CHAPTER 6

Genetics

6.1. Mendelian Genetics

6.1.1. F, will have 2™ copies of each gene.
6.1.2.

| | DwW dW Dw dw |
DW || DDWW  DdWW DDWw DdWw
dW || DAWW  ddWW  DdWw ddWw
Dw | DDWw DdWw DDww Ddww
dw DdWw  ddWw  Ddww  ddww
Genotype proportions are 1/16 for DDWW ., ddWW, DDww, and ddww; 1/8
for DAWW, Ddww, DDWw, and ddWw; 1/4 for DdWw. Phenotype Tpro-
portions are 1/16 for dwarf wrinkled-seed; 3/16 for dwarf round-seed; 3/16 for
tall wrinkled-seed; 9/16 for tall round-seed.
6.1.3. a. P(tall wrinkled-seced) = P(tall)P(wrinkled-seed). But

P(tall) = 1 — P(dwarf) = 1 — P(dd)
=1 — P(d from first parent)P(d from second parent)
=1-(1/2)1) =1/2,

P(wrinkled-seed) = P (ww)
= P(w from first parent)P(w from second parent)

= (1/2)(1/2) = 1/4.

Therefore P(tall wrinkled-seed) = (1/2)(1/4) =1/8.
b. Using the calculations in part (a),

P(tall round-seed) = P(tall)P(round-seed)
= P(tall)(1 — P(wrinkled-seed))
=(1/2)(1-1/4) = 3/8.

6.1.4. a. Since the probability of having the allele is 1/31 for the male and also 1/31 for
the female, assuming these are independent the probability is (1/31)? ~ .00104.
b. Since the child must inherit the recessive allele from each parent, the prob-
ability is (1/2)(1/2) = 1/4.
c. (1/31)2(1/4) ~ .0002601.

6.1.5. a. Four — ABC, aBC, AbC, and abC.
b. 9 genotypes are possible: AABBCC, AaBBCC, aaBBCC, AABbCC,
AaBbCC, aaBbCC, AALCC, AabbCC, aabbCC. 4 phenotypes are possible:
the offspring could have the dominant or recessive phenotype from either of the
first two genes, but must have the dominant phenotype from the third.
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a. 2"

b. 3" genotypes and 2™ phenotypes

c. There are 3#2!~% possible genotypes (3 possibilities for each of genes 1-k, 2
possibilities for each of genes (k+ 1)-I, and only 1 possibility for the remaining
genes). These give 2! different phenotypes, since genes 1-/ might give dominant
or recessive traits while the remaining ones must be recessive. (Note we are
using that at genes (k 4+ 1)—{ the first individual is homozygous recessive.)

a. AA x aa dominant:recessive=1:0; Aa x aa dominant:recessive=1:1; aa X aa
dominant:recessive=0:1.

b. DdwwYY

c. Crossing with a homozygous recessive allows all parental alleles to manifest
themselves in phenotypes of the progeny, whereas crossing with a homozygous
dominant would result only in progeny of the dominant phenotypes. Quantita-
tively, the ratios in part (a) are all different, so the parental phenotype can be
distinguished, while for a cross with a homozygous dominant, all ratios would
be dominant:recessive=1:0. The parental phenotype has no effect.

a. From BBRR x bbrr, all offspring have genotype BbRr, with black and
normal length fur.

b. In F5, 1/2 of the rabbits will be homozygous for the color gene (BB or bb)
and 1/4 will be homozygous for both genes. Of the black rabbits, 1/6 will be
homozygous for both genes. (For all the rabbits, BB:Bb:bb=1:2:1, but only
BB and Bb are black, so 1/(1+2) = 1/3 of the black rabbits are BB. Of these
1/2 are homozygous at the second gene with rr or RR.)

c¢. Black rabbits with normal length fur have genotypes BBRR, BbRR, BBRr,
or BbRr. In the entire Fy population these occur in proportions 1/16, 2/16,
2/16, and 4/16, for a total of 9/16. Thus the genotype ratios for black rabbits
with normal length fur homozygous for both genes is 1:2:2:4 giving proportions
1/9,2/9,2/9,4/9.

a. Genotype WwGyg, with round yellow seed phenotype.

b. If the genes assort independently, F5 should be: 1/16 with wrinkled green
seeds, 3/16 with wrinkled yellow seeds, 3/16 with round green seeds, and 9/16
with round yellow seeds.

c. If Mendel’s data did not exactly match these proportions, he should not
necessarily doubt the independent assortment hypothesis. After all, these pro-
portions are really probabilities, so only for very large amounts of data should
the fit be very close. The more data he collected, the closer he should expect his
data to match these proportions if the hypothesis is valid. Deciding how close
is close enough for a match, taking into account the amount of data collected,
will be discussed in the next section.

