, we get

L/2 =36
L =72%.

Thus we expect the limiting value to be 72%. Thisfitsin well with the data that we have for 1990 and 1991.
(c) Sincethe general form of alogistic equation is

_ L
1+ Ce—k:t
where L isthe limiting value, we have that in our case L = 75 and the limiting value is 75%.

9. (a) Let I be the number of informed people at time ¢, and I the number who know initially. Then this model predicts
that % = k(M — I) for some positive constant k. Solving this, we find the solution is

I=M—(M—1Iye ™.

We sketch the solution with I = 0. Notice that % islargest when I issmallest, so the information spreads fastest in
the beginning, at ¢ = 0. In addition, the graph below showsthat I — M ast — oo, meaning that everyone gets the
information eventually.

P:

t

(b) In this case, the model suggests that % = kI(M — I) for some positive constant k. Thisis a logistic model with

carrying capacity M. We sketch the solutions for three different values of I below.
I

M
Ip =0.75M

0.5M

Ip =0.05M ¢

(i) If Ip = 0then I = 0 for al ¢. In other words, if nobody knows something, it doesn’t spread by word of mouth!
(i) If I = 0.05M, then 4L isincreasing up to I = 4. Thus, the information is spreading fastest at 7 = 4.
(iii) 1f Io = 0.75M, then 4L is always decreasing for I > % s0 4L islargest when t = 0.
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10. (a) Letthepopulation at timet be P(t) and the relative growth ratebe G = o — SP. When P = 600, G = 35 — 15 =
20%, and when P = 800, G = 30 — 20 = 10% so

o — 6003 = 0.20

o — 8008 = 0.10.

Therefore, o = § and 8 = 5555, hence

1dP 1 1

—== == P
Pdt 2 2000
(b) Thedifferential equation isalogistic equation
dp 1
and so the equilibrium populationis P = 1000. We expect the population of 900 to increase to the equilibrium value
of 1000.
(c) If the additional elk are added, the population of 1350 elk is above the eqguilibrium value, and the population will
decrease to about 1000.
(d) y

1350 !
k
__________ d__ ==

1980 -

‘ t
elk added

Importing more elk would be ecologically unsound, as the new population isin excess of the equilibrium popu-
lation that Reading Island can support.
11. (@) % = kp(B — p), wherek > 0.
(b) Tofind when i—’t’ islargest, we notice that i—’t’ = kp(B — p), asafunction of p, isaparabola opening downwards with
themaximum at p = %, i.e. when % thetin has turned to powder. Thisis the time when the tin is crumbling fastest.

(c) If p=0initidly, then j—ft’ = 0, so we would expect p to remain O forever. However, since many organ pipes get tin
pest, we must reconcile the model with reality. There are two possible ideas which solve this problem. First, we could
assume that p is never 0. In other words, we assume that al tin pipes, no matter how new, must contain some small
amount of tin pest. Assuming this means that all organ pipes must deteriorate due to tin pest eventualy. Another
explanation is that the powder forms at a slow rate even if there was none present to begin with. Since not all organ
pipes suffer, it is possible that the conversion is catalyzed by some other impurities not present in all pipes.

12. (a) By thechainrule

dP _d (1\ d (1\ du _1du
dt _dt( )_du( )'dt_ u? dt
(b) Substituting for P = 1/u in the equation

u u

dP P
— =kP(1—-—
=+ (- 7)

gives
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Simplifying leads to

and separating variables gives

In|u——|=—kt
n|u 7 +C
u— % = Ae ™ where A = +¢©
1 _
U= I + Ae™H
(c) Sinceu = 1/P, wehave
11 ke 1+ LAe™
p-rptAe = L
0 L
P=————— where Aisan arbitrary constant.
14+ LAe Kt y
13.
€Y P (b) P

4
1\

t t
10 20 30 40 50 10 20 30 40 50

(c) There are two equilibrium values, P = 0, and P = 4. The first, representing extinction, is stable. The equilibrium
value P = 4 isunstable because the populations increase if greater than 4, and decrease if lessthan 4. Notice that the

equilibrium values can be obtained by setting dP/dt = 0:

% =0.02P% — 0.08P = 0.02P(P —4) =0

P=0orP=4.

14. (a) ar

Figure 11.23

(b) Figure 11.23 shows that for 0 < P < 6, the sign of dP/dt is negative. This means that P is decreasing over the
interval 0 < P < 6. As P decreases from P(0) = 5, the value of dP/dt gets more and more negative until P = 3.
Thus the graph of P against ¢ is concave down while P is decreasing from 5 to 3. As P decreases below 3, the slope
of dP/dt increases toward 0, so the graph of P against ¢ is concave up and asymptotic to the ¢-axis. At P = 3, there
isan inflection point. See Figure 11.24.



(©

(d)

15. (a)

(b)
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Figure 11.23 shows that for P > 6, the slope of dP/dt is positive and increases with P. Thus the graph of P against
t isincreasing and concave up. See Figure 11.24.

P

6lhr———— . threshold

Figure 11.24

For initial populations greater than the threshold value P = 6, the population increases without bound. Populations
with initial value lessthan P = 6 decrease asymptotically towards 0O, i.e. become extinct. Thusthe initial population
P = 6 isthedividing line, or threshold, between popul ations which grow without bound and those which die out.

dP
dt
0 1 P
b b
2a a
Figure 11.25
P
b threshold
a

inflection point

Figure 11.26

Figure 11.25 shows that d P/dt is negative for P < £, making P adecreasing function when P(0) < 2. When
P > g the sign of dP/dt is positive so P is an increasing function. Thus solution curves starting aboveg are
increasing, and those startlng below are decreasing. See Figure 11.26.

For P > % the slope, & dt , mcreaseswnh P, so the graph of P agalnstt is concave up. For 0 < P < &, the
value of P decrmswnh time. As P decreases, theslope decreasesfor 2 < P <z b and |ncrmstwwd30for
0 < P < . Thus solution curves starting just below the threshold value of b are concave down for - L <pP<?t
and concave up and asymptotic to the ¢-axisfor 0 < P < 5-. See Figure 11. 26

(© P= b js called the threshol d popul ation because for populatlons greater than & = the population will increase without

bound. For populations less than g , the population will go to zero, i.e. to extinction.
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Solutions for Section 11.8

Exercises
1. Since
ds
2 — _aSI
7 aSI,
dI
— =aSI —bI
7 aSI —bl,
dR
= —=bI
dt b
we have dS dI dR
— +—+— =—aSI+aSI —-bl +bl =0.

Thus £(S+1+R)=0,55+ I+ R = constant.

2. Thisis an example of a predator-prey relationship. Normally, we would expect the worm population, in the absence of
predators, to increase without bound. As the number of worms w increases, so would the rate of increase dw/dt; in other
words, the relation dw/dt = w might be a reasonable model for the worm population in the absence of predators.

However, since there are predators (robins), dw/dt won't be that big. We must lessen dw /d¢. It makes sense that
the more interaction there is between robins and worms, the more slowly the worms are able to increase their numbers.
Hence we lessen dw/dt by the amount wr to get dw/dt = w — wr. Theterm —wr reflectsthe fact that more interactions
between the species means slower reproduction for the worms.

Similarly, we would expect the robin population to decrease in the absence of worms. We'd expect the population
decrease at a rate related to the current population, making dr/dt = —r areasonable model for the robin population in
absence of worms. The negative term reflects the fact that the greater the population of robins, the more quickly they are
dying off. The wr termin dr/dt = —r + wr reflects the fact that the more interactions between robins and worms, the
greater the tendency for the robins to increase in population.

3. If there are no worms, then w = 0, and d’” = —rgiving r = roe ", where ro istheinitial robin population. If there are
no robins, thenr = 0, and £+ dw =w glvmg w = woe’, where wy isthe initial worm population.

dr _ r(w-—1) w(r—1)
dw — w(l—r)’ r(l-w)?’

7o = wir—1)- Since switching w and r changes nothing, the slope field must be symmetric across the Ilne r = w. The
slope field shows that the solution curves are either spirals or closed curves. Since there is symmetry about theliner = w,
the solutions must in fact be closed curves.

5 Ifw=2andr = 2, then 4 e = —2and % = 2, soinitially the number of worms decreases and the number of robins
increases. Inthe Iong run, however, the populations will oscillate; they will even goback tow = 2andr = 2.

4. Thereis symmetry across thellner = w. Indeed, since J if we switch w and r we get d—“’ = so

dr r(l—w)

7 (robins in thousands)

3
(2500 robins)

2

w (worms in millions)

6. Sketching the trajectory through the point (2, 2) on the slope field given shows that the maximum robin population is
about 2500, and the minimum robin population is about 500. When the robin population is at its maximum, the worm
population is about 1,000,000.
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PoPy P, Ps PoP1 P» P3s PoP1 P P3 P

Figure 11.27

8. It will work somewhat; the maximum number the robins reach will increase. However, the minimum number the robins
reach will decrease as well. (See graph of slope field.) In the long term, the robin-worm populations will again fall into
acycle. Notice, however, if the extra robins are added during the part of the cycle where there are the fewest robins, the
new cycle will have smaller variation. See Figure 11.28.

Note that if too many robins are added, the minimum number may get so small the model may fail, since a small
number of robins are more susceptible to disaster.

7 (robins in thousands)

3

New trajectory
2 Old trajectory

w (worms in millions)
1 2

Figure 11.28

9. The numbers of robins begins to increase while the number of worms remains approximately constant. See Figure 11.29.
The numbers of robins and worms oscillate periodically between 0.2 and 3, with the robin population lagging behind
the worm population.

1 2

w

Figure 11.29
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10. Estimating from the phase plane, we have
018<r<3
so the robin population lies between 180 and 3000. Similarly
0.2 <w<3,

so the worm population lies between 200,000 and 3,000,000.
When the robin population is at its minimum r =~ 0.2, then w =~ 0.87, so that there are approximately 870,000
worms.
Robins

Worms

Figure 11.30

11. Herez and y both increase at about the same rate.

12. Initially x = 0, so we start with only y. Then y decreases while z increases. Then x continues to increase while y starts
to increase aswell. Finally y continues to increase while = decreases.

13. z decreases quickly while y increases more slowly.

14. The closed trgjectory represents populations which oscill ate repeatedly.

Problems

15. (a) Symbiosis, because both populations decrease while alone but are helped by the presence of the other.
(b) y
4

1 2 3 4

Both populations tend to infinity or both tend to zero.
16. (a) Competition, because both populations grow logistically when alone, but are harmed by the presence of the other.
(b) y

4
3
2
1
AT / .
1 2 3 4

Inthelong run, z — 2, y — 0. In other words, y becomes extinct.
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17. (a) Predator-prey, because = decreases while alone, but is helped by y, whereas y increases logistically when alone, and
isharmed by z. Thus z is predator, y is prey.
(b) y

Provided neither initial population is zero, both populations tend to about 1. If z isinitially zero, but y is not,
then y — oo. If y isinitialy zero, but z isnot, then z — 0.

18. (a) Thinking of y asafunction of x and z asafunction of ¢, then by the chain rule: % = ;l—chl—j o)

dy _dy/dt _ —0.0lz _

dr ~ dz/dt ~ —0.05y = 5y

y (thousand Japanese troops)
30

20

10

x (thousand US troops)

10 20 30 40 50 60

(b) Thefigure above shows the lope field for this differential equation and the trajectory starting at o = 54, yo = 21.5.
The trajectory goes to the z-axis, where y = 0, meaning that the Japanese troops were all killed or wounded before
the US troops were, and thus predicts the US victory (which did occur). Since the trajectory meets the z-axis at
x =~ 25, the differential equation predicts that about 25,000 US troops would survive the battle.

(c) The fact that the US got reinforcements, while the Japanese did not, does not alter the predicted outcome (a US
victory). The US reinforcements have the effect of changing the trajectory, altering the number of troops surviving
the battle. See the graph below.

y (thousand Japanese troops)
30

20

10

x (thousand US troops)
10 20 30 40 50
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19. (a)

(b)

20. (a)

(b)

21. (a)

(b)

(©

(d)

C)

dy dydx

Thinking of y asafunction of z and x asafunction of ¢, then by the chain rule: U dedt o)
X
dy _dy/dt  —bx bz
dr ~ dz/dt  —ay ay
Separating variables,

/aydy:/bxda:

2 2
y x

—=b—+k
aZ 2+

ay’ —bz® =C whereC =2k
Lanchester’s square law for the battle of lwo Jimais
0.05y° — 0.01z% = C.

If we measure 2 and y in thousands, 2o = 54 andyo = 21.5,00.05(21.5)*> —0.01(54)% = C giving C' = —6.0475.
Thus the equation of the trgjectory is

0.05y> — 0.012> = —6.0475
giving

z® — 5y® = 604.75.

Assuming that the battle did not end until all the Japanese were dead or wounded, that is, y = 0, then the number
of US soldiers remaining is given by 2> — 5(0)? = 604.75. This givesz = 24.59, or about 25,000 troops. Thisis
approximately what happened.

