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CHAPTER 2

Linear Models of Structured Populations

2.1. Linear Models and Matrix Algebra
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. The matrix on the left has 1 column, but the matrix on the right has 2 rows.

For multiplication to have been possible, these numbers would have had to have
been equal.
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. Rounding to 4 decimal digits, P?> = (

2.1. LINEAR MODELS AND MATRIX ALGEBRA 15

2 0 —2
e 4 2 0
-2 2 4

f. Both sides equal —9 —3 5 )

Alex) = (’”(i'-"?) * S(Cy}) (c(ra: + 3y))

t(cz) + uley) c(tz + uy)
9852 .0247) P3 = (.9779 .0368)
.0148 9733 )" T \.0221 .9632)’
P00 _ (.6250 6250
3750 .3750
succession model if the time steps were taken to be two years, three years, or
five hundred years respectively. Interestingly, the columns of P*® gare identical
and the column entries are in the same ratio as the equilibrium ratio of A trees
to B trees that we saw in the text.
All initial vectors with nonnegative entries will tend towards an equilibrium
state of (625, 375).

) . The matrices are the transition matrices for the forest

0 0 73
a. The transition matrixis P= .04 0 0 | with x; = (Ey, Ly, A,).
0 39 0
0 2847 0 1.1388 0 0
b. P2 = 0 0 292, PP = 0 1.1388 0 The ma-
0156 0 0 0 0 1.1388

trices represent the transition matrices describing what happens to the popu-
lation classes over two and three time steps.

c. All the diagonal entries of P3 are 1.1388. In the text, we argued that the
adult insect population would grow exponentially by a factor of 1.1388 every
three time steps. This diagonal matrix shows that all three classes of insect
grow at the same exponential rate over three time steps, and that over three
time steps there is no interaction among the three class sizes.

0 0 73
a. The transition matrixis P= | .04 0 0 | with x; = (B4, Ly, Ay).
0 .39 .65

b. P? = 0 0 2.92 0 1.1388 1.898 |. No-
0156 .2535 .4225 01014 .164775 1.413425

tice that in P3 there are now non-zero off-diagonal entries (signifying interaction
among the sizes of the classes) and that the (3,3) entry is larger than in the
last problem. These are the effects of 65% of the adults living on to the next
cycle and reproducing again.

c. All three populations appear to grow roughly exponentially. There is some
oscillation in the population values that is particularly noticeable for a small
number of iterations. Of course, if 65% of the adults live on into the next
time step to produce eggs, the populations should grow even faster than in the
previous problem.

0 2847 47.45 (1‘1388 18.5055 30.8425
P2
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2.2. Projection Matrices for Structured Models

The matrix for the first insect model is a Leslie matrix, and the matrix for the
more complicated insect model is an Usher matrix, where the addition of .65 in
the (3, 3) position is for the 65% of the adult population that live on into the
next reproductive cycle. See problems 2.1.8(a) and 2.1.9(a) for the matrices.
Ultimately, all ten classes settle into what appears to be exponential growth,
possibly after some initial oscillation. The class of individuals ages 04 is the
most populous, followed by the class of individuals ages 5-9, etc.

Letting A, B, and C be the matrices in the order given, det A = —1, A~! =

(—3 _?1)? detB=8, B™! = ( e ]/8); det C = 0, so C has no inverse.

2 ~1/4 1/4

Letting A, B, and C be the matrices in the order given, det A = —5, A~! =
2/5 1/5 —1/5 1/4 ~1/8 1/2
~4/5 3/5 2/5 |;detB=8B-1=1/4 3/8 —1/2); detC =0,
-3/5 1/5 -1/5 1/4 3/8 1/2

so C' has no inverse.

A: 3

b. 50%

c. 20% of the organisms in the immature class remain in the immature class
with each time step.
d. 30% of the organisms in the immature class progress into the adult class
with each time step.