The cross is Yy x Y'y. Embryo genotype ratios will be Y'Y :Yly:yy=1:2:1,
but only the last two genotypes will be born. Thus the viable progeny will
have genotypes Y'y or yy, with respective phenotypes yellow and agouti, in
proportions 2/3 and 1/3.

a. Since one child is homozygous recessive, and neither parent is, both parents
must be heterozygous.

b. From a cross of two heterozygotes, the probability that a child is not ho-
mozygous recessive is 3/4.

c. Since the sons do not have sickle-cell anemia, the possible genotypes are
homozygous dominant or heterozygous. Since all offspring have probabilities
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1/4 and 1/2 of these genotypes, for a disease-free son the probabilities are
(1/4)/(1/44+1/2) =1/3 and (1/2)/(1/4+1/2) =2/3.

a. The trait is dominant. If it were recessive, all children of the parents
would exhibit brachydactyly. The parents must each be heterozygotes, since
one child has normal length fingers. The child with normal length fingers is
a homozygous recessive. The child with short fingers is either homozygous
dominant or heterozygous.

b. The probability that one child has normal fingers is 1/4, and since the two
children’s phenotypes are independent, the probability that both have normal
length fingers is (1/4)% = 1/16.

a. (1/4)3 =1/64 = 015625

b. (1/2)3 =1/8 =.125

c. The proportion homozygous only for the first gene is (1/2)(1/2)(1/2)=1/8.
Similarly, 1/8 is homozygous only for the second, and 1/8 is homozygous only
for the third. Thus 1/8+1/8+1/8=3/8 is homozygous for exactly one of the
genes.

d. The proportion homozygous for at least one gene is

1 — (proportion heterozygous for all three) = 1 — (1/2)* = 7/8 = .875.

Fy has genotype Ww only, with pink flower phenotype. F; has genotypes
WW, Ww, and ww in proportions 1/4, 1/2, and 1/4, with red flower, pink
flower, and white flower phenotypes, respectively.

aiaz X agaz produces genotypes aias, ajas, asaz, and agas in frequencies
1/4, 1/4, 1/4, and 1/4. This gives phenotypes associated to aj, ag, and ag in
frequencies 1/2, 1/4, and 1/4.

a. Type A: IATA, T1419; Type B: IBIB, IBIC: Type AB: I*I5; Type O:
I°71°

b. IAT4 x IBI© produces offspring with genotypes I4I? and I41° with equal
probability. Thus type AB and type A blood occur with relative frequencies
1/2 and 1/2.

c. From I4T9 x IBI® we expect 1/4 of the progeny to have type O blood
(genotype I°T°). So out of four children, we would expect one to have type
O blood. However, any number might have this blood type. The probability
of any one child having it is 1/4, and it is really only in a very large number of
trials (much greater than 4) that we can be reasonably confident that close to
1/4 of the trials will produce this outcome. For instance, there is a probability
of (1/4)* = 1/256 that all four children will have type O blood, and of (3/4)* =
81/256 that none of them will. (See the next section for a more careful definition
of the word ‘expect’.)

a. RRpp x rrpp produces only Rrpp, for a rose comb phenotype. rrPP X rrpp
produces only rrPp, for a pea comb phenotype.

b. RRpp x rr PP produces an Fi of RrPp which have walnut comb phenotype.
Interbreeding to produce F; gives 3/16 rose comb (1/16 RRpp and 2/16 Rrpp),
3/16 pea comb (1/16 rrPP and 2/16 rrPp), 1/16 single comb (1/16 rrpp), and
9/16 walnut comb (1/16 RRPP, 2/16 RrPP, 2/16 RRPp, and 4/16 RrPp).

6.2. Probability Distributions in Genetics

HHHTT, HHTHT, HTHHT, THHHT, HHTTH, HTHTH, THHTH,

HTTHH, THTHH, TTHHH; (}) = 2321 = 31 =10,
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P(exactly 0 tails in 3 flips) = (3)(1/2)°(1/2)® = 1/8,

P (exactly 2 tails in 3 flips) = (5)(1/2)%(1/2)! = 3/8,

P (exactly 3 tails in 3 flips) = (5)(1/2)3(1/2)° = 1/8;

The sum of the four probabilities is 1, since the outcomes are mutually exclusive
and exhaust all possibilities.

Use P(i) = (3) (3/4)(1/4)* .

The values of () for k= 1,2,...10 are 1, 10, 45, 120, 210, 252, 210, 120, 45,
10, 1.

a. The value is smallest when & = 0 or 10. If we choose no objects, or all 10
objects, there is only one way to do so. If we choose any number from 1 to 9,
there is more than one way to do so.

b. The value is largest for k = 5. It does seem intuitively reasonable that there
are more ways to choose exactly half of the objects than there are to choose
fewer, or more. With fewer or more, there is less freedom in varying what is
chosen.

c. (}) increases with k until k is half of n and then decreases, () = ("),
() = n: these patterns hold for all n.

a. In choosing only one object, the various ways are: choose the first, choose
the second, ..., choose the nth. Thus () = n. Choosing n — 1 objects is
equivalent to picking the one object not chosen, so (,",) = (]) = n.

b. There is only one way to choose no objects, so () = 1. To choose n objects
from n, we must choose them all, so (7) = 1.

a. (D3 =154 = £ ~ 2344

b. P(exactly i boys in 6 children) = (?)(%)6, so for 4 = 0,1,2,...6, the values
are: .0156, .0938, .2344, .3125, .2344, .0938, .0156.