Since the guerrillas are hard to find, the rate at which they are put out of action is proportional to the number of chance
encounters between a guerrilla and a conventional soldier, which isin turn proportional to the number of guerrillas
and to the number of conventiona soldiers. Thus the rate at which guerrillas are put out of action is proportiona to
the product of the strengths of the two armies.

_ _,
at ~ Y
dy _
at "
S . . . dy dydx
Thinking of y asafunction of z and = afunction of of ¢, then by the chain rule: U dedt S0
X
dy _dy/dt -z 1
dr ~ dr/dt  —zxzy vy
Separating variables:

N

b

/ydyz/dx
Yy

Thevalue of C'is determined by theinitial strengths of the two armies.
2
The sign of C' determines which side wins the battle. Looking at the general solution % =z + C, we see that if

C > 0 the y-intercept is at v/2C, so y wins the battle by virtue of the fact that it still has troops when « = 0. If
C < 0thenthecurveintersectstheaxesat x = —C, so x winsthe battle because it hastroopswheny = 0. 1f C' = 0,
then the solution goes to the point (0, 0), which represents the case of mutua annihilation.

We assume that an army wins if the opposing force goes to 0 first. Figure 11.31 shows that the conventional force
winsif C > 0 and the guerrillaswin if C' < 0. Neither sidewinsif C' = 0 (all soldiers on both sides are killed in
this case).
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y (conventional)

47
A/>0

! . 2
3 conventional wins y _ (ie.C = 0)

<o
guerrilla wins

‘ : : — z (guerrilla)
4

Figure 11.31

22. (a) Taking the constants of proportionality to be a and b, witha > 0 and b > 0, the equations are

dr _ —azx
ac Y
dy

%Y _ _p
dt it

(b) dy = dy/dt = —bry = é Solving the differential equation givesy = Em + C, where C' depends on the initial
de dz/dt —azy a a
sizes of the two armies. b
(c) The sign of C determines which side wins the battle. Looking at the general solution y = —z + C, we see that if
a
C > 0 they-intercept isat C', so y wins the battle by virtue of the fact that it still has troopswhenxz = 0. 1f C < 0
then the curve intersectsthe axes at =+ = —¢ C, s0 x winsthe battle because it hastroopswheny = 0. If C = 0, then
the solution goes to the point (0, 0), which represents the case of mutual annihilation.

(d) We assume that an army winsif the opposing force goesto 0 first.

y (guerrilla) b
4k y:;z(i.e.C:O)
3 ;4 0
y wins
2 |
/ C<0
T wins
17 / /
: : : — x (querrilla)
1 2 3 4

23. (a) Wehave
F _dy _ —3y—wzy _ylz+3)

& drx  —2x-zy =z(y+2)
Thus,
<y+2> - (a:+3)d
)
SO
3
/(1+—)dy:/(1+;)dm

So,

y+2ln|yl =z +3In|z|+C.

Since x and y are non-negative,
y+2lny=xz+3lnz+C.

Thisis as far as we can go with this equation — we cannot solve for y in terms of x, for example. We can, however,

put itintheform
ey+2 Iny — ez+31nz+(/ or y26y — AZ‘SEE.

I
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(b) An equilibrium state satisfies
dr _ dy .
i 2c —zy=0 and 7 3y —zy=0.

Solving the first equation, we have
—z(y+2)=0, so z=0 or y=-2.
The second equation has solutions
y=0 or z=-3.
Since z, y > 0, the only equilibrium point is (0, 0).
(c) We can use either of our forms for the solution. Looking at
y2e? = Az’e”,

we seethat if z and y are very small positive numbers, then

e ~e¥ = 1.

Thus,
2

v~ Az®, or y—ng,aconstant.
xr
Looking at
y+2lny=2+3lnz+C,

we note that if  and y are small, then they are negligible compared to In ¢ and In z. Thus,

2lny = 3lnz + C,

giving
Iny®> —Inz® = C,
S0 2
¥y
In F ~ C
and therefore )
y—3 ~ e, aconstant.
T
(dy If
z(0) =4 and y(0)=38,
then
8+2ln8=4+4+3In4+C.
Note that
2In8 =3In4 =1n64,
giving

4=C.

So the phase trgjectory is
y+2lny=z+3lnz +4.
(Or equivalently, y%e? = e'ze® = z2e™t1)
(e) If the concentrations are equal, then
y+2lny=y+3lny +4,
giving
—lny=4 or y:e_4.
Thus, they are equal wheny = 2 = ¢~ ~ 0.0183.
(f) Using part (c), we have that if = issmall,

—10 ;

Sincex =e is certainly small,

~ _~e', ad ymxe
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Solutions for Section 11.9

Exercises

1. (@) dS/dt = 0where S =0 or I =0 (both axes).
dI/dt = 0.00261(S — 192),s0dI/dt = 0wherel =0or S = 192.
Thus every point on the S axisis an equilibrium point (corresponding to no one being sick).

(b) Inregion |, where S > 192, % < 0and % > 0.
Inregion I, where S < 192, % < 0and % < 0. SeeFigure 11.32.
T I

RN

s ‘/ : s

192 192

Figure 11.32 Figure 11.33

(c) If the trajectory starts with Sp > 192, then I increases to a maximum when S = 192. If So < 192, then I always
decreases. See Figure 11.32. Regardless of the initial conditions, the trajectory always goes to a point on the S-axis
(where I = 0). The S-intercept represents the number of students who never get the disease. See Figure 11.33.

2. Thenullclines arewhere 42 =0 or 2= = 0.

dw — g whenw —wr = 0,0w(1 —r) = 0givingw = 0 orr = 1.

t
% =0when—r+rw=0,0r(w—1) =0givingr=00rw = 1.

T r

| 1 w=1

| T dr/dt=0 T Y

| . 7N

1::::::::::5::‘::::: 1 — {

| T
T r=

: I dw/dt =0 l m L @;

lo———— € w — w
1 1

Figure 11.34: Nullclines and equilibrium points (dots) Figure 11.35

The equilibrium points are where the nullclines intersect: (0, 0) and (1, 1). The nullclines split the first quadrant into
four sectors. See Figure 11.34. We can get afeel for how the populations interact by seeing the direction of the trajectories
in each sector. See Figure 11.35. If the popul ations reach an equilibrium point, they will stay there. If the worm population
dies out, the robin population will also die out, too. However, if the robin population dies out, the worm population will
continue to grow.

Otherwise, it seems that the populations cycle around the equilibrium (1, 1). The trajectory moves from sector to
sector: trajectories in sector (1) move to sector (11); trajectories in sector (11) move to sector (I11); trajectories in sector
(111) move to sector (1V); trajectories in sector (1V) move back to sector (I). The robins keep the worm population down
by feeding on them, but the robins need the worms (as food) to sustain the population. These conflicting needs keep the
populations moving in a cycle around the equilibrium.
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3. (a) Tofind the equilibrium points we set
20x — 10zy =0
25y — bzy = 0.
So, z = 0, y = 0 isan equilibrium point. Another oneis given by
10y = 20

bx = 25.

Therefore, z = 5, y = 2 isthe other equilibrium point.
(b) Atz =2,y =4,

ill—fZZOx—IOxy:40—80=—40
dy
E:25y—5:1:y:100—40:60.

Since these are not both zero, this point is not an equilibrium point.

Problems

4. Wefirst find the nullclines. Again, we assume z, y > 0.
Vertical nullclines occur where dz /dt = 0, which happenswhen £ = z(2 —z — y) =0,
i.,ewhenz =00rz+y=2.
Horizontal nullclines occur wheredy /dt = 0, which happenswhen% =y(l-z—y)=0,iewheny=00rz+y = 1.
These nullclines are shown in Figure 11.36.
Equilibrium points (also shown in Figure 11.36) occur where both dy/dt and dz /dt are 0, i.e. at the intersections of
vertical and horizontal nullclines. There are three such points for these equations: (0, 0), (0,1), and (2, 0).

T+y=2
dx/dt =0

/

z+y=1
dy/dt =0

_____________ L 2 x x
1 2
Figure 11.36: Nullclines and equilibrium points Figure 11.37: General directions of trajectories
(dots) and equilibrium points (dots)

Looking at sectorsin Figure 11.37, we see that no matter in what sector theinitial point lies, the trajectory will head
toward the equilibrium point (2, 0).

5. We first find the nullclines. Vertical nullclines occur where ‘fi—f = 0, which happenswhen z = 0 or y = %(2 — ).
Horizontal nullclines occur where % = y(1 — 2x) = 0, which happenswheny = 0 or x = % These nullclines are
shown in Figure 11.38.

Equilbrium points (also shown in Figure 11.38) occur at the intersections of vertical and horizontal nullclines. There
are three such points for this system of equations; (0,0), (1, +) and (2,0).

The nullclines divide the positive quadrant into four regions as shown in Figure 11.38. Trajectory directionsfor these
regions are shown in Figure 11.39.



Figure 11.38: Nullclines and
equilibrium points (dots)
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Figure 11.39: General directions of
trajectories and equilibrium points
(dots)

6. We first find nullclines. Vertical nullclines occur where ‘fi—j = z(2 — z — 2y) = 0, which happens when z = 0 or
y = 1(2 — z). Horizontal nullclines occur where % =y(1 -2z —y) =0, whichhappenswheny = 0ory =1 — 2z.

These nullclines are shown in Figure 11.40.

Equilibrium points (also shown in the figure below) occur at the intersections of vertical and horizontal nullclines.

There are three such points for this system; (0, 0), (0, 1), and (2, 0).

The nullclines divide the positive quadrant into three regions as shown in the figure below. Trajectory directions for

these regions are shown in Figure 11.41.

II1

Figure 11.40: Nullclines and equilibrium
points (dots)

Figure 11.41: General directions of
trajectories and equilibrium points (dots)

7. We first find the nullclines. Vertical nullclines occur where % = (1 —y — %) = 0, which happens when z = 0 or
y = 1 — £. Horizontal nullclines occur where %% =y(1 - % —z) = 0, which happenswheny = 0 or y = 2(1 — x).

3
These nullclines are shown in Figure 11.42.

Equilibrium points (also shown in Figure 11.42) occur at the intersections of vertical and horizontal nullclines. There

are four such points for this system: (0, 0), (0, 2), (3,0), and (

The nullclines divide the positive quadrant into four regions as shown in Figure 11.42. Trajectory directionsfor these

regions are shown in Figure 11.43.

Figure 11.42: Nullclines and
equilibrium points (dots)

Figure 11.43: General directions
of trgjectories and equilibrium
points (dots)



696 Chapter Eleven /SOLUTIONS

8. Wefirst find the nullclines. Again, we assume z, y > 0.
2 —z(1l-z—-%)=0whenz=00rz+y/3=1.
LU =yl-y—2Z)=0wheny=0o0ry+z/2=1.
These nullclines are shown in Figure 11.44. There are four equilibrium points for these equations. Three of them are the
points, (0, 0), (0,1), and (1, 0). Thefourth isthe intersection of thetwo linesz + y/3 = 1 and y + /2 = 1. Thispoint

is(£,2).

x

Figure 11.44: Nullclines and equilibrium points Figure 11.45: General directions of trgjectories
(dots) and equilibrium points (dots)

Looking at sectorsin Figure 11.45, we see that no matter in what sector theinitial point lies, the trajectory will head
toward the equilibrium point (%, 2). Only if theinitial point lies on the z- or y-axis, will the trajectory head towards the
equilibrium points at (1, 0), (0,1), or (0,0). In fact, the trajectory will go to (0,0) only if it starts there, in which case
z(t) = y(t) = 0 for al ¢. From direction of the trgjectoriesin Figure 11.45, it appears that if the initial point isin sectors
(1) or (111), then it will remain in that sector asit heads towards the equilibrium.

9. We assumethat z, y > 0 and then find the nullclines. % =z(1-5—-y)=0whenz=00ry+ % =1.

Figure 11.46: Nullclines and equilibrium points Figure 11.47: General directions of trgjectories
(dots) and equilibrium points (dots)

Figure 11.47 shows that if the initial point isin sector (1), the trajectory heads towards the equilibrium point (0, 3).
Similarly, if the trajectory begins in sector (I11), then it heads towards the equilibrium (2, 0) over time. If the trajectory

beginsin sector (I1) or (1V), it can go to any of the three equilibrium points (2, 0), (0, 3), or (%, 2).



10. (a)

(b)
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11. (a)
(b)

12. (a)
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If B were not present, then we'd have A” = 24, so company A’s net worth would grow exponentially. Similarly,
if A were not present, B would grow exponentially. The two companies restrain each other’s growth, probably by
competing for the market.

To find equilibrium points, find the solutions of the pair of equations

A'=2A—-AB=0
B '=B—-AB=0

The first equation has solutions A = 0 or B = 2. The second has solutions B = 0 or A = 1. Thus the eguilibrium
points are (0,0) and (1,2).

Inthelong run, one of the companieswill go out of business. Two of the trgjectoriesin the figure below go towards the
A axis; they represent A surviving and B going out of business. The trajectories going towards the B axis represent
A going out of business. Notice both the equilibrium points are unstable.

s
3
2
1
-

Thenullclinesare P = 0 or Py +3P> = 13 (wheredP; /dt = 0)and P = 0 or P»+0.4P, = 6 (wheredP»/dt = 0).
The phase plane in Figure 11.48 shows that P will eventually exclude P; regardless of where the experiment starts
so long as there were some P, originally. Consequently, the data points would have followed a trgjectory that starts
at the origin, crosses the first nullcline and goes left and upwards between the two nullclines to the point P, = 0,
P, = 6.