-1 [—625 3.75
Ll ( 375 —.25
b. xg = (1000, 300), x2 = (1570, 555),
a. A% is the transition matrix for the model in which the time steps are
one hundred times as large as they were taken for A. For instance, if x, is
a population vector and X,4+; = AxX, is the new population after one year,
then xpi100 = A'%x,, is the population vector after one hundred years. If,
instead, x, is multiplied by {A“’”)_I, then the resulting vector is X,,_1go, the
population vector for a time one hundred years earlier.
b. (A1)'™ is the hundredth power of the transition matrix that take you
back one time step; thus, this matrix multiplies a population vector to create
a population vector for a time one hundred time steps earlier. In other words
(A71)1%%%,, = X _100.
c. Both matrices represent the transition matrix for calculating population
vectors one hundred time steps earlier. Since there is nothing special about 100,
more generally (A")~! = (A~!)" since both are used to project populations n
time steps into the past.
-11 represents the percentage of pups that remain pups after one year. (Pups
can not give birth.) One possible explanation for some pups living but not
progressing into the yearling stage after one year is that coyotes are born over
several months throughout the year. The .15 entries indicate that on average
each yearling and adult gives birth to .15 pups each year. The percentage of
pups that progress into the yearling stage is 30% each year, so 1—.11—.30 = 59%
of pups die. While 60% of the yearlings progress into the adult stage, the
remaining 40% die. Finally, each year 40% of the adult coyotes die, but 60%
live on into the next time step.
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a. Both Ax and Ay equal (17, 51), though x # y. Notice that A has no inverse.
b. If A~! exists, then Ax = Ay implies A~ 'Ax = A"'Ay orx=y.
a (AB)' = B4~ = (‘; _95), AT B = ('{f _34).
b. Answers may vary.
c. Answers may vary.
a. By associativity, (B"'A"')(AB) = B"'(A'A)B = B™'B = I. This
shows that (AB) has a left inverse, but if a left inverse exists for a square
matrix, then it also serves as a right inverse.
b. x1 = W™xy; xo = D~!x;. Thus, to find x, from x, it is necessary to
multiply first by W—!, and then by D~!: x9 = D"'W!x,. This shows that
the inverse of (WD) is the product D~'W ™! by indicating how to obtain x,
back from x; = WDx. Another way to explain this is that if you want to
undo the action of a dry year followed by a wet year, you first undo the action
of the recent wet year, then undo the action of the initial dry year.
a. Apy1 = 2/3A; +1/4B,, Byyy = 1/3A, + 3/AB,
ke (i{g ;ﬁ) with x; = (A;, By).
. p?— (19/36 17/48
' 17/36 31/48
.3542B,, By, = AT22A, + .6458B,.
api=(9 *3/5) s0 Ar_y = 1.84; — 6B,, By = —8A; + 1.6B
. —4/5 8/5 t—1 04 — DD, Dy O ReF=F8
e. The values of the populations are given in the table below. The populations
seem to be stabilizing with A; ~ 85.7 and B; =~ 114.3,
{ 0 1 2 3 4 5
A || 100.0000 | 91.6667 | 88.1944 | 86.7477 | 86.1449 | 85.8937
B, || 100.0000 | 108.3333 | 111.8056 | 113.2523 | 113.8551 | 114.1063
t 6 v 8 9 10
A; || 85.7890 | 85.7454 | 85.7273 | 85.7197 | 85.7165
B; || 114.2110 | 114.2546 | 114.2727 | 114.2803 | 114.2835
e. If the initial populations Ay and By are non-negative and sum to 200, then
they tend toward an equilibrium of around (85.7,114.3).

) so using decimal approximations A;,; = .52784; +

2.3. Eigenvectors and Eigenvalues

The model does behave as expected, showing slow exponential growth in both
classes, with decaying oscillations superposed.

MATLAB finds that the eigenvector corresponding to eigenvalue 1.0512 is
(—.8852, —.4653) and the eigenvector corresponding to eigenvalue —.9512 is
(—.9031,.4295). These are essentially the same eigenvectors that were given in
the text, since any scalar multiple of these are also eigenvectors. The text has
simply multiplied them by —1. Note that MATLAB calculates eigenvectors
(z,y) withz? + 3% =1

The eigenvalues of the plant model are approximately 1.1694, —.7463, —.0738,
and .1107. The dominant eigenvalue is larger than one and the figure shows
that the populations grow exponentially, as expected from an eigenvalue analy-
sis. Since two of the eigenvalues are negative but smaller than 1 in absolute