P(exactly ¢ girls in 6 children) has exactly the same values.

c. The expected number of boys is Z?:o 1P (exactly ¢ boys in 6 children)
0(.0156) + 1(.0938) + 2(.2344) + 3(.3125) + 4(.2344) + 5(.0938) + 6(.0156) =
Alternately, for a binomial distribution, the expected valueisn-p==6- % =
d. P(4 or more girls of 6 children) = P(4 girls) + P(5 girls) + P(6 girls)
.2344 4 .0938 + .0156 = .3438.

a. P(exactly 30 agouti in 40 offspring) = (30)(3)%°(1)10 ~ .1444;

P (exactly 300 agouti in 400 offspring) = (500) (3)%°°(1)'%° ~ .0460

b. Even though these results indicate the probability of having exactly 3/4
of the offspring with agouti fur decreases as the number of offspring increases,
these results are consistent with expecting 3/4 of a large number of offspring
to have agouti fur. We don’t expect ezactly 3/4 to have agouti fur, but rather
that for a very large number of offspring, the proportion with agouti fur is likely
to be close to 3/4, and is on average 3/4.

1422 +3-24+4-1+5-246-1=35

a. The outcomes k = 2,3,...7 can each occur in k—1 ways, namely 1+ (k—1),
24+ (k—2),... (k—1)+1. The outcomes k = 7,8,...,12 can cach occur in

[l

13 — k ways, namely 6 + (k —6), 5+ (k—5), ..., (k—6) + 6. Each of the
individual outcomes listed occurs with probability (1/6)? = 1/36. Therefore
the probabilities of the sum being 2, 3, ..., 12 are: 1/36, 2/36, 3/36, 4/36,

5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36. The expected value of the sum is
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2(1/36)+3(2/36)+4(3/36)+5(4/36)+6(5/36) +7(6/36)+8(5/36) +9(4/36) +
10(3/36) + 11(2/36) +12(1/36) = 7.

b. By problem 6.2.8, the expected value for one die toss is 3.5. Letting X,
and X5 denote the random variables for the two dice, E(X;) = E(X3) = 3.5
SO E(Xl + Xz) = E(Xl) + E(.XQ) =T.

a.p=1/6,¢=>5/6,k=3n=10; (V)(1)32) ~.1550

b. p=5/6,¢=1/6.k=7,n=10; (*)(2)7(})® =~ .1550

a. Choosing k objects out of n is exactly equivalent to designating the n — k
objects that are not chosen. Since ‘choose’ and ‘designate’ mean essentially the

same thing here, this means (}) = (,",)-
n

b. (nik) - (n—(n—l?)!)!(n—k)! - k!(r?ik)! - (n—nk!)lkl - (k)
a. 1/2

b. (1/2)(1/2) =1/4

c. (D1/2)(1/2) =1/2

d. (3)(1/2)(1/2) + (3)(1/2)%(1/2)° = 3/4, or, computing the probability that
it is not the case that no children are albinos, 1 — (3)(1/2)°(1/2)? = 3/4.

e. Using the formula for the expected value of a binomial random variable,
2(1/2) = 1, or, using the definition of expected value, 0- (2)(1/2)°(1/2)2 + 1
(D@/2)'Q/2)" +2- (5)(1/2)°(1/2)* = 1.

a. The probability of any particular offspring being fat with agouti fur is
(3/4)(1/4) = 3/16, assuming these genes assort independently. The number of
progeny in 25 with this phenotype is a binomial random variable. Thus the
expected value of it is (25)(3/16) = 75/16 = 4.6875

b. (%)(3/16)*(13/16)2! ~ .1997

c. i (*)(3/16)1(13/16)25 % ~ 4837

d. 1-0 0 (%)(3/16)7(13/16)>~ ~ 7160

a. P(age at death = 0) = 1/2;

P(age at death = 1) = (1/2)(3/4) = 3/8;

P(age at death = 2) = (1/2)(1/4)(3/4) = 3/32;

P(age at death = 3) = (1/2)(1/4)(1/4)(1) = 1/32.

These probabilities add to 1 since the events are disjoint and exhaust all pos-
sibilities.

b. 0(1/2) + 1(3/8) + 2(3/32) + 3(1/32) = .65625

a. Recall from problem 6.1.10, that the probability an offspring is yellow is 2/3.
Then the probability 5 of 12 have normal coloring is ('7)(1/3)%(2/3)7 & .1908.

b. Y2120 (13)(2/3)1(1/3)12 ~ 1811
e Y0 o (M2)(2/3)i(1/3)127F &~ .0039

a. Since the probability that any given child in the family will develop Hunting-
ton disease is 1/2, the probability that none of 4 do is (3)(1/2)°(1/2)* = 1/16.
b. The probability that at least one of the 4 develops the disease is 1 —
P(none of 4) =1—1/16 = 15/16.

c. The probability that 3 or more develop the disease is (3)(1/2)3(1/2)! +
(1)(1/2)%(1/2)° = 5/16.