P

P>+ 0.4P; =6

/ {dPg/dt:O

Py + 3Py =13
dPl/dt =0

¢ — — — - — — - —— = ¢ —— P
Figure 11.48: Nullclines and equilibrium points (dots) for
Gauses's yeast data (hollow dots)

In the equation for dz/dt, the term involving z, namely —0.2z, is negative meaning that as = increases, dz/dt
decreases. This corresponds to the statement that the more a country spends on armaments, the less it wants to
increase spending.

On the other hand, since +0.15y is positive, as y increases, dx/dt increases, corresponding to the fact that the
more a country’s opponent arms, the more the country will arm itself.

The constant term, 20, is positive means that if both countries are unarmed initialy, (so x = y = 0), then dz /dt
is positive and so the country will start to arm. In other words, disarmament is not an equilibrium situation in this
model.
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(b) Thenullclinesare shownin Figure 11.49. When dz /dt = 0, thetragjectoriesare vertical (ontheline —0.2z +0.15y +
20 = 0); when dy/dt = 0 the trgjectories are horizontal (on 0.1z — 0.2y + 40 = 0). Thereis only one equilibrium
point, x = y = 400.

(©) Inregion|, try z = 400, y = 0, giving

fl—i = —0.2(400) + 0.15(0) +20 < 0
dy
pri 0.1(400) — 0.2(0) +4—-0>0
Inregion I1, try = 500, y = 500, giving
Cfl—i = —0.2(500) 4+ 0.15(500) +20 < 0
dy
il 0.1(500) — 0.2(500) + 40 < 0
Inregion Ill, try x = 0, y = 400, giving
dx
T —0.2(0) + 0.15(400) +20 > 0
dy
pri 0.1(0) — 0.2(400) + 40 < 0
Inregion IV, try z = 0, y = 0, giving
Ccll—f = —0.2(0) + 0.15(0) +20 > 0
% = 0.1(0) — 0.2(0) + 40 > 0
See Figure 11.49.
(d) The one equilibrium point is stable.
y
(bilion$)  —0.2z + 0-15yd+/30 =0 Region I
z/dt =0 .
600 ) \ : 7
Region 111

0.1z — 0.2y + 40 =0

400 D { dy/dt =0

Region |
200
Region 1V \
‘ — g (billion $)
100 400 600

Figure 11.49: Nullclines and equilibrium point(dot) for arms race

(e) If both sides disarm, then both sides spend $0. Thusinitialy z = y = 0, and dz/dt = 20 and dy/dt = 40. Since
both dz /dt and dy/dt are positive, both sides start arming. Figure 11.49 shows that they will both arm until each is
spending about $400 billion.

(f) If the country spending $y billion is unarmed, then y = 0 and the corresponding point on the phase plane is on the
x-axis. Any trajectory starting on the z-axis tends towards the equilibrium point z = y = 400. Similarly, atrajectory
starting on the y-axis represents the other country being unarmed; such atrajectory also tends to the same equilibrium
point.

Thus, if either side disarms unilaterally, that is, if we start out with one of the countries spending nothing, then
over time, they will still both end up spending roughly $400 billion.

(g9) Thismodel predicts that, in the long run, both countries will spend near to $400 billion, no matter where they start.
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13. (a)
dx 10.5
2 —owh = - —93.
7t 0 when x 045 3.3
ili—?; =0when8.2x — 0.8y — 142 =0
Y (US) Region 11
| /]l
|
dzx d
@ = 0 —>‘ d_ltl =0
|
Region | | Region 111
‘
N | N
61.7
|
|
| Region IV
| M
‘ T (Soviet)
23.3
Figure 11.50: Nullclines and equilibrium point (dot) for US-Soviet arms race
Thereisan equilibrium point where the trgjectories cross at « = 23.3, y = 61.7
Inregion | d—$>0 @<0
RSN A
. T Y
| I, = —= .
nregion Cg <0, Cg <0
i ax il
Inreglonlll,gt <0, gt > 0.
. x Y
| v, — - .
nregion I > 0, 7t >0
(b) y(Us)
61.7 |

T (Soviet)
23.3

Figure 11.51: Trgjectories for US-Soviet arms race.

(c) All the trgjectories tend towards the equilibrium point z = 23.3, y = 61.7. Thus the model predicts that in the long
run the arms race will level off with the Soviet Union spending 23.3 billion dollars a year on arms and the US 61.7
billion dollars.

(d) Asthe model predicts, yearly arms expenditure did tend towards 23 billion for the Soviet Union and 62 billion for
the US.
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Solutions for Section 11.10

Exercises

1 Ify=2cost+ 3sint, theny’ = —2sint +3cost andy”’ = —2cost — 3sint. Thus, " +y = 0.

2. If y(t) = 3sin(2t) + 2 cos(2t) then
y' = 6cos(2t) — 4sin(2t)

y" = —12sin(2t) — 8 cos(2t) = —4(3sin(2t) + 2cos(2t)) = —4y
asrequired.
3. If y = Acost + Bsint, theny’ = —Asint + Bcost andy”’ = —Acost — Bsint. Thus, y"” +y = 0.

4. If y(t) = Asin(2t) + B cos(2t) then
y' = 2Acos(2t) — 2B sin(2t)

y" = —4Asin(2t) — 4B cos(2t)

therefore
y" + 4y = —4Asin(2t) — 4B cos(2t) + 4(Asin(2t) + Bcos(2t)) =0

for al values of A and B, so the given function isa solution.

5. If y(t) = Asin(wt) + B cos(wt) then
y' = wAcos(wt) — wBsin(wt)

y' = —w?Asin(wt) — w’B cos(wt)

therefore ‘ ‘ ‘
Y +w’y = —w?Asin(wt) — w’B cos(2t) + w’ (Asin(wt) + B cos(wt)) = 0

for al values of A and B, so the given function isa solution.

6. y = Acosat
Yy = —aAsinat
y" = —a’Acosat

If y' + 5y = 0, then —a”’Acosat + 5Acosat = 0,50 A(5 — a®)cosat = 0. Thisistruefor al ¢ if A = 0, or if
o= :i:\/g.

We also have theiinitial condition: 3/ (1) = —aAsin a = 3. Notice that this equation will not work if A = 0. If & = /5,

then
A= —m ~ —1.705.
Similarly, if a = —+/5, we find that A ~ —1.705. Thus, the possible values are A = —m ~ —1.705 and
a = :l:\/g.
7. (8 s

-+ 10

s =4cost+ 3sint

ANVANYE
—on \/ \/ZW

—10+

(b) Trace @long the curve to the highest point; which has coordinates of about (0.66,5), S0 A =~ 5. If s = 5sin(t + ¢),
then the maximum occurs wheret ~ 0.66 and ¢ + ¢ = /2, thatis0.66 + ¢ ~ 1.57, giving ¢ =~ 0.91.
(c) Analytically
A=\/42+32=5
and

tan¢ = % SO ¢ = arctan (%) = 0.93.
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8. Wewant to find A and ¢ such that
cost —sint = Asin(t + ¢).
Weknow that A = /12 + (—1)2 = /2. Also, tan ¢ = 1/(-1) =-1,0¢ = —m/40r¢$ = 3n/4.SinceC; =1 > 0,
wetake ¢ = 3w /4, giving
s(t) = V2sin (t + :%T)
as our solution. The graph of s(t) isin Figure 11.52.

s(t)
\ /1\
1 =t

-2 27

w3

1+

Figure 11.52: Graph of the function
s(t) = V2sin(t + 2F)

9. Theamplitudeisv/32? + 72 = /58.
10. If wewritey = 3sin2¢ + 4 cos 2t intheform y(¢) = Asin(2t + ¢), then A = /32 + 42 = 5.

11. Takew = 2. Theamplitudeis A = /57 T 127 = +/T69 = 13. The phase shift is ) = tan™~' 2

5
12. Theamplitudeis A = /7% 4+ 242 = /625 = 25.

The phase shift, ¢, isgiven by tan ¢ = 2, 50 ¢ = arctan 2! ~ 1.287 or ¢ ~ —1.855.

Since C; = 24 > 0, wewant ¢ = 1.287, so the solution is 25 sin(wt + 1.287).

Problems

13. Att = 0, wefind that y = 2, which is clearly the highest point since —1 < cos 3t < 1. Thus, at ¢t = 0 the massisat its
highest point. Since y’ = —6sin 3t, weseey’ = 0 whent = 0. Thus, at ¢t = 0 the object is at rest, although it will move
down after t = 0.

14. Att =0, wefindthat y = 0. Since —1 < sin 3t < 1, y rangesfrom —0.5 t0 0.5, so at ¢t = 0 it is starting in the middle.
Sincey’ = —1.5cos 3t, weseey’ = —1.5 whent = 0, so the mass is moving downward.

15. Att = 0, wefind that y = —1, which is clearly the lowest point on the path. Since y' = 3sin 3¢, we seethat ' = 0
whent = 0. Thus, at ¢t = 0 the object is at rest, although it will move up after t = 0.

16. (@) Sincew® =9, w = 3, and so the general solution is of the form
y(t) = Asin(3t) + B cos(3t).
(b) (i) y(0) =0, gives Asin(0) + B cos(0) = 0 sothat B = 0.
y'(t) = 3A cos(3t)
y'(0) =1 gives3A = 1 and 0
y(t) = %sin(St).
(ii) y(0) =1, gives Asin(0) + Bcos(0) = 1sothat B = 1.
y' () = 3A cos(3t) — 3sin(3t)
y'(0) = 0 gives3A = 0 and so
y(t) = cos(3t).

(iii) y(0) = 1, gives Asin(0) + Bcos(0) = 1 sothat B = 1. y(1) = 0 gives Asin(3) + cos(3) = 0 and so
_ —cos(3)
~ sin(3)

—cos(3)

y(t) = sin(3)

sin(3t) + cos(3t).
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17.

18.
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Note that using the trigonometric identities, we can write this as:

—cos(3)

y(t) = Sn(3) sin(3t) + cos(3t)

-1 (sin(3) cos(3t) — cos(3) sin(3t))

sin(3)
1 .
= 50 sin(3 — 3t).
(iv) y(0) =0, gives Asin(0) + Bcos(0) =0sothat B =0.y(1) = 1 givesAsin(3) =1landso A = sin1(3) S0

y(t) = — sin(3%).

sin(3)
(©)
0] Y (ii) Yy
i+ 1
3
i =t 1 =t
: ﬂ ) \/ Y
17" -1+
3
(i) y (iv) y
I 1
sin(3) sin(3)
—T
1 t i =t
™ - ™
\/ \/_ . o
sin(3) sin(3)

First, we note that the solutions of:
@z" +z=0arex = Acost + Bsint;
(b) 2" + 4z = 0 arex = A cos 2t + Bsin 2t;
(c)z" + 16z = 0 arex = Acos 4t + Bsin 4t.
This follows from what we know about the general solution to &'’ + w?z = 0.
The period of the solutionsto (a) is 2, the period of the solutions to (b) is 7, and the period of the solutions of (c) is 7.
Since the t-scales are the same on all of the graphs, we see that graphs () and (1V) have the same period, which is twice
the period of graph (I11). Graph (I1) has twice the period of graphs (I) and (1V). Since each graph represents a solution, we
have the following:
e equation (a) goes with graph (I1)
equation (b) goes with graphs (I) and (1V)
equation (c) goes with graph (111)
e Thegraph of (1) passes through (0,0), 00 = Acos0 + Bsin 0 = A. Thus, the equation isz = B sin 2t. Since the
amplitudeis2, we seethat = 2 sin 2¢ isthe equation of the graph. Similarly, the equation for (1V) isz = —3 sin 2¢.
The graph of (1) also passes through (0, 0), so, similarly, the equation must be z = B sin t. In this case, we see that
B=-1,0¢ = —sint.
Finally, the graph of (I11) passes through (0, 1), and 1 isthe maximum value. Thus,1 = Acos0+ Bsin0,s0 A = 1.
Since it reaches a local maximum at (0,1), z'(0) = 0 = —4Asin 0 + 4B cos 0, S0 B = 0. Thus, the solution is
x = cos 4t.

All the differential equations have solutions of the form s(t) = Ci sinwt + C5 cos wt. Sincefor al of them, s'(0) = 0,
wehave s'(0) = 0 = Ciwcos 0 — Cowsin 0 = 0, giving Ciw = 0. Thus, either C; = 0 or w = 0. If w = 0, then s(¢)
is a constant function, and since the equations represent oscillating springs, we don’t want s(¢) to be a constant function.
Thus, C1 = 0, so al four equations have solutions of the form s(t) = C coswt.
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i)s" +45s=10,%w =v4=2.50) =Ccos0=C =5.Thus, s(t) = 5 cos 2¢.
1

ii)s”—f-is:O,SOw:\/%:Q 5(0) = Ccos0 = C = 10. Thus, s(t) = 10 cos 5.
iii) s + 65 = 0, 0w = V6. 5(0) = C = 4, Thus, s(t) = 4 cos /6t.
iV)s”—i—%s:O,SOw:\/_ s(0) = C = 20. Thus, s(¢ —20cos\/_t

(a) Spring (iii) has the shortest perlod, (Other periods are , 4, 2mv/6)
(b) Spring (iv) has the largest amplitude, 20.
(c) Spring (iv) has the longest period, 271/6.

