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Week 2 Assignment

Mathematical Models in BiologyAn Introduction
by Elizebeth Allman and John A. Rhodes

Ch 1.3 - Ex(4, 5, 6(a,c), 7(a), 8, 11)
Ch 1.4 - Ex(1 ,2 ,3)

1.3.4 Increasing r in steps of .25 we can get a good idea of what’s happening as we change r. The first graph is at
r = .5. It displays the approach to equilibrium without oscillations. The consecutive graphs up untilr = 1.25 all
display this behavior. We see atr = 1.25 that the graph goes just above equilibrium, almost a hint of what’s to come.
Then asr increases above1.25 we se this overshoot become more and more severe resulting in oscillations before
reaching equilibrium. Then atr = 2 the system begins to oscillate continuously never reaching equilibrium with
”‘two cycle behavior”’. Whenr = 2.5 the system has 4 cycle behavior and whenr = 2.75 the system is in a chaotic
state.
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(a) r = .5
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(b) r = 1.25
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(c) 1.25< r < 2.0
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(d) r = 2
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(e) r = 2.5

10 20 30 40

0.2

0.4

0.6

0.8

1

1.2

(f) r = 2.75

1.3.5 a)

∆N = rN(1−N)
N∗ = 0, 1 ⇒ ∆N = 0
∆N = 0 ⇒ Stability

1.3.6 a)

Pt+1 = 1.3Pt − .02P 2
t

∆P = Pt+1 − Pt

Pt+1 − Pt = 1.3Pt − .02P 2
t − Pt = .3Pt − .02P 2

t

= .02Pt(15− Pt)
∆P = 0 ⇒ P ∗ = 0, 15

c)

∆P = .2P (1− P/20)
∆P = 0 ⇒ P ∗ = 0, 20
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1.3.7 a) Before answering the question through linearization, if we think about it we are modeling life and the one
thing that living being want to do is grow and spread. So if their are enough beings to sustain reproduction than
the carrying capacity will be the sable point. In these models we could add a parameter that would alow us to
control the number needed to sustain reproduction but in this model their is no such term so any displacement
away from zero will increase the number to carrying capacity, making 0 population an unstable point.

First look at P∗ = 0, this makes our equation

Pt+1 = 1.3Pt − .02P 2
t

→ 0 + pt+1 = 1.3(0 + pt)− .02(0 + pt)2

pt+1 = 1.3pt − .02p2
t

Now we say that the perturbationpt is extremely small and the term.02p2
t ≈ 0 so thatpt+1 ≈ 1.3pt. This

means that with each time step the perturbation is increased by a factor of 1.3 which will drive the population
away from that point makingP ∗ = 0 unstable.

Now looking at P∗ = 15 so our equation is

Pt+1 = 1.3Pt − .02P 2
t

→ 15 + pt+1 = 1.3(15 + pt)− .02(15 + pt)2

= 19.5 + 1.3pt − .02((15 + pt)(15 + pt))
= 19.5 + 1.3pt − .02(225 + 30pt + p2

t

15 + pt+1 = 15 + .7pt + .02p2
t

pt+1 = .7pt + .02p2
t

We can use the same argument of a small perturbation as before and end up with the perturbation being
changed by a factor of .7 each time step which brings us back to that stability makingP ∗ = 15 stable.

1.3.8

Pt+1 = Pt + rPt(1− Pt)
∆P = rPt(1− Pt)
∆P = 0 ⇒ Pt = 0, 1

pt = pt + rpt(1− pt)
pt ≈ pt(1 + r)

|pt(1 + r)| > 1 if |r| > 0

pt + 1 = pt + 1 + r(pt + 1)(1− pt + 1)
= pt + 1 + r(−pt − p2

t )
= pt − rpt − rP 2

t + 1
pt+1 = pt(1− r)− rp2

t

pt+1 ≈ pt(1− r)
|pt(1− r)| < 1 if 0 < |r| < 1

1.3.11 a)The value for r should be0 < r < 1. The reason for this is that if for some reason you had no oxygen in
your blood than the(L−B) value would be justL and if r < 1 than you could have more oxygen getting to
your blood than your lungs could physically hold. Also ifr < 0 than your lungs would be taking oxygen out of
your blood even when there is no oxygen there to be taken out.
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b) For this question we just ave to solve the equation given to us forL and substitute it into the∆B equation.