For each trait, the probability an individual exhibits the dominant phenotype
is 3/4, so the probability of an individual exhibiting the dominant phenotype for
all three traits is (3/4)® = 27/64. The probability that 20 of 30 progeny will
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exhibit all three dominant phenotypes is therefore (30)(27/64)20(37/64)10 ~
.0040.

The probability an individual exhibits the dominant phenotype for at least one
trait is 1 — P(recessive phenotype for all 3 traits) = 1 — (1/4)3 = 63/64. The
probability that at least 2 of 30 progeny exhibit the dominant phenotype for at
lle(?:sglc;ni tlrait is 1— (%) (63/64)°(1/64)%° — (*") (63/64)' (1/64)%° ~ 1—(1.2339x
a. There are n choices for the first ball. The remaining n — 1 balls give n — 1
choices for the second ball. Then there are n — 2 choices for the third ball, etc.,
so there are m — [ + 1 choices for the [th ball.

b. To see how many ways k balls could be chosen (in order), we simply multiply
the number of possible choices at each successive picking of a ball. This gives
nn—1)n—-2)---(n—k+1).

c. Picking k of k balls (in order), by the reasoning in (a) and (b), can be done
in k(k—1)(k—2)---(2)1 = k! ways.

d. If the various choices of ordered balls counted in (b) are grouped according
to the unordered set of balls chosen, then each group will have in it the count
in (¢). Thus the number of unordered sets of balls that could be chosen is

nn—1)(n—-2)---(n—k+1)/(k!).
e n(n—=1)(n=2)---(n—k+1) _ n(n—1)(n—2)---(n—k+1)(n—k)(n—k—1)---(2)1 n!
: k! -

B (n—F)(n—k—1)-(2)1 B ICEDE

a. (v+y) =27 + 20y +4° = ()a* + (Day + ()
(x+y)? =2 +322y + 322 +9° = ()2® + )2y + B)ay? + () y®
((16)4—41/)4 = ot + 428y +62%y? +dzyd +yt = ()t + (Daly+ (5) 2y + (5)xy® +

)
b4. (z+y)" =(z+y)(x+y) - (z+y). To multiply this out, we must multiply
each term in the individual factors by the terms in other factors in all possible
ways. Since there are n factors, a term ¥y~ * will be produced for every way
we can choose k of the n factors to contribute an x, with the remaining n — k
factors contributing a y. But (}) by definition gives the number of ways these
choices can be made, so the product will contain exactly (}) copies of z¥Fym~*.
Collecting these produces the given formula.
c. Yoo (7) =27 for all m, since 31" (7) = >0, (1)1 = (141)" =2"
a. E=Y1" ii.,(n”—ii)!p’q""
b. Use straightforward algebra.
c. Note the ¢ = 0 term in F is 0, so

E— S i n! piqn—i:pnzn: (n—1)! pi—lq(n—l)—(i—l)
P (n— )l — (n—4)!(s—1)!
n—1
n—1)! Sy e
=pn, > (n(— T ;)'jlgﬂq(" D=7 (replacing i with j +1)
iz 5
n—1
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a.

E(X1+X3) =Y kP(X1+ Xy = k)

k
=3 > (i+)P(Xy =i)P(Xy =)

k i,j with i+j=k

- Z(z +)P(Xy =9)P(Xz = )

Note the last step simply reorders the sum.
b

ZZ(Z +J)P(X1 = i)P(X2 = j)
= DD Py = iP(Xz = )+ 30 3 GP(X) = )P(Xa = )
=D PG =) D P(Xa = )+ D GP(Xs = ) ) P(Xy =)

c. The two summations mentioned each give 1, so the result in part (b) is
E(X1) + E(Xs).
a. Progeny of the specified cross should display the dominant phenotype with
probability 3/4. The number of progeny in 1000 that display the dominant
phenotype is a random variable with binomial distribution, so its expected
value is (1000)(3/4)=750. We thus expect 750 dominant and 250 recessive
phenotypes.
If 700 dominant and 300 recessive phenotypes are observed, then

5 (700 —750)% (300 — 250)2

=m0 T 20

With @ = .05 and 1 degree of freedom, the critical value is x?2,;, = 3.841. Since
this is less than our computed value, we find the data is not in accord with the
Mendelian model at the .05 significance level.
b. If instead 725 dominant phenotypes are observed in 1000 progeny. x> =
3.333. This is less than the critical value in part (a), so the data is in accord
with the Mendelian model at the .05 significance level.
c. If N dominant phenotypes are observed in 1000 progeny, then

5 (N —1750)2 N (1000 — N —250)2  4(N — 750)2
a 750 250 B 750 '

Thus the data is in accord with the Mendelian model at the .05 significance
level when

= 13.333.