(d) Spring (i) has the largest maximum velocity. We can see thisby looking at v(t) = §'(t) = —Cw sin wt. The velocity
isjust a sine function, so we look for the derivative with the biggest amplitude, which will have the greatest value.
The velocity function for Spring i) has amplitude 10, the largest of the four springs. (The other velocity amplitudes
ael0- 5 =54V/6~98 2% ~8.2)

(@) Wearegiven dt2 = —%2,50z = Ci cos /%t + C>sin \/%t. We use theinitial conditionsto find Cy and Cs.

z(0) = C1cos0 + Czsin0 =C1 =0

:L'I( ) —Cl\/;51n0+02\/7COSO—Cz\/7—U0
Thus, C1 = 0and C» zvo\/g,wxzvo\/%sinﬂt.

(b) Again, z = Ci cos \/%t + Cs sin /%, but thistime, 2(0) = xo, and z'(0) = 0.
Thus, as before, z(0) = C1 = zo, and z'(0) = Czﬂ = 0. Inthiscase, C1 = zp and C> = 0. Thus, z =

o COS ﬂt.

(a) If zo isincreased, the amplitude of the function z is increased, but the period remains the same. In other words, the
pendulum will start higher, but the time to swing back and forth will stay the same.

= 27r\/_)

In other words, it will take longer for the pendulum to swing back and forth.
(a) Sinceamass of 3 kg stretches the spring by 2 cm, the spring constant % is given by

3g=2k s0 k= 379
See Figure 11.53.
equilibrium
T cm
3 kg
Figure 11.53

Suppose we measure the displacement = from the equilibrium; then, using
Mass - Acceleration = Force
gives
32" = —kz = _39z
" + ga: =0

Since at timet = 0, the brick is 5 cm below the equilibrium and not moving, the initial conditions are z(0) = 5 and
z'(0) = 0.
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(b) The solution to the differential equation is

22. (a)

(b)

23. (a)

(b)

24. (a)

_ 9 : 9
r = Acos (\/;t) +Bsm( 2t) .

z = Acos(0) + Bsin(0) =5 so A=5.

Since z(0) = 5, we have

In addition,
"1 = —5./2 g 9 9 9
1= 5T (/51 3B (/2)
SO
z'(0) = —5\/gsin(0) + B\/gcos(o) =0 so B=0.
Thus,

9
—5 \Ft'
T cos 5

z(t) = Acos4t + Bsin 4t.

General solution

Thus,
5=Acos0+ Bsin0 soA=>5.

Since z'(0) = 0, we have
0=—4Asin0+4Bcos0 soB =0.

Thus,
z(t) = 5cos 4t

so amplitude = 5, period = 2F = Z.
Genera solution

z(t) = Acos (%) + Bsin (%) .
Sincez(0) = —1, wehave A = —1.
Since z'(0) = 2, we have
A . B
2=——sin0+ gcosO so B = 10.

5
Thus,
z(t) = — cos (E) + 10sin (E)
N 5 5/
So, amplitude = /(—1)? + 102 = /101, period = 1277; =107

Letz = wtand y = ¢. Then

Asin(wt + ¢) = A(sinwt cos ¢ + cos wt sin ¢)
= (Asin ¢) cos wt + (A cos ¢) sin wt.

If wewant A sin(wt + ¢) = C1 coswt + Cs sin wt to be true for al ¢, then by looking at the answer to part (a), we
must have C1 = Asin ¢ and C> = A cos ¢. Thus,

Cl _ Asin</> _

Cs Acosg tan ¢,

and

VO +C3 = V/A?sin? ¢ + A? cos? ¢ = A\/sin? ¢ + cos? ¢ = A,
so our formulas are justified.

’Q  Q rQ _ Q
B T9 =0 2 e = ey
Thus,
Q=C cosit—f-C sinit
IS ST R

Q(0) = 0= C1cos0 + Cosin0 = Cy,
SO Cl =0.
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So, ) = Czsin it, and

18
, 1 1
Q =1= —1802cos 18t
Q0)=I10)=2= —1 C: cos( L 0) ~-Lle
N T ? 18 T

so (s = 36.

Therefore, Q = 36 sin %t.
(b) Asinpart (a),Q = Ci cos 118t + Casin it

18
According to theinitial conditions:

Q(0) = 6= C1cos0 + Cosin0 = Cy,

so (C; =6.
SoQ@ = 6cosit+0 smit
- 18 72718
Thus,
r_p_ 1.1 1
Q=I=- 3sm18t—+— C’gcoslgt
Q'(0) = I(0)=0=— 1sm( L o)+—0 cos(i-o) -le
W T 18 187 187 187
so Cy=0.
Therefore, Q = 6 cos %t
25. The equation we have for the charge tells us that:
¢Q__Q
a2~ LC’

where L and C are positive.
If weletw = L( , we know the solution is of the form:

Q = C1 coswt + Casinwt.

Since Q(0) = 0, wefindthat C1 = 0,0 Q = C> sin wt.

Since Q' (0) = 4, and Q' = wC> cos wt, we have C» = %, Q= % sin wt.

But we want the maximum charge, meaning the amplitude of @, to be 24/2 coulombs. Thus, we have é = 2v/2, which
w

givesusw = v/2.
1 _ 1
Sowenow have: V2 = 2= = —L_. Thus, C = 5; farads.
26. We know that the general formulafor @ will be of the form:

Q = C1 coswt + Casinwt.

and
I= Q' = —(C1sinwt + Cy coswt

Thus, ast — oo, neither one approaches alimit. Instead, they vary sinusoidally, with the same frequency but out of phase.
We can think of the charge on the capacitor as being analogous to the displacement of a mass on a spring, oscillating from
positive to negative. The current is then like the velocity of the mass, also oscillating from positive to negative. When the
charge is maximal or minimal, the current is zero (just like when the spring is at the top or bottom of its motion), and
when the current is maximal, the charge is zero (just like when the spring is at the middle of its motion).
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Solutions for Section 11.11
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Exercises

1

10.

11

12.

13.

The characteristic equation isr®> + 4r +3 = 0,507 = —1 or —3.
Therefore y(t) = Cre™" + Cae™ 3.

The characteristic equation isr? 4+ 4r +4 =0,07r = —2.
Therefore y(t) = (Cit + C2)e™ 2.

. The characteristic equationisr? + 4r +5=0,50r = —2 + i.

Therefore y(t) = Cie™ ! cost + Cae™ > sint.
The characteristic equation isr? — 7 = 0, S0 = £+/7.
Therefore s(t) = CreV™ + Che™ VT,

The characteristic equation isr> + 7 = 0, so r = ++/7i.
Therefore s(t) = C cos VTt + Cs sin \/Tt.

If wetry asolution y(¢) = Ae" then
P —3r+2=0

which hasthe solutionsr = 2 and » = 1 so that the general solution is of the form

y(t) = Ae®* + Be'

The characteristic equation is4r® + 8r +3 = 0,s0r = —1/2 or —3/2.
Therefore z(t) = Cre™ '/ + Cre /2.

The characteristic equation isr®> + 4r + 8 = 0,507 = —2 + 2i.
Therefore z(t) = Cre™ 2 cos 2t + Cae™ ! sin 2t.
The characteristic equationisr® +r + 1 =0,50r = —§ + @z
Therefore p(t) = Cie 2 cos ét + Cse 2 sin ét.
If wetry asolution z(t) = Ae"* then

r’+2=0

so that the general solution is of the form:

y(t) = Asin V2t + Bcos V2t

If wetry asolution z(t) = Ae"t then
r’4+2r=0

which has solutions» = 0 and » = —2 so that the general solution is of the form

y(t) = A+ Be %

If wetry asolution P(t) = Ae"* then
P +2r+1=0

which has the repeated solution r = —1 so that the general solution is of the form

y(t) = (At + B)e ™"

The characteristic equation is
r’ +5r+6=0

which hasthe solutionsr = —2 and r = —3 so that

y(t) = Ae ¥ 4+ Be



14.

15.

16.

17.

11.11 SOLUTIONS
Theinitia condition y(0) = 1 gives
A+B=1

and y'(0) = 0 gives
—-3A-2B =0

sothat A= —2and B = 3 and ‘
y(t) = —2e73 4+ 3¢

The characteristic equation is ‘
245 +6=0

which hasthe solutionsr = —2 and r = —3 so that
y(t) = Ae™® 4 Be ™
Theinitia condition y(0) = 5 gives
A4+ B=5

and y'(0) = 1 gives
—-34A-2B =1

sothat A = —11 and B = 16 and ‘
y(t) = —11e™% 4 16~

The characteristic equation is
r’—3r—4=0

which hasthe solutionsr = 4 and r = —1 so that
y(t) = Ae* + Be™"

Theinitia condition y(0) = 1 gives

A+B=1
and ' (0) = 0 gives
4A—-B =0
sothat A= 1 and B = £ and
1 4t —t

The characteristic equation is ‘
r?—3r—4=0

which hasthe solutionsr = 4 andr = —1 so that
y(t) = Ae* + Be*

Theinitial condition y(0) = 0 gives

A+B=0
and y'(0) = 0.5 gives
4A-B =05
sothat A=+ and B = —+ and
1 4t 1 —t

y(t) = 0¢ " 10°

The characteristic equation isr®> + 6r +5 = 0,507 = —1 or —5.
Therefore y(t) = Cre™" + Coe™ ™.
y'(t) = —Cre ! — 5Cze 5t
y'(O) = 0 = —Cl — 502
y(0)=1=Ci +C»
ThereforeC, = —1/4, Cy =5/4and y(t) = 3e " — Le 5"

707
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18. The characteristic equationisr> + 6r +5 = 0,507 = —1 or —5.
Therefore y(t) = Cre™t 4+ Cae™ 5.
y'(t) = —Cre™" — 5Cqe 5"
y'(O) = 5 = —Cl — 502
y(0) =5=C1 +C»
Therefore Cy = —5/2, C1 = 15/2 and y(t) = L2e " — 277,
19. The characteristic equationisr® + 6r + 10 = 0,07 = —3 %+ i.
Therefore y(t) = Cie 3 cost + Cae 3 sint.
y'(t) = Ci[e™®(—sint) + (—3e™ ) cost] + Cale ™ cost + (—3e~3!) sin ]
y'(O) =2=-3C1+C>
y(0) =0 =Cy
Therefore C1 = 0,C> = 2 and y(t) = 2~ * sin t.
20. The characteristic equationisr® + 6r +10 = 0,507 = —3 £ i.
Therefore y(t) = Cire 3 cost + Cae 3t sint.
Y (t) = Cile ™ (—sint) + (=3¢ %) cost] + Cale ™ cost + (—3e~3") sin t]
y'(O) =0=-3C:1 +0C>
y(0) =0 =Cy
Therefore Cy = C> = 0 and y(t) = 0.
21. The characteristic equation is
r’+5r+6=0

which hasthe solutionsr = —2 and r = —3 so that
y(t) = Ae * + Be
Theinitia condition y(0) = 1 gives
A+B=1

and y(1) = 0 gives
Ae >+ Be™® =0

sothat A= —— and B = ——°— and
1—e 1—e

22. The characteristic equation is ‘
245 +6=0

which hasthe solutionsr = —2 and r = —3 so that
y(t) = Ae * + Be
Theinitia condition y(—2) = 0 gives
Ae* + Be® =0
and y(2) = 3 gives
Ae™* +Be =3
sothat A= 3¢* and B = —

et—1 e and

3¢
41

3e® —2t 3e® -3t
y(t)—€4_le T 1°

23. The characteristic equation isr®> +2r +2 = 0,507 = —1 % .
Therefore p(t) = Cre ™t cost 4+ Cae™ b sint.
p(0) = 0= C1 s0p(t) = Cae sint
p(m/2) =20 = Coe” ™/?sin T s0 Co = 20e™/?
Therefore p(t) = 20eZe tsint = 20e% *sint.
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The characteristic equation isr> + 4r +5 = 0,507 = —2 + 4.
Therefore p(t) = Cie™ ! cost + Cae™ > sint.
p(0) =1 = C150p(t) = e *cost + Coe™ 2 sint
p(r/2) =5 =Cre " 0Cy = be”.
Therefore p(t) = e ' cost + be™e 2 sint = e~ * cost + 5™ *! sin t.

Problems

25.

26.

27.

28.

29.

30.

31.
32.

33.

35.

a) z'' + 4z = 0 represents an undamped oscillator, and so goes wit .
"+4 0 damped oscill d ith (IV
(b) 2" — 4z = 0 hascharacteristic equation > —4 = 0 and s0r = +2. Thesolution is Cre ™% + C2e?". Thisrepresents
non-oscillating motion, so it goes with (11).
(© 2" —0.22' +1.01z = 0 has characteristic equation r> — 0.2 + 1.01 = 0 0 b*> — 4ac = 0.04 — 4.04 = —4, and
r = 0.1 £+ 4. Sothe solution is

Cle(o.1+i)t + Cge(o'l_i)t — eo'“(ASint + Bcost).