L + B = K

L = K −B

∆B = r(L−B)
∆B = r(K − 2B)

c) When0 < r ≤ .5, r has the effect of increasing the rate of how fastB reaches equilibrium. When.5 < r < 1
we still reach equilibrium but the high growth factor causes us to over shoot the equilibrium and then drop back
down below equilibrium in an oscillation that eventually reaches and equilibrium. The closer you get to 1 the
longer it takes to reach equilibrium. If found that for every order of magnitude closer to 1 I brought r, I had to
add an order of magnitude more steps to se the graph reach equilibrium. Then when you get tor = 1 theB
oscillates forever never equalizing, and1 < r oscillates out of control and blows up.
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(g) r = .1
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(h) r = .3
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(i) r = .5
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(j) r = .6
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(k) r = .8
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(l) r = .9
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(m) r = 1.0
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(n) r = 1.1

d) Setting∆B = 0 and then solving forB gives usB∗ which isK/2. This agrees with what we saw in the
previous graphs which reached equilibrium atB = .5. Intuitively why does this make sense? If we look at the
way we arrived at K it does. K is a constant that says, in a single breath the sum of oxygen concentration in the
lungs and oxygen concentration in the blood is a constant concentration.

∆B = r(K − 2B)
0 = r(K − 2B)

r2B = rK

2B = k

B∗ =
K

2
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e)

B = B∗ + b

∆B = r(K − 2(B∗ + b))
= r(K −K − 2b)
= r(−2b)

f)

∆B = r(−2b)
= bt+1 − bt

bt+1 = bt + r(−2b)

∆B = Bt+1 −Bt

Bt+1 = Bt + r(K − 2Bt)

g) Let the volume of the lungs beVL and the volume of the blood stream beVB . Then the total volume of oxygen
would beK = LVL + BVB

1.4.1 a) For a particular value ofPt, if the relative growth rate is larger than 1, then the population willincrease
over the next time interval, whereas if it is smaller than 1, the population willdecrease.

b) Negative relative growth rates don’t make sense because if you had a relative growth rate that was negative your
population would be going either from negative to positive or vice versa, which makes no sense. You could
have a relative growth rate of zero though, it would just mean that your population was instantly decimated.

c) Geometric models have constant relative growth rates so

Pt+1

Pt
= λ

Logistic models have the general form of

Pt+1 = (1 + r)Pt − rP 2
t

k

which would give them an expression for the relative growth rate like

Pt+1

Pt
= (1 + r)− rPt

k

For the discrete logistic model we have
Pt+1 = Per(1−Pt/k)

which would give us an expression of the form

Pt+1

Pt
= er(1−Pt/k)

The last model is

Pt+1 =
λPt

(1 + aPt)β

which will look like
Pt+1

Pt
=

λ

(1 + aPt)β

.
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(r) last model in section 1.4.1

d)

1.4.2 This effect is directly correlated to theP term being multiplied by everything. It has the effect of causing an
unstable point atP = 0 which is important in a model because if there is no population to begin with that their will
never be a population. It also says in a way that the reproduction rate is directly related to the amount of population,
the lower the population the lower the chance of finding a mate.

1.4.3 a) The range0 < L < K is just any range of numbers grater than zero and less than K.∆P/P < 0 when
0 < P < L or P > K is saying that the Population must be grater than L in order to sustains reproduction but
if P is grater thanK than the population is over carrying capacity. SoL is the minimum population you must
have andK is your carrying capacity. A possible graph of∆P/P vsP would be
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(s) ∆P/P vsP , for K = 1.1 andL = .1

b) The reason that∆P/P = P (K − P )(P − L) has what we are looking for is because ifP > K or P < L then
the per capita growth rate is negative, and ifP = 0 than everything goes to zero. We have three stable points
here,P ∗ = K, L, 0. P = L is unstable, andP = K, 0 is stable. This is a better model than the logistic model
because their is a minimum population parameter which you would want to consider in a population model.

5



c) The graphs below definitely have the behavior we could expect, three equilibrium points atP ∗ = K, L, 0 with
P ∗ = K, 0 stable andP ∗ = L unstable. The green line represents the behavior if the initial population is
greater than the carrying capacity, the red line is if the initial population is below the minimum population, and
blue is if the initial population is between the carrying capacity and minimum population.
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(t) ∆P/P vsP , for K = 1.1 andL = .1
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(u) ∆P/P vsP , for K = 1.1 andL = .1
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(v) ∆P/P vsP , for K = 1.1 andL = .1

d) We need a model where per capita growth rate is always bigger than−1
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