4(N — 750)?
750
(N —750)% < 720.1875

|N — 750 < 26.8363
723.1637 < N < 776.8363

< 3.841

Since N must be an integer, this means 724 < N < 776.
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In the table, moving across a row means « decreases (with the degrees of
freedom not changing). Since a smaller a means a x? value computed from
data is less likely to exceed the critical value, the critical value must get larger.
Moving down a column means the degrees of freedom increases (with « held
fixed). Since a larger degrees of freedom means more terms are added to com-
pute x?, we expect x? values to typically be larger. Thus for a fixed significance
level, the critical value must be larger in order that computed x? values exceed
it the same percentage of times.

With 556 individuals included in the table, and independent assortment of
the genes implying expected proportions of 9/16, 3/16, 3/16, and 1/16 of the
phenotypes in the order listed, the expected frequencies are 312.75, 104.25,
104.25, and 34.75. This gives y? = .47. This is well below the critical value if
« is taken to be .01, .05, or even .10. Thus the data is judged to be in accord
with independent assortment at any of these significance levels.

a. For a significance level of .01, the critical value would appear further to the
right than the value shown in Figure 6.2. It should be located so that the area
under the curve to the right of it is one fifth of the shaded area.

b. The shape of the curve shows that typically the values of y? from data
described by a model will be small, but not too small. Most values will lie in
the region on the horizontal axis that is below the ‘hump’. Very large values of
x? are rare when the model describes the production of the data well, and the
use of a cut-off critical value in the goodness-of-fit test simply formalizes how
rare. Note also that extremely small values of x? are also rare.

6.3. Linkage

a. Since Albert was not a hemophiliac, he must have had genotype X TY. Since
so many of Victoria’s children carried the hemophilia allele, it is unlikely they
all were the result of new mutations, so Victoria had genotype X+ X".

b. 1/2;0;1/2

c. (3)(1/2)%(1/2)° ~ .1641

F; is composed of XtTX%* and X1Y genotypes, so the probability of ecach of
the genotypes X "X XY, X X% and X*Y for an individual in F, is 1/4.
Thus we expect the phenotypes listed in the order in Table 6.9 to occur in
proportions 1/2, 0, 1/4, and 1/4. With 4252 progeny, we’'d expect 2126, 0,
1063, and 1063 of the phenotypes. While the model is in rough agreement
with the data, it’s not that close. Perhaps the white-eyed males have reduced
viability, lowering the count for that group below the theoretical prediction.
On the other hand, even if the model is correct, this experiment’s results may
simply be due to random fluctuations.

a. X¥X% and XY

b. F} is composed of X T X", which are red-cyed females, and X*Y, which are
white-cyed males, in proportions 1/2 and 1/2.

c. Fy is composed of X X" (red-eyed females), X X" (white-eyed females)
XTY (red-eyed males) and XY (white-eyed males) in equal proportions.
The expected proportion of each of the four phenotypes is 1/4, so with 435
progeny, we'd expect 108.75 of each. Thus x? = 17.4598. With o = .05, and
three degrees of freedom, X200 = 7-81473. Thus we do not find the data in
accord with the model at the .05 significance level.
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Notice, however, that this discrepancy could be explained if the white-eyed
allele also results in reduced viability, since the white-eyed progeny of both
sexes appeared in smaller numbers than expected. It is important to look
deeper than the bald result of the x? test in order to form new hypotheses.

a. Since the parents are X X% and XY, the probability a son has the disease
is 1/2.

b. The probability a daughter is heterozygous is 1/2.

c. Note that daughters can not be homozygous for the disease-causing allele,
so the probability two daughters are carriers is (1/2)% = 1/4.

a. The first cross is X "X T x X¢Y. A daughter of this cross must be X+X¢.
Her offspring are from XTX¢x XTY, and so her sons are XY and XY with
equal probability. Thus the probability that a son is color blind is 1/2.

b. Her daughters are X * X+ and X ™ X¢ with equal probability, and so (assum-
ing the color-blindness allele is recessive) the probability of a daughter being
color blind is 0.

c. (3)(1/2)%(1/2)r = 3/8.

a. For expression in all male offspring, the mother must be X*X*. For expres-
sion in no female offspring, the father must be XY and the a allele must be
recessive.

b. For expression in 50% of male offspring, the mother must be X+ X?. For
expression in 50% of female offspring, the father must be XY if the a allele is
recessive, or XY if it is dominant.

c. For expression in no male offspring, the mother must be XX+, For ex-
pression in all female offspring, the father must be X*Y and the a allele must
be dominant.

d. For expression in 50% of male offspring, the mother must be X+ X?. For
expression in no female offspring, the father must be XY and the a allele
must be recessive.

e. Expression in 25% of the progeny can only occur through i) expression in no
males and 50% of females, ii) expression in 25% of males and 25%of females,
or iii) expression in 50% of males and no females. Case (i) cannot occur, since
expression in no males requires the mother is XX T, and then expression in a
single female requires the father be X*Y and the allele dominant, which would
then result in expression in all females. Case (ii) cannot occur either, since the
model can only produce expression in all, half, or none of a sex. Case (iii),
which is analyzed in part (d) must occur.