The negative coefficient inthe = term represents an amplifying force. Thisisreflected in the solution by %!, which
increases as t increases, so this goes with (1).

(d) z" +0.22" + 1.01z has characteristic equation > + 0.2r + 1.01 = 0 S0 b> — 4ac = —4. This represents a damped
oscillator. We have r = —0.1 + i and so the solutionisz = e~ (Asint + B cost), which goes with (111).

We solve the characteristic equation in each case to obtain solutions to the differential equation.

@ > +5r+6=0,s0r=-20r—3.Then,y = Cre" 2 4+ Cre™ 3.
(b) 2 4+7r—6=0,5r=20r —3.Then,y = Cre* + Cae™%".
(© 2 4+4r+9=0,50r=—2+5i. Then, y = Cre % cos(v/5t) + Cze ™2t sin(/5¢).
(d) r* = —9,50r = =£3i. Then, y = C; cos(3t) + Cs sin(3t).
Since (d) is undamped oscillations, it must be graph (1). Similarly, (c) is damped oscillations and so must be graph
(I1). Equation (a) isexponentia decay, and so must be (1V). Thisleaves (111) to match with (b), which could be exponential

growth or decay.
]2 = d%(e”) —54(e”") + ke® =4e” —10e” + ke* = e**(k—6). Sincee® # 0, wemust have k — 6 = 0. Therefore
= 6.
The characteristic equation isr? — 5r + 6 = 0,50 = 2 or 3. Therefore y(t) = Cre?’ + Cae™.

In the underdamped case, b* — 4¢ < 0 s04c — b > 0. Since the roots of the characteristic equation are
—b+Vb2 —dc  —btiic—b?
2 2
wehavea = —b/2 and 8 = (V4c — b2)/2 or 8 = —(v/4c — b?) /2. Since the general solution is
y = Cre®" cos Bt + Cre®’ sin Bt

axiff =

and since « is negative, y — 0 ast — oo.

Recall that Fyrag = —c%, so to find the largest coefficient of damping we look at the coefficient of s'. Thus spring (iii)
has the largest coefficient of damping.

The restoring force is given by Fyring = —ks, So we look for the smallest coefficient of s. Spring (iv) exerts the smallest
restoring force.

Thefrictiona forceis Fyrag = —c%. Thus spring (iv) has the smallest frictional force.

All of these differential equations have solutions of the form Cye®! cos 5t + C2e*! sin Bt. The spring with the longest
period has the smallest 3. Since i3 is the complex part of the roots of the characteristic equation, 3 = 1 (v/4c — b2). Thus
spring (iii) has the longest period.

The stiffest spring exerts the greatest restoring force for asmall displacement. Recall that by Hooke's Law Fypring = —ks,
so we look for the differential equation with the greatest coefficient of s. Thisis spring (ii).

. Recall that s” + bs’ + ¢ = 0 is overdamped if the discriminant 5> — 4¢ > 0, critically damped if b> — 4¢ = 0, and

underdamped if b* — 4c < 0. Sinceb” — 4c = 16 — 4c, the circuit is overdamped if ¢ < 4, critically damped if ¢ = 4,
and underdamped if ¢ > 4.
Recdll that s” + bs' + c¢s = 0 is overdamped if the discriminant 5> — 4¢ > 0, critically damped if b — 4¢ = 0, and
underdamped if b* — 4c < 0. Since b® — 4c = 8 — 4c, the solution is overdamped if ¢ < 2, critically damped if ¢ = 2,
and underdamped if ¢ > 2.
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36. Recall that s” + bs’ + ¢s = 0 is overdamped if the discriminant 4> — 4¢ > 0, critically damped if b — 4¢ = 0, and
underdamped if b? — 4¢ < 0. Since b? — 4¢ = 36 — 4c, the solution is overdamped if ¢ < 9, critically damped if ¢ = 9,
and underdamped if ¢ > 9.

37. The characteristic equation isr? +r — 2 = 0,50 = 1 or —2. Therefore z(t) = Cie’ + Cae . Sincee’ — oo as
t — oo, wemust have C; = 0. Therefore z(t) = Coe 2. Furthermore, z(0) = 3 = C», S0 z(t) = 3¢~ 2.

38. (a) Ifry = =2V =% 51’2_4‘: then 1 < 0 since both b and \/b? — 4c are positive.
If py = Z2HVIT e V2b274°,then ry < 0 because

b=Vb2 > /b2 — 4.
(b) The general solution to the differential equation is of the form
y — Clerlt _+_ 0267‘2t

and sincer; and r» are both negative, y must goto0 ast — oc.
39. The differential equation is Q" + 2Q' + 1@ = 0, so the characteristic equation is 7> + 2r + 1 = 0. This has roots

—2+V3 _ V3

=—-1+ 5 Thus, the general solution is

2
Q@) = Cw““rg)t + Cze(*“\é)t’
Q’(t) =C (—]_ + ?) 6(*lJré)t +C, <_1 _ ?) 6(71*§>t.
We have
@
Q(O) =Ci+C2=0
ad Q) = (—1 " ?) Cit <_1 . ?) oo,
Using the formulafor Q(t), we have C; = —C. Using the formulafor @' (t), we have:
3 3
2= <_1 + %) (=C2) + <—1 - %) Co = —/3C»
2
0, O =-——.
T
2 2 /3 Vi
Thus, C; = —, and 1) = — ( (—14+%53)t (_I_T)t)
! /3 Q(t) /3 e e
(b) We have

QRO =Ci+Cr=2
and Q'(0) = <—1+ ?) Ci1 + <—1 - £> Cy =0.

Using the first equation, we have C; = 2 — C». Thus,

<—1+£> (2-Cs) + (—1—§>CQ=0

2 2
V30, =2-3
(12:—2_*/5
V3

2+ /3

and G =2-C,= T/;;[

Thus, Q(t) = ! ((2 + \/g)e(_1+\/7§)t —(2- \/?;)6(—1—‘@)15) .

S
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40. In this case, the differential equation describing the charge is Q" + Q' + $Q = 0, so the characteristic equation is

41.

r? +r+ 1 = 0. Thisequation has oneroot, r = — %, so the equation for charge is
Q(t) = (C1 + Cat)e 7",
Q'(t) = —%(c1 + Cat)e 3t 4 Cre Bt

2 2
(@) We have
Q(0) =C1 =0,
Q’(O):Cz—%zz

Thus, C; =0,Cs = 2, and

(b) Wehave
Q) =Cr =2,
Q’(o):cz—%zo

Thus, C1 =2,C>, =1, and )
Q(t) = (2 +1)e =",
(c) The resistance was decreased by exactly the amount to switch the circuit from the overdamped case to the critically

damped case. Comparing the solutions of parts (a) and (b) in Problems 39, we find that in the critically damped case
the net charge goes to 0 much faster ast — oc.

In this case, the differential equation describing charge is 8" + 2Q" + +Q = 0, so the characteristic equation is
8r” + 2r + 1 = 0. Thisquadratic equation has solutions

—24,/4-4-8-1
r= R .
16 8 8

Thus, the equation for chargeis

Q) = e s (Asiné + Bcos %) .
Q'(t) = —%efét (Asiné —i—Bcos%) e ® (%Acos% — %Bsin%)

Lot (4 Byeost + (-4 By
5¢ 8" ( (A B)cosg—i—( A B)sm8 .

(@) We have

Thus, B =0, A = 16, and

Q(t) = 16e” 5! sin %
(b) We have
Q) =B=2,
Q) = (4-B) =

Thus, B=2,A=2,and

(c) By increasing the inductance, we have gone from the overdamped case to the underdamped case. We find that while
the charge till tendsto O ast — oo, the charge in the underdamped case oscillates between positive and negative
values. In the over-damped case of Problem 39, the charge starts nonnegative and remains positive.
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42. The differential equation for the charge on the capacitor, given aresistance R, a capacitance C, and and inductance L, is

LQ”+RQH+9:0.
c
The corresponding characteristic equation is Lr* + Rr + ol 0. Thisequation has roots
R2 - AL
po B VYo
2L 2L

(@) If R® — % < 0, thesolution is

Q) = efﬁt(Asinwt + B cos wt) for some A and B,

JE -

wherew = . Ast — oo, Q(t) clearly goesto 0.

AL 2L
mﬂu#—6:QMwmmm
Q) = e (A + Bt) for some A and B.
Again, ast — oo, the charge goesto 0.
(©) If R* — % > 0, the solution is

Q(t) = Ae™" + Be"*' for some A and B,

where
R R - R R - %
Y Sy Y7 2L
Notice that r is clearly negative. r; is also negative since

/R2 — AL VR2
5T < < 212 (L and C are positive)

_RB

2L’

Sincer; and r» are negative, again Q(t) — 0, ast — co.

Thus, for any circuit with aresistor, a capacitor and an inductor, Q(t) — 0 ast — co. Compare this with Problem 26 in
Section 11.10, where we showed that in a circuit with just a capacitor and inductor, the charge varied along a sine curve.

43. Inthe overdamped case, we have a solution of the form
s=Cre" + Che™!

where r; and r, arereal. We find at such that s = 0, hence Cie"'t = —Che™?.
If C2 = 0,then Ci = 0, hence s = 0 for all ¢. But this doesn’t match with Figure 43, so C> # 0. We divide by
Cse™*t, and get:

_% =27t where — % >0,
so the exponential is always positive. Therefore
C
(7"2 — Tl)t = ln(—c—;)
and .
‘o In(—22) .
(r2 —11)

ln(fg—;)

(ra—r1) ~

So the mass passes through the equilibrium point only once, when ¢t =

d*y dx d*y

4. (@ 2 =2 = 29 _y=o.
@@ ==Y P g v

(b) Characteristic equation 7> — 1 =0, s0r = =+1.

The general solution for y isy = Crel + Cae™ !, 0z = Cae™ ! — Ciel.
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Solutions for Chapter 11 Review.

Exercises

1 (@ Yes (b) No () Yes
(d) No (e Yes () Yes
(9 No (h) Yes (i) No
() Yes (k) Yes () No

2. Thisequation is separable, so we integrate, giving

[ ar= [ ra
2

P(t)= 5 +C.

3. Thisequation is separable, so we integrate, giving

1
/0.2y—8dy_/d$

1

Thus
y(x) = 40 + Ae’?.

4. Thisequation is separable, so we integrate, giving

1
[ wtgpir=[

izln|1o—2p|=t+c.

Thus
P =5+ Ae 2,

5. Thisequation is separable, so we integrate, giving

1
——__dH = | dt
/ 10+ 0.5H /

1
— In|10 4+ 0.5H| =t + C.
GF 0+ 05H| =t +C

Thus
H = Ae5 —20.

6. Thisequation is separable, so we integrate, using the table of integrals or partial fractions, to get

1
/de—?/dt
1 3
- -2
/RdR+/1_3RdR /dt

In|R|—In|1 —3R| =2t +C
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7.

10.

11.

12.

13.

14.
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This equation is separable, so we integrate, using the table of integrals or partial fractions, to get:

250
/100P—P2dp_/dt
250 1 1
ﬁ</ﬁdp+/7100_PdP>—/dt

so
2.5(In |P| = In[100 — P|) = t + C
25ln|——|=t+C
n‘wo ‘ +
P _ 0.4t
wo—p e
P 100Ae°*
1+ Ae0-4t
L 4 y® = 0means & = —xy?sof%% = [ —zdzgiving -1 = —2 4 C.Sincey(1) = 1wehave—1 = -1 +C
soC =—3 ThUS —l = ——2 — % givingy = Y

i _003P+40090fp+4w = [0.03dt.
ln | P+ 240990 = 0.03¢ + C giving P = Ae” %" — 20000 Since P(0) = 0, A = 200%, therefore P = 29300 (¢20% 1),

14y’ -2 =0gvesZ =y*+1,% [
y—tanx

11’;2 = [ drandarctany = z + C. Sincey(0) = 0 wehave C = 0, giving
2sinx — yzj—z = 0 giving 2sinz = yQ%. J2sinzde = [y*dy 0 —2cosz = % + C. Since y(0) = 3 we have
—2 =9+ C,s0C = —11. Thus, —2cosz = % — 11 givingy = ¥/33 — 6 cosz.

2k = (1+1Int)k gives [ 4 = [(1+Int)dt soln|k| = tInt+ C. k(1) = 1,00 =0+ C, or C = 0. Thus,
In|k| = tint and |k| = et = ¢!, giving k = *t*.

But recall k(1) =1, so k = ¢! isthe solution.

. . (2y—1) z
& f((;,_i) gives [ 222 dy = [ E-Bdrso [(3—2)dy = [(2 —1)de. Thus y —4Infy| = 3In|z| -z + C.

Sincey(1) =5, wehave 2 —4In5=In[l|—1+Cs0C = I —4In5. Thus,

%y—4ln|y| =3ln|z|—z+ g —4Inb.