The standard model of one sex-linked gene cannot explain such data. One pos-
sibility is a cross XTX® x XY with the mutant phenotype displayed only by
those individuals with 2 mutant alleles, so X¢Y, XY and XX all display
wildtype phenotype while XX ® displays mutant phenotype. Other possibili-
ties include not having a single type of cross due to a parental population of
several genotypes, or involvement of multiple genes. Other valid answers no
doubt exist.

a. Letting b denote the gene for black body color, and X" that for vermillion
eye color, the cross is BbX T XY x bbX"Y. Analyzing the genes separately,
1/2 the progeny will have black bodies and 1/2 gray bodies, while both males
and females will be 1/2 vermillion-eyed and 1/2 red-eyed. Thus each of the 8
phenotypes will occur in proportion 1/8.
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b. From BbX?X"V x BBXT1Y, all progeny will have gray bodies, 1/2 will be
red-eyed females and 1/2 vermillion-eyed males.

The expected number of each phenotype is 312.25, so x2 = 425.3603, which
is considerably larger than the critical value. Thus the data is not consistent,
at the .05 significance level, with the assumption of independent assortment of
genes.

a. The probability is 6/7, since regardless of what chromosome the first gene
lies on, the probability the second is not on that chromosome is 6/7.

b. The probability that two genes chosen at random assort independently
would be greater than 6/7, since all genes on different chromosomes assort
independently, and those far apart on the same chromosome do as well.

a.
| Phenotype | Number |

tall, normal sheaf 303

tall, white sheaf 163

dwarf, normal sheaf 169

dwarf, white sheaf 290

Total 925

b. (163 4 169)/925 = .3589, so the genetic distance is estimated as 35.89 ¢M.
c¢. This does not agree with the genetic distance of 37 ¢M in the text, since by
collapsing the table, we lost information on the double crossovers. As a result,
we undercounted recombinants, and got a distance that is smaller than the true
one.

Assuming independent assortment, this cross would produce the 4 phenotypes
in roughly equal proportions. Since the observed proportions are far from equal,
there is evidence for linkage. The recombination frequency is (39 + 35)/(198 +
228 + 39 + 35) = 74/500 = .1480.

a. sntm™ and snm cach in proportion .425, snTm and snm™ cach in pro-
portion .075.

b. Wildtype bristles and wings in proportion

3(.425%) + 4(.425)(.075) + 2(.075%) = .680625;
Wildtype bristles and miniature wings in proportion
2(.425)(.075) + .075% = .069375;
Singed bristles and wildtype wings in proportion
2(.425)(.075) + .075% = .069375;

Singed bristles and miniature wings in proportion .425? = .180625

The genes on different autosomes assort independently, and thus can be ana-
lyzed separately. An atb™/ab produces gametes a™bt, a™b, abt, and ab in
proportions .45, .05, .05, and .45. Crossing with a homozygous recessive thus
yields the 4 phenotypes associated to these alleles in the same proportions. Sim-
ilarly, the cross will yield phenotypes associated to ¢*d™, c¢Td, cd™, and cd in
proportions .43, .07, .43, and .07. Thus the 16 phenotypes and their proportions
will be: atbtetdt, (.45)(.43)=.1935; atbtctd, (.45)(.07)=.0315; atbted",
.0315; a™bTed, .1935; atbeTd™, (.05)(.43)=.0215; atbctd, (.05)(.07)=.0035;
atbedT, .0035; aTbed, .0215; abTctdT, .0215; abTcTd, .0035; abtcdt, .0035;
abted, .0215; abetd™, .1935; abctd, .0315; abed™, .0315; abed, .1935.
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A trans configuration can be used in genetic mapping, though then the recom-
binant phenotypes are those that are wildtype for both traits or mutant for
both traits. Even if it was not known that the heterozygous parent had a cis or
trans configuration, the sizes of the phenotypic classes resulting from the cross
with a homozygous recessive would indicate which one.

The physical distance separating genes a and b is likely to be larger than that
separating ¢ and d, since for the probability of a crossover occuring between
them to be the same, near the centromere the physical distance would usually
need to be larger.

With a tetrad drawn as in Figure 6.3 of the text, label the strands 1,2,3, and 4
from top to bottom. Then have strands 1 and 3 crossover between the 2 genes,
and strands 2 and 4 crossover as well.

No two-gene configuration can produce 3 recombinant and one parental type
since two strands must crossover to produce two of the recombinants, and a
third strand must crossover with another strand to produce the third. This
last strand cannot be one of the first two (why not?) so it must be the fourth.
However, this would produce 4 recombinants.

Note that there are three-gene configurations producing three recombinants
and one parental type.

The rare phenotypes are those associated to (atdct) and (abc) so these
must come from double crossovers. Since the parental types were (a™b%c) and
(abc™), we deduce the gene order acb.

a. Any of clTdpTrd®/cldprd, cltdptrd/cldprd™, cltdprd® /cldptrd, or
cltdprd /cldptrdt could be crossed with a homozygous recessive.

b. Since clTdprd is the result of a double crossover, the gene order must be
dpclrd.

The phenotypes normal-eyes, hairy-legs, prickly-antennae and enlarged-eyes,
hairless-legs, smooth-antennae both occur with frequency (1/2)(.88)(.85)=.374;
the phenotypes enlarged-eyes, hairy-legs, prickly-antennae and normal-eyes,
hairless-legs, smooth-antennae both occur with frequency (1/2)(.12)(.85)=.051;
the phenotypes normal-eyes, hairy-legs, smooth-antennae and enlarged-eyes,
hairless-legs, prickly-antennae both occur with frequency (1/2)(.88)(.15)=.066;
the phenotypes normal-eyes, hairless-legs, prickly-antennae and enlarged-eyes,
hairy-legs, smooth-antennae both occur with frequency (1/2)(.12)(.15)=.009.
a. Since the male parent in this cross is recessive for all genes, the offspring,
whether male or female, will display phenotypes associated with the maternal
gamete. Thus the proportion of each phenotype should be the same in the male
and female offspring.

b. The data does give evidence of linkage since the sizes of the phenotype
classes are far from equal.

c. The rare phenotypes arise from maternal gametes cttstv and ctsv™, so
these result from double crossovers. Given the genotype of the mother, the
gene order must be ctv s.

The genetic distance from ct to v is estimated as (8 4+ 125 + 105 + 5)/1919 =
243/1919 ~ .1266 = 12.66¢M. The genetic distance between v and s is esti-
mated as (8 + 71 + 106 4+ 5)/1919 = 190/1919 ~ .0990 = 9.9cM

a. (.082)(.125)(2000) = 20.5

b. ¢ =3/20.5 = .1463
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c¢. No interference would mean ¢ = 1, so I = 0. At the other extreme, if
interference is so great that no double crossovers occur, then ¢ =0 so I = 1.
In general I increases if interference produces fewer crossovers.

c. I =.8537

6.4. Gene Frequency in Populations

a. Let p be the frequency of ct in the population. Then p* = 9/450, so
pr~.1414.

b. The percentage of the population heterozygous for the gene is 2p(1 — p) =~
.2428.

a. The color-blindness allele occurs with frequency p = .08, so ¢ = .92.

b. About .082 = .0064 of the female population is color blind, while about
2(.08)(.92) = .1472 of the females have normal vision but carry the color-
blindness allele.

a. 2p(1—p) = 4 impliecs p> —p+.2=0,80 p = (1£/1T - 8)/2 = (1+£V.2)/2 ~
2764 or .7236, with ¢ being the other value.

For 2p(1 — p) = H, the values of p and ¢ are (1 £+/1—2H)/2.

b. H = 2p(1 —p) is maximized when p = 1/2, ¢ = 1/2. This can be seen either
by graphing the parabola, or by using calculus.

a. (p+q)? = p? +2pq + ¢*. Assuming p is the frequency of alleles a and ¢ the
frequency of allele A, the terms in this expansion give the frequencies of aa,
Aa, and AA genotypes produced in a population with random mating.

b. (p+q+7)% = p*+¢> +712+2pg+2pr+2qr. Assuming p, ¢, are frequencies
of the alleles a1, as, as of a triallelic gene in a randomly mating population,
these terms are the frequencies of the genotypes of the next generation ajaq,
ao0s, G343, A102, a1az and asas.

c. Yes, the Hardy-Weinberg equilibrium concept still makes sense. For instance,
in the next generation of gametes, the frequency of allele a; is p* + (1/2)2pq +
(1/2)2pr = p(p+q+ 1) =p-1 = p. The frequencies of the other alleles are
similarly shown to be constant.

a. Let p, ¢, and r denote the frequencies of the alleles 14, I”, and T©. Assuming
random mating in the population,

p? +2pr = .32, ¢* +2qr = .15, 2pq = .04, r? = 49.

Solving these gives r = .7, p = .2, and ¢ = .1. Note that even though there are
4 equations in only 3 unknowns here, these values makes all equations hold.
b. The equations to be solved are

p% 4 2pr = 40, ¢ +2qr = .11, 2pq = .05, r? = 44.

From the last we find » = .6633. Then the first gives p = .2532, and the second
gives ¢ = .0783. With these values 2pq = .0396, so the third equation is not
satisfied. (Also, p+ ¢+ 7 # 1.) Thus the system has no exact solution.

It could be that the population is not in a Hardy-Weinberg equilibrium, or
that the data is flawed. Given the relative ease of collecting bloodtype data,
and the doubtfulness of the random mating assumption applying to the U.S.
population, the first is more likely.