We cannot solve for y in terms of x, so we leave the equation in this form.
dy __ 0.2y(1840.1z) (10040.5y) 1840.1x
o= z(?{00+0.5yg§ g'V'ngf 0.2y L dy f v d, 0

500 @ 5 18 1
/(74‘5) dy—/(;—kﬁ) dzx.

Therefore, 500 In |y| + Sy = 181n |z| + & + C. Since the curve passes through (10,10), 5001n 10 + 25 = 181In 10 +
14+ C,50C =4821n10 + 24. Thus, thesolutlon is

5 1
5001ny| + 5y = 181nfe| + 5o + 482110 + 24.

We cannot solve for y in terms of z, so we leave the answer in thisform.
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15. Thisequation is separable and so we writeit as

L
z2(z—1) dt

[ty [
dz—/ dz_/dt

ln|z—1|—ln|z|—t+C

=1

We integrate with respect to ¢, giving

/=

ln| | =t+C,
so that )
S et TY = ket
z
Solving for z gives
(= —
‘ 1 — ket
Theinitia condition z(0) = 10 gives
1—k
or k = 0.9. The solution is therefore )
2 = g 90
16. Using the solution of the logistic equation given on page 520 in Section 11.7, and using y(0) = 1, wegety = 1+9i70—10t
17. & = {532000 ;>> gives [(22=2)dy = [ (122=2) dz. Thus, 201In|y| —y = 1001n|z| — = + C. The curve passes through

(1,20),50201n20 — 20 = —1+CgivingC =201n 20 — 19. Therefore, 20 In |y| —y = 100 In |z| —  +201n 20 — 19.
We cannot solve for y in terms of z, so we leave the equation in thisform.

18. df—«/a:f glvesf\/‘;f(_ [V dz, 024/ f( —a:2 +C.Since f(1) =1,wehave2 =2+ Cs0C = 1.

Thus, 24/ f —m2+3,sof( )_(§m2+ )2
(Note: thlSlsonIy defined for z > 0.)

19. & = e" ¥ giving [e?dy = [e"dz s0e’ = e® + C.Sincey(0) = 1, wehavee' =€’ + C's0C = e — 1. Thus,
e =e"+e—1,0y=1In(e”" +e—1).
[Note: e + e — 1 > 0 always]

20. 4 = "tV = e"¢? implies [e Vdy = [e"dx implies—e ¥ = e” + C. Sincey = 0 when z = 1, we have
—1=e+C,givingC =—-1—e. Therefore—efy =e®"—1l—candy=—1In(l+e—e").

21 e %4 = /1 —2%sinf |mp||esf \/1_ = [e®*?sinf df implies arcsin z = —e®*? + C. According to the

initial conditions: z(0) = 3, so arcsin 3 = —e™° + C, therefore £ = —e + C,and C = Z +e. Thusz =

2
sin(—e®s? 4+ E+e).

22. (14+°)yde = 1—yimp|i%thatf de = [ |mpl|e£thatf( 1+ L) dy= s Therefore —y—In|l—y| =
arctant + C.y(1) = 0,500 =arctanl + C,andC = —-Z,0 -y —In [1/1 -yl = arctant — 2. We cannot solve for
yintermsof ¢.

23. 9% =2¥sin®t implies [ 27¥ dy = [ sin® t dt. Using Integral Table Formula 17, we have

1., 1., 2
_EQ = 3sm tcost 3cost+C’.
According to theinitial conditions: y(0) =00 — 5 = —2 + C,and C = % — 5. Thus,
g —lsin2tcost — zcost—i— 2_ 1
In2 T3 3 3 In2
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Solving for y gives:
1

27V = n?zsin%cost—f- 21;2 cost — 21;2 + 1.

Taking natural logs, (Notice theright sideisaways > 0.)
yln2=—1In (ln—25in2tcost + 2In2 cost — 2In2 + 1) ,
3 3 3
w - -
_ —In (I“TZ sin®tcost + %cost— L;Z —+—1)
y =
In2
24. The characteristic equation is
2 2
r'4+7°=0

so that r = +im and
z(t) = Acosnt + Bsinrt

25. The characteristic equation of 9z —z=0is
9> —1=0.

If thisiswritten in the form 72 + br + ¢ = 0, we have that r> — 1/9 =0and
b’ —de=0— (4)(=1/9) =4/9 >0
Thisindicates overdamped motion and since the roots of the characteristic equation are r = +1/3, the general solution is

y(t) = Cied! + Che 3t

26. The characteristic equation of 92" + 2z = 0 is
9’ +1=0

If we writethisin the form r2 + br + ¢ = 0, wehavethat % + 1/9 = 0 and
b> —4c=0—(4)(1/9) = —4/9 <0

This indicates underdamped motion and since the roots of the characteristic equation are r = iéi, the general equation
is

1 . 1
y(t) = Ci cos (gt) + Cy sin (Et)

27. The characteristic equation of 3/ + 6y’ + 8y = 0 is

r>+6r+8=0.
We have that ‘
b’ —4c=6"—4(8) =4 > 0.
This indicates overdamped motion. Since the roots of the characteristic equation arey, = —2 and r» = —4, the general
solution is

y(t) = Cre™ " + Coe™ ™.

28. The characteristic equation is
P +2r+3=0
which has the solution

T:—2:l:\/24—4-3:_1i\/_—2

so that the general solutionis
y(t) = e *(Asin V2t + Bcos V2t)
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29. The characteristic equation of '’ + 2z + 10z = 0 is
P 4+2r+10=0

We have that

b2—4c:22—4(10) =_-36<0
Thisindicates underdamped motion and since the roots of the characteristic equation arer = —1+ 34, the general solution
is

y(t) = Cre " cos 3t + Cre” ' sin 3t

Problems

30. (&) Tofind the equilibrium solutions, we must set
dy/dz =0.5y(y —4)(2+y) =0

which givesthree solutions: y = 0,y =4, andy = —2.
(b) From Figure 11.54, we seethat y = 0 isstableand y = 4 and y = —2 are both unstable.
Yy
x
Figure 11.54
3L (@) Az=1%=02
Atz =0:
yo=1,4 =4;0Ay =4(0.2) =0.8. Thus,y; =1+ 0.8 = 1.8.
Atz =0.2:
y1 =18,y =3.2;50 Ay = 3.2(0.2) = 0.64. Thus, y» = 1.8 4 0.64 = 2.44.
Atz =0.4:
Yo = 2.44, 1y’ = 2.56; 0 Ay = 2.56(0.2) = 0.512. Thus, y3 = 2.44 + 0.512 = 2.952.
Atz =0.6:
ys = 2.952,y" = 2.048; s0 Ay = 2.048(0.2) = 0.4096. Thus, y4 = 3.3616.
Atx =0.8:
ya = 3.3616,y" = 1.6384; so Ay = 1.6384(0.2) = 0.32768. Thus, y5 = 3.68928. So y(1) ~ 3.689.
(b) y
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32.

33.

35.
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Since solution curves are concave down for 0 < y < 5, and y(0) = 1 < 5, the estimate from Euler’s method
will be an overestimate.
(c) Solving by separation:
dy
55—y
Then5 —y = Ae " where A = +e~“. Sincey(0) = 1, wehave5 — 1 = Ae’, s0 A = 4.
Therefore, y =5 — de™*, and y(1) = 5 — 4e™ ! = 3.528.
(Note: as predicted, the estimatein (a) istoo large.)
(d) Doubling the value of n will probably halve the error and, therefore, give avalue half way between 3.528 and 3.689,
which is approximately 3.61.

Recall that s” + bs’ + ¢s = 0 is overdamped if the discriminant b — 4¢ > 0, critically damped if b — 4¢ = 0, and
underdamped if b* — 4¢ < 0. Since b? — 4¢ = b* — 20, the solution is overdamped if b > 2v/5 or b < —2+/5, critically
damped if b = £21/5, and underdamped if —2v/5 < b < 21/5.

Recall that s” + bs' + ¢s = 0 is overdamped if the discriminant b — 4¢ > 0, critically damped if b — 4¢ = 0, and
underdamped if b* — 4¢ < 0. This has discriminant b — 4c = b + 64. Since b + 64 is always positive, the solution is
always overdamped.

:/da:, 0 —Inlf—y|=z+C.

(a) A very hot cup of coffee cools faster than one near room temperature. The differential equation given says that the
rate at which the coffee coolsis proportional to the difference between the temperature of the surrounding air and the
temperature of the coffee. Since % < 0 (the coffee is cooling) and T — 20 > 0 (the coffee is warmer than room

temperature), &k must be positive.
(b) Separating variables gives
1
T= [ -
/ T 20d / kdt
In|T —20| =—-kt+C

and so

and
T(t) =20 4+ Ae "',

If the coffee isinitially bailing (100° C), then A = 80 and so
T(t) = 20 + 80e ™",

When ¢ = 2, the coffeeisat 90°C and s0 90 = 20 + 80e~** sothat k = 1 1n £.
L et the time when the coffee reaches 60° C' be T, so that

60 = 20 + 80 *74

kT 1
e e ==

=3
Therefore, Ty = 1 In2 = 2182 ~ 10 minutes.

According to Newton's Law of Cooling, the temperature, T', of the roast as a function of time, ¢, satisfies

T'(t) = k(350 — T)
T(0) = 40.

Solving this differential equation, we get that T = 350 — 310e~** for some k > 0. Tofind k, we note that at t = 1 we
have T' = 90, so

90 = 350 — 310e~F®M

260 _ -
310
260
k=—In[==
. (310)
~ 0.17589.

Thus, T = 350 — 310e 21789 Solving for t when T' = 140, we have

140 = 350 — 310e 0-1758%
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37.

38.
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210 _o.17s80

310
_In(210/310)
T —0.17589

t ~ 2.21 hours.

(a) Since the amount leaving the blood is proportional to the quantity in the blood,

% = —k@ for some positive constant k.
Thus Q = Qoe™"*, where Qo istheinitia quantity in the bloodstream. Only 20% is left in the blood after 3 hours.
Thus 0.20 = e %, so k = 12220 ~ (.5365. Therefore @ = Qoe *-7*%".

(b) Since 20% is left after 3 hours, after 6 hours only 20% of that 20% will be left. Thus after 6 hours only 4% will be
left, so if the patient is given 100 mg, only 4 mg will be left 6 hours later.

Let V (t) be the volume of water in the tank at time ¢, then

av
= = kVV
Thisis a separable egquation which has the solution
kt .
V(t)= (5 +C)’

Since V(0) = 200 this gives 200 = C? s0

V(t) = (% +v/200)°.
However, V(1) = 180 therefore
180 = (g +/200)°,

sothat k = 2 (\/ﬁ - M) = —1.45146. Therefore,
V(t) = (—0.726¢ + 1/200)%.
The tank will be half-empty when V' (¢) = 100, so we solve
100 = (—0.726¢ + /200)>

to obtain ¢ = 5.7 days. The tank will be half empty in 5.7 days.
The volume after 4 daysis V' (4) which is approximately 126.32 liters.

Since the rate at which the volume, V', isdecreasing is proportional to the surface area, A, we have

av
&~ kA
dt :

where the negative sign reflects the fact that V' is decreasing. Suppose the radius of the sphereisr. Then V' = %ﬂ”r?’ and,

using the chain rule, Cﬁl_‘t/ = dgr? % The surface area of a sphereis given by A = 4. Thus
471'7"2@ = —kdnr®
dt
0 d
r
— =—k.
dt

Since the radius decreases from 1 cm to 0.5 cmin 1 month, we have k = 0.5 cm/month. Thus

dr
pri -0.5
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so

r = —0.5t + ro.
Sincer = 1whent = 0,wehavero = 1, so

r=—0.5t + 1.
We want to find ¢t whenr = 0.2, so

0.2=-05t+1
and 08

t = — = 1.6 months.
0.5

39. (a) For thissituation,

Rate money added \  / Rate money added Rate money
to account - viainterest deposited

Trandlating thisinto an equation yields

B
— = 0.1B + 1200.
dt +

(b) Solving this equation via separation of variables gives

dB
— =0.1B + 1200
dt +
= (0.1)(B + 12000)
So
dB
7= [ 0.1dt
/ B + 12000 /
and
In |B + 12000 = 0.1t + C
solving for B,
B +12000] = e(ODH+C — (01
or

B = Ae™'" — 12000, (where A = ¢°)
We may find A using theinitial condition B, = f(0) =0

A—12000=0 or A =12000
(c) After 5years, thebalanceis

B = f(5) = 12,000(>-Y®) — 1)
~ 7784.66 dollars.