Assume allele a; is dominant over as and az. and as dominant over az. Let
p1, p2, and p3 denote their frequencies in the population. Then knowing the
frequency of the phenotype associated to as would let us solve for ps. Knowing



6.4.7.

6.4.8.

6.4.9.

6.4.10.

6.4.11.

6.4. GENE FREQUENCY IN POPULATIONS 67

the frequency of the phenotype associated to as along with ps would let us solve
for po. Since p; + p2 + p3s = 1, we could then determine p;. Thus knowing two
phenotype frequencies is sufficient. Since there are two independent variables
(p2 and ps, say), knowing a single phenotype frequency is not enough.

In general, for a gene with n alleles, at least n — 1 phenotype frequencies must
be known.

a. p=(2Np1 +2Np2)/(4N) = (p1 + p2)/2

b.After the flood, a*a’ has frequency (p? + p3)/2, a*a has frequency p;(1 —
p1) + p2(1 — p2), and aa has frequency ((1 —p1)® + (1 - p2)?)/2.

A Hardy-Weinberg equilibrium would predict the three frequencies were (py +
p2)*/4, (p1 +p2)(2 = p1 — p2)/2, and (2 — p1 — p2)? /4.

These disagree (for most values of p;, ps) since the population has not yet
undergone random mating. There is no reason to expect a Hardy-Weinberg
equilibrium.

The model becomes

i+ (et @)
p;+2pa +q; (oot @)?
This means the frequencies are unchanging, and in Hardy-Weinberg equilib-
rium. Note that here there is no selection operating, but mating is still random.
a. The model shows a gradual increase in frequency of A, toward fixation at
p = 1. Thus a is eliminated ultimately. It appears that p = 1 is a stable
equilibrium, and p = 0 an unstable one.
b. The model shows a gradual decrease in frequency of A, toward elimination
at p = 0. Thus A is eliminated ultimately. It appears that p = 0 is a stable
equilibrium, and p = 1 an unstable one.
c. If po > .5, the frequency of A increases, toward p = 1; if pg < .5, the fre-
quency of A decreases, toward p = 0. Thus the model shows a gradual increase
in the frequency of whichever allele is initially more common. Eventually that
allele is fixed in the population, while the other dies out. There are stable
equilibria at p = 0 and 1, and an unstable one at p = .5.
d. If po > .5, the frequency of A decreases, toward p = .5; if py < .5, the
frequency of A increases, toward p = .5. Thus the model shows movement
toward an equal proportion of both alleles. While p = .5 is a stable equilibria,
there are unstable ones at p = 0 and 1.
With wasq = 0, wa, = wee = 1, simulations show that the frequency of
the allele declines to 0, and that eventually the allele is eliminated from the
population. (See problem 6.4.11.)
a. The parameters indicate homozygous dominants do not reproduce, while
heterozygotes have no selective disadvantage relative the homozygous reces-
sives. (See problem 6.4.10.)

Pt+1 = = Dt.

Ptqi Pt Dt .
b. priq = = = Lif g #0 (or py #1).
Pt+1 Wpiar +th 2 +pqt 1 ¢ #0 (or p; #1)
0
Do pot1 Do Do .
c. = , SO P2 = = = . In general, if
Py P 2+l pot+(po+1)  2po+1 &
Ppo
D Po then pi1 = ;§o+1 - Po _ Po

Ctpo+ 17 mar+1 pot+(tpo+1)  (t+1)po+17
Note that this shows that as t — 0o, p; — 0 so such an allele will die out under
random mating.
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a. The homozygous recessives have no progeny, while heterozygotes are at no
relative advantage to homozygous dominants.

b. prp1=1/(2—p)

c.pr=(t—(t—1)po)/((t+1)—tpo), thus as t — oo, p — 1 and the dominant
allele becomes fixed.

a. If p is an equilibrium, then

p = ((waap® + waap(l — p))/(wanp?® + 2waap(l — p) + waa(l — p)?),
SO
wWAAP® +2wAaap? (1 — P) + Waap(1 — p)? — waaP® — waap(1l — p) = 0.

b. p =0 and 1 are two of the three equilibria.
c. The cubic polynomial in (a) factors as

p(p - 1)((’“),4,4 —2wpq + waa)p+ (wAa - waa)) =0.

d. The third equilibrium satisfies (w4 — 2WAq + Waa)P + (WAq — Waa) = 0, 5O
straightforward algebra shows it’s given by the formula stated.
a. If either wq, — waq Or Was — Wa, is 0, then we get one of the two first two
equilibria, 0 or 1. Otherwise, since the third equilibrium can be written p =
1/{1+ w) , for it to lie between 0 and 1 we must have WaA = Wha
Waa — WAq Waa — WAq
0. This means the numerator and denominator have the same sign, which is
equivalent to the given condition.
b. Again thinking in terms of the signs of the factors in (a), these are seen to
be equivalent.
a. Homozygote advantage results in a trend toward fixation of whichever allele
is most common initially in the population, and elimination of the other.
b. Heterozygote advantage results in a trend toward