40. (a) The balancein the account at the beginning of the month is given by the following sum
balancein \ previous month's n interest on n monthly deposit
account - balance previous month’s balance of $100
Denote month 4’s balance by B;. Assuming the interest is compounded continuously, we have

previous month's interest on previous _ By 0112
balance month’s balance - ’

Sincetheinterest rateis 10% = 0.1 per year, interest is % per month. So at month 4, the balance is
B;=Bi 1e T +100

Explicitly, we have for the five years (60 months) the equations:
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Bo=0

B1 = Boe' 2 + 100
By = Bie' 2 4100
Bs = Boe' T2 4100

=]

Nt

Beo = B596% + 100

In other words,

B = 100
B = 100e = + 100

2
0.1 0.1
Bs = (100e 12 + 100)e 12 + 100
(0.1)2 0.1
=100e 12 +100e 1= + 100
(0.1)2 (0

(0.1)3 )
By =100e 27 4 100e” 2 + 100e T

.1
2

+ 100

(0.1)59 (0.1)58

(0.1)1
Bso = 100e T +100e 1  +---+100e 12 + 100

59
(0.1)k
Beo = Z 100e™ 12
k=0

> (0. Dk . > [CBSLIS . .
(b) Thesum Bgo = Z 100e 12 can be written as Bgo = Z 1200 12 (ﬁ) which is the left Riemann sum for

k=0 k=0
5

1200e” 1 dt, with At = % and N = 60. Evaluating the sum on a calculator gives Bso = 7752.26.

(©) Tﬁe situation described by this problem isalmost the same as that in Problem 39, except that here the money isbeing

deposited once a month rather than continuously; however the nominal yearly rates are the same. Thus we would
expect the balance after 5 years to be approximately the same in each case. This means that the answer to part (b)
of this problem should be approximately the same as the answer to part (c) to Problem 39. Since the depositsin this
problem start at the end of the first month, as opposed to right away, we would expect the balance after 5 years to be
dlightly smaller than in Problem 39, asisthe case.

Alternatively, we can use the Fundamental Theorem of Calculus to show that the integral can be computed
exactly

5
/ 1200e” " dt = 12000(e®1° — 1) = 7784.66
0
Thus f05 1200e° 't dt represents the exact solution to Problem 39. Since 1200e% 't is an increasing function, the left

hand sum we calculated in part (b) of this problem underestimates the integral. Thus the answer to part (b) of this
problem should be less than the answer to part (c) of Problem 39.

41. Let I be the number of infected people. Then, the number of healthy people in the population is M — I. The rate of
infection is

Infection rate = Oj'wﬂ(M —IDI.

and therate of recovery is

Recovery rate = 0.0091.

Therefore,
dI 0.01
—=—M-0NI-0. I
dt M( ) 0-009
o dI I
— = 0.001I(1 —10—).
a ~ 000 ( OM)

Thisisalogistic differential equation, and so the solution will ook like the following graph:
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SIS

The limiting valuefor I is %M, s0 1/10 of the population isinfected in the long run.

42. (a)

(b)

(©

43. (a)

(b)

(©

(d)

The equilibrium population will be reached when d P/ dt approaches zero. Solving 1 —0.0004P = 0 gives P = 2500
fish as the equilibrium population.
The solution of the differential equation is

2500

PO = e

subject to P(—10) = 1000 if ¢ = 0 represents the present time. So we have

2500

1000 = ———
000 = 17

fromwhich A = 0.123127 and 5500
P0) = ———FF—— = 2230.
0) (1+0.123127) 30
Therefore, the current population is approximately 2230 fish.
The effect of losing 10% of the fish each year gives the revised differential equation
dP

e (0.25 — 0.0001P)P — 0.1P

or
P
Cil—t = (0.15 — 0.0001LP) P.

The revised equilibrium population is therefore about 1500 fish.
When Juliet loves Romeo (i.e. j > 0), Romeo’s love for her decreases (i.e. % < 0). When Juliet hates Romeo
(j < 0), Romeo's love for her grows (% > 0). So j and % have opposite signs, corresponding to the fact that
—B < 0. When Romeo loves Juliet (r > 0), Juliet’slove for him grows(% > 0). When Romeo hates Jduliet (r < 0),
Juliet’slove for him decreas%(% < 0). Thusr and % have the same sign, corresponding to the fact that A > 0.
Since & = —Bj, we have

dr d dj

— = —(-Bj) = —B—~ = —ABr.

= a8 dt "
Rewriting the above equation as+’' + ABr = 0, we see that the characteristic equation is R + AB = 0. Therefore
R = ++/ ABi and the general solution is

r(t) = Cicos VABt + C2sin VABt.
Using % = —Byj, and differentiating r to find j, we obtain

jit) = —%% = —%(—Cl sin VABt + C; cos VABt).

Now, j(0) = 0 givesC> = 0 and r(0) = 1 givesC = 1. Therefore, the particular solutions are

r(t) = cos VABt and j(t) = \/%sin VABt

Consider one period of the graph of j(¢) and r(¢):
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love

hate

From the graph, we see that they both love each other only a quarter of the time.
44. (@) Wehave ¥ = C cos(wz) + Cs sin(wz), and we want ¥(0) = ¥(l) = 0.
\11(0)20120 soC; =0.
¥(l) = Cysin(wl) =0 so wl = nx for some positive integer n.
Thus, w = (nm)/l, sO
¥ = Cysin (?) .

(b) Using thisformulafor ¥, we have

av nTw02 cos (nrrx)

dx 1
dQ_\If . _n27r20 sin (nﬂ'a:)
dz2 ~ 1z ? 1)

Thus, substituting for > ¥ /dz? and ¥ = Cs sin(nmz /1), we have

e A n27r2c “in (nrrx) _ h’n?
8n2m dz®  8mim 12 ° l T 8miz
SO
h%n?
T 8mi?’

(c) Sincen must be apositiveinteger, son = 1,2, 3,4, ..., the possible values of E are

R A’ _9n? _16n°
~8ml?’ 7 8miz’ 8mli2’ YT 8mi2’

E 3 =
The lowest energy level is By = h?/(8mi?), and we see that other energy levels are multiples of E:

E, =4E,, E;=9E,, E;=16E,

CAS Challenge Problems

45. (a) Wefind the equilibrium solutions by setting dP/dt = 0, that is, P(P — 1)(2 — P) = 0, which gives three solutions,
P=0,P=1,andP =2.

(b) To get your computer algebra system to check that P, and P» are solutions, substitute one of them into the equation
and form an expression consisting of the difference between the right and | eft hand sides, then ask the CASto simplify
that expression. Do the same for the other function. In order to avoid too much typing, define A and P> as functions
in your system.

(c) Substitutingt = 0 gives

P(0)=1-—==1/2

Ps(0) = 14 —= = 3/2.

SRR
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We can find the limits using a computer algebra system. Alternatively, setting u = e’, we can use the limit laws to
caculate

Therefore, we have
tlim Pi(t)y=1-1=0
lim Po(t) =14+1=2.

t— o0

To predict these limits without having a formula for P, looking at the original differential equation. We seeif 0 <
P <1,thenP(P—1)(2—P) < 0,50 P’ < 0.Thus,if 0 < P(0) < 1,then P'(0) < 0, so P isinitially decreasing,
and tends toward the equilibrium solution P = 0. On the other hand, if 1 < P < 2,then P(P —1)(2 - P) > 0,0
P’ >0.90,if 1 < P(0) < 2,then P'(0) > 0, so P isinitialy increasing and tends towards the equilibrium solution
P =2.

46. (a) Using theintegral equation with n + 1 replaced by n, we have

yn(a) = b+/ (Y1 () +t2)dt =b+0=b.

(b) Wehavea =1 and b = 0, so theintegral equation tells us that

yn+1(8)=/ (yn (t)® +t7) dt.

Withn = 0, since yo(s) = 0, the CAS gives

Then

and

ya(s) = / (1s(t)? + %) dt

157847 289s 17s® 825 17s* §° % &7 118

374220 T 1764 378 | 243 252 ' 42 436 ' 63 1764
5 59 ) Sll 512 515
+ - + .
6804 2079 6804 = 59535
(c) The solution y, and the approximations y:, y2, ys are graphed in Figure 11.55. The approximations appear to be
accurate ontherange 0.5 < s < 1.5.
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8

—— ;

Figure 11.55

—0.5

47. (a) SeeFigure 11.56.

|
SIE]
ISEES

Figure 11.56

(b) Different CASsgive different answers, for example they might say y = sin x, or they might say
y =sinzx, —g <z< g

(c) Boththe sample CASanswersin part (b) arewrong. Thefirst one, y = sin z, iswrong because sin x startsdecreasing
at © = 7 /2, where the slope field clearly shows that y should be increasing at all times. The second answer is better,

but it does not give the solution outside the range —7/2 < = < 7/2. The correct answer is the one sketched in
Figure 11.56, which has formula

SERPAN
IA ISILE]
5 IA
T

CHECK YOUR UNDERSTANDING

1. False. Suppose k = —1. The equation y’ —y = 0 or y’ = y has solutionsy = e! and y = e~* and general solution
y = Cie' + Cae™ .

2. True. The general solutiontoy’ = —kyisy = Ce™*t.
3. False. Thefunctiony = t? isasolutionto " = 2.

4. True. Specifying z(0) and y(0) corresponds to picking astarting point in the plane and thereby picking the unique solution
curve through that point.

5. False. Thisisalogistic equation with equilibrium values P = 0 and P = 2. Solution curves do not cross the line P = 2
and do not go from (0, 1) to (1, 3).

6. True. Thisisalogistic differential equation. Any solution with P(0) > 0 tends toward the carrying capacity, L, ast — co.
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False. Competitve exclusion, in which one population drives out another, is modeled by a system of differential equations.
Fase. If y(0) <0, thenlim, o0 y = —o0.

True. No matter what initial value you pick, the solution curve has the z-axis as an asymptote.

False. There appear to be two equilibrium values dividing the plane into regions with different limiting behavior.

False. Euler’s method approximates y-values of points on the solution curve.

False. In order to be solved using separation of variables, a differential equation must have the form dy /dxz = f(z)g(y),
so wewould need z + y = f(z)g(y). Thiscertainly does not appear to be true. If it were, settingz = 0 and y = 0, we
would have f(0)g(0) = 0 so either £(0) = 0 or g(0) = 0. If £(0) = 0, then substitutinginz = 0 and y = 1, we have
0+ 1= f(0)g(1) = 0, which isabsurd. We get the same contradiction if we assume g(0) = 0.

True. Rewrite the equation asdy /dz = zy + = = z(y + 1). Since the equation now hasthe form dy/dz = f(x)g(y), it
can be solved by separation of variables.

False. We can find such a differential equation simply by differentiating the equation implicitly:

‘ d 2d
3x2+y+m—y+3y2—y—0.

dx de
Solving for dy/dx we get our differential equation:

dy _ —3z%—y

dz x+3y?

In fact, one way computers sketch a curve like thisisto use Euler’s method on the differential equation, rather than to try
to sketch the curve directly.

True. Just as many elementary functions do not have elementary antiderivative, most differential equation do not have
equations for solution curves. For example, the differential equation in this problem cannot be solved by separation of
variables and it isnot linear.

False. Itistruethat y = z> isasolution of the differential equation, since dy/dz = 3x* = 3y*/%, but it is not the only
solution passing through (0, 0). Ancther solution is the constant function y = 0. Usually there is only one solution curve
to adifferential equation passing through a given point, but not always.

True. Since f'(z) = g(z), wehave f"'(z) = ¢'(x). Since g(z) isincreasing, ¢’ (z) > 0 for al z, so " (x) > 0 for all .
Thus the graph of f isconcave up for al x.

False. We just need an example of a function f(z) which is decreasing for z > 0, but whose derivative f' (z) = g(z) is
increasing for z > 0. Anexampleis f(z) = 1/z. Clearly f(z) isdecreasing for z > 0 but itsderivative f'(z) = —1/x2
isclearly increasing for z > 0.

True. Since g(z) isincreasing, g(z) > g(0) = 1 foral =z > 0. Since f'(z) = g(z), thismeans that f'(z) > 0 for all
x > 0. Therefore f(z) isincreasing for al = > 0.

Fase. If g(z) > 0 for dl x, then f(x) would have to be increasing for al x so f(x + p) = f(x) would be impossible.
For example, let g(xz) = 2 + cos z. Then apossibility for f is f(z) = 2z + sin z. Then g(z) isperiodic, but f(x) isnot.
False. Let g(z) = 0 forall z and let f(z) = 17. Then f'(z) = g(z) and lim;— oo g(z) = 0, bUt lim,—, o f(z) = 17.
True. Sincelim, o0 g(x) = oo, there must be some value z = a such that g(x) > 1 for al z > a. Then f'(z) > 1 for
al z > a. Thus, for some constant C, we have f(z) > = + C for dl z > a, which implies that lim, . f(z) = oo.
More precisely, let C = f(a) —a and let h(z) = f(z) —z — C. Then h(a) = 0 and ¥ (z) = f'(z) — 1 > 0 for all
x > a. Thush isincreasing so h(z) > 0 for al z > a, which meansthat f(z) > = + C foral z > a.

Fase Let f(x) = 2 and g(z) = 32>. Theny = f(z) satisfiesdy/dz = g(x) and g(x) iseven while f(x) isodd.
False. The example f(z) = x> and g(z) = 3z* shows that you might expect f(z) to be odd. However, the additive
constant C' can mess things up. For example, still let g(z) = 322, but let f(z) = 2® + 1 ingtead. Then g(z) is till even,
but f(z) isnot odd (for example, f(—1) = 0 but —f(1) = —2).

True. The slope of the graph of f isdy/dx = 2z — y. Thuswhen z = a and y = b, the slopeis2a — b.

True. Saying y = f(x) isasolution for the differential equation dy/dx = 2z — y meansthat if we substitute f(z) for y,
the equation is satisfied. That is, f'(z) = 2z — f(x).

Fase. Since f'(z) = 2z — f(x), wewould have 1 = 2z — 5 so z = 3 isthe only possibility.

True. Differentiate dy /dx = 2z — y, to get:
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False. Since f'(1) = 2(1) — 5 = —3, the point (1, 5) could not be acritical point of f.

True. Since dy/dx = 2z — y, the slope of the graph of f is negative at any point satisfying 2z < y, that is any point
lying above theliney = 2x. The slope of the graph of f is positive at any point satisfying 2x > v, that isany point lying
below theliney = 2z.

True. When we differentiate dy /dz = 2z — y, we get:
Py ., dy _

Thus at any inflection point of y = f(z), we have d*y/dz> = 2 — (2 — y) = 0. That is, any inflection point of f must
satisfy y = 2z — 2.

False. Suppose that g(z) = f(z) + C, where C # 0. In order to be a solution of dy/dx = 2z — y we would need
g'(z) = 2z — g(z). Instead we have:

g (@) =f(z) =2z - f(z) =2z - (9(z) - C) =22 — g(a) + C.

Since C' # 0, thismeans g(z) isnot asolution of dy/dxz = 2z — y.
True. We will usethe hint. Let w = g(x) — f(z). Then:

= g@) - £ (@) = 2z — g(x)) - (20 ~ f(2)) = f(&) — g(z) = ~w.

Thus dw/dz = —w. Thisequation is the equation for exponential decay and has the general solution w = Ce™". Thus,

lim (g(z) — f(z)) = lim Ce™" =0.

T—> 00 T—> 00

An exampleisdy/dx = e®. Infact, if f(x) isany increasing positive function, then the solutions of dy/dxz = f(x) are
increasing since f(z) > 0 and concave up since d’y/dz* = f'(z) > 0.

We want to have dy/dz = 0 wheny — 2® = 0, so let dy/dz = y — z°.
Thisfamily has f'(z) = 2z, solet dy/dx = 2.

If wedifferentiate implicitly the equation for thefamily, we get 2z — 2ydy /dz = 0. When we solve, we get the differential
equation we want dy/dz = x/y.

PROJECTS FOR CHAPTER ELEVEN

1

Note: Your estimates for a, b, c are highly dependent on the type of approximationsand line fitting you use, so
your estimates may differ significantly from those presented here.

dE 1dE
dtE dt

dE _AE _ 25-12
dt = At~ 5

(&) In order to generate the necessary plots we need , E and t. For 1912, we approximate

~ 2.6;

for 1917,
dE AE  39-25

dat T At 3
and so on. All the other values of the following chart can then be directly computed.

~ 4.7
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Table 11.15
. . AE dFE 1 AFE 1 dE
Year(t) Electricity Consumption (E) VT A T
1912 12 2.6 0.217
1917 25 47 0.187
1920 39 5.9 0.151
1929 92 24 0.026
1936 109 12.6 0.115
1945 222 325 0.146
1955 547 41.6 0.076
1960 755 60.0 0.079
1965 1055 95.2 0.090
1970 1531 75.5 0.049
1980 2286 24.1 0.011
1987 2455

We rewrite equation (i) as
dE
dt
InFigure 11.57 we plot % versus E. The best line through these data points that passes through the origin
(which can be found, for instance, by the least squares method) has a slope of about 0.036, so ¢ = 0.036.
Equation (ii) is of the form

cE.

dE

==
so we use the same plot, but allow lines which do not go through the origin. The slope of the best fitting
linein this case is about 0.024, so b = —0.024 and the % intercept is18.1, soa = 18.1.

a—bE,

dE

dt

100

75

50

25

1 1 1 1 1 E
500 1000 1500 2000 2500
Figure 11.57
Since equation (iii) is
1dE
—— =a—bE
Bat T
to check equation (iii) we plot %% versus E, as in Figure 11.58. The line shown has slope m = —6.1 -

10~° and + 47 intercept at 0.14. Sob = 6.1- 10 ° and a = 0.14.
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0.05

1
500 1000 1500 2000 2500

Figure 11.58
Since equation (iv) is
1dE bt
Bat "
for equation (iv) we graph % % versus t, where ¢ is measured since 1900; we get Figure 11.59. The best
line has aslope of —0.002 and a %% intercept of 0.2. Soa = 0.2 and b = 0.002.
1dE
E dt
0.25
0.2
0.15
0.1
0.05
VIR R, t (years since 1900)
'10'20°30°'40'50'60 "70'80'90
Figure 11.59
(b) (i) Wehave
E
B = 0.036E,
dt
SO we get
E = E0€0'036t.

Thisis exponential growth at a continuousrate of 3.6%. To estimate E in the year 2020, we measure
time from 1987, and so £y = 2455 and

E ~ 2455¢2:036033) ~ 8054.

Thismodel predicts that growth will continue at 3.6% forever. Thisis not reasonable. For instance, it
predicts that in the year 2920 the US energy consumption will equal the entire energy output of the
sun.
(i) We have
dE

— = 18.1 4+ 0.024E.
dt +

dE
—_— = .024dt.
/E+754 /00 dt

Separating variables, thisis
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(iii)

(iv)

Solving, we get
E = A0 4 754

Again assuming that we measure time from 1987, this becomes
E =1701e"9%% 4 754.
So this model predicts that in the year 2020,
E = 1701e%0%43) 4 754 = 4509.

Again, this growth pattern does not seem reasonable because, although it is a slower growth (2.4%
versus 3.6%) than the last example, it is till forever exponential. This model predicts that it will
take longer for US consumption to reach the total output of the sun, but it is still predicted to happen
(sometime around 3400).

Thethird equationis

1dE
— = =0.14—(6.1-107°)E.
E dt ( )

Thisis solved by partial fractions:

1
4B =6.1- 107°(2295 — E)dt
1
—————dE= [61-107°
/E(2295—E)d /6 0 "dt

1 1
/ <E + m) dE = /0.14dt

In|E| —1n|2295 — E| = 0.14t + C
|E| 0.14¢
|E—2295] ¢
Solving for E, thisis
—2295 K e0-14t
1 — Ke0-14t °
Measuring time from 1987, we get K = 2455/(2455 — 2295) =~ 15.3, S0

_ —35,100014
T 1 15.3e014t

Thusthe predicted consumptionin the year 2020 is

—35,10060'14(33)
= 1 — 15.3e0-14(33)

This model predicts logistic growth leveling off at 2295 billion kilowatt hours per year. In some
ways this model is more satisfactory than the previous ones because it acknowledges that energy
consumptionwill not grow indefinitely. However, this model is problematic in that the 1987 value for
E of 2455 is bigger than the leveling off value of 2295. (Your numerical values may differ, depending
on your estimating method.)

The equation hereis

E ~ 2295.

1dE
—— = 0.2 -0.002¢.
E dt

Integrating this gives
In|E| = 0.2t — 0.001#* + C

or
E— K€0.2t70.001t2
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(b)

(©

(d)
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Since t is measured from 1900 we know that & = 2455 when ¢t = 87. Thisgives K = 0.132, so the
predicted consumption in the year 2020 is

E = 0.132¢%-2(120)=0.001(120)* 1950

This model predicts that energy consumption reaches a maximum in the year 2000 (this is when the
maximum of 0.2¢ — 0.001¢2 occurs).

p(z) = the number of people with incomes > z.
p(z + Az) = the number of peoplewith incomes > = + Ax.
So the number of people with incomes between x and « + Az is
p(z) —p(z + Az) = —Ap.

Since @l the people with incomes between z and = + Ax have incomes of about z (if Az is small),
the total amount of money earned by people in thisincome bracket is approximately z(—Ap) = —zAp.
Pareto’slaw claims that the averageincome of all the peoplewith incomes > z is kz. Sincethere are p(x)
people with income > z, the total amount of money earned by peoplein thisgroupis kzp(z).

Thetotal amount of money earned by people with incomes > (x + Axz) istherefore k(z + Ax)p(z +
Az). Then the total amount of money earned by people with incomes between z and = + Ax is

kxp(z) — k(xz + Az)p(z + Ax).

Since Ap = p(z + Az) — p(z), we can substitute p(z + Az) = p(z) + Ap. Thus the total amount of
money earned by people with incomes between z and = + Az is

kxp(z) — k(x + Az)(p(z) + Ap).
Multiplying out, we have
kxp(z) — kxp(z) — k(Az)p(z) — kzAp — kAzAp

Simplifying and dropping the second order term Az Ap givesthe total amount of money earned by people
with incomes between = and = + Az as

—kpAz — kxAp.
Setting the answersto parts (a) and (b) equal gives
—zAp = —kpAx — kxAp.
Dividing by Az, and letting Az — 0 so that £2 — p', we have

A A
o g kp+kx—p

Az Az

xp' = kp + kxp’
S0

(1—k)zp' = kp.
We solve this equation by separating variables

JE Ty -
p ) (1—-k) =z
k .
Inp = m Inz + C (no absolute values needed since p, « > 0)
Inp=Inz"=% £ InA (writingC =In A)
Inp = In[Az*/(=®]  (usingln(AB) =In A + In B)
p = Azgh/(1-k)
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() Wetake A = 1. Fork = 10,p = 799 ~ z='. For k = 1.1, p = z~''. The functions are graphed
in Figure 11.60. Notice that the larger the value of &, the less negative the value of k/(1 — k) (remember
k > 1), and the lower p(z) — 0 asx — oo.

p(z)

7100 (k = 10)
T (k=1.1)

Figure 11.60

3. (@ Writing F' =0 (“2‘“’") = 0 shows F' = 0 whenr = a, sor = a givesthe equilibrium position.

r3

(b) Expanding 1/r3 about r = a gives

Thus, combining gives

F:be <1_3(ra—a) +6(ra—2a)2 _) _é(l_Q(ra—a) +3(ra—2a)2 _>>
b (_(r—a)+3(r—a)2 _)

S (o )

(c) Settingz = r — a gives
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(d) For small z, we discard the quadratic term in part (c), giving

The accelerationis d?z/dt*. Thus, using Newton’s Second Law:

Force = Mass - Acceleration

we get
—br  d’z
o "ae
So
d’z b ~0
W#—%x— .

This differential equation represents an oscillation of the form z = C'; coswt + C5 sinwt, where w? =

b/(a*m) sow = /b/(a?m). Thus, we have

Period = 2—71- = 271'(”/@.
w b

4. (a) Equilibrium valuesare N = 0 (unstable) and N = 200 (stable). The graphs are shown in Figures 11.61

and 11.62.
d
ax N
100 F 220
200 F————===
1 — N
100 20 300
40
—300 "

Figure 11.62: Solutionsto

Figure 11.61: dN/dt = 2N — 0.01N?> ;
g / dN/dt = 2N — 0.01N?

(b) When there is no fishing the rate of population change is given by % = 2N — 0.01N?2. If fishermen

remove fish at arate of 75 fish/year, then this results in a decrease in the growth rate, %, by 75 fishlyear.

Thisisreflected in the differential equation by including the —75.

© 4 (o) p
25
170
150
60
50
40
—375 "

Figure 11.63: dP/dt = 2P — 0.01P> — 75 Figure 11.64
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(® p ) p
160 170
150 o ——== 150
140
60 60
50 - 50
40 \ 40 \
t t

Figure 11.65: Solutionsto

. Figure 11.66
dP/dt = 2P —0.01P? — 75 g

(g) Thetwo equilibrium populationsare P = 50, 150. The stable equilibriumis P = 150, while P = 50 is
unstable.

(h) (@)

(i)

(iii)

(iv)

Noticethat P = 50 and P = 150 are solutions of dP/dt = 0:

dP 9 9
e 2P —0.01P° — 75 = —0.01(P* — 200P + 7500) = —0.01(P — 50)(P — 150).

dP

dt

25 50 150 200 300
’ 1 — P
/ 10
=75

—100

—200

—300

For H = 75, the equilibrium populations (where dP/dt = 0) are P = 50 and P = 150. If the
population is between 50 and 150, dP/dt is positive. This means that when the initial population
is between 50 and 150, the population will increase until it reaches 150, when dP/dt = 0 and the
population no longer increases or decreases. If theinitial populationis greater than 150, then dP/dt is
negative, and the population decreases until it reaches 150. Thus 150 is a stable equilibrium. However,
50 isunstable.

For H = 100, the equilibrium population (where dP/dt = 0) is P = 100. For all other pop-
ulations, dP/dt is negative and so the population decreases. If the initial population is greater than
100, it will decrease to the equilibrium value, P = 100. However, for populations less than 100, the
population decreases until the species dies out.

For H = 200, there are no equilibrium points where dP/dt = 0, and dP/dt is aways negative.

Thus, no matter what theinitial population, the population always dies out eventually.
If the populationis not to die out, looking at the three cases above, there must be an equilibrium value
where dP/dt = 0, i.e. where the graph of dP/dt crosses the P axis. This happensif H < 100. Thus
provided fishing is not more than 100 fish/year, there areinitial values of the population for which the
population will not be depleted.

Fishing should be kept below the level of 100 per year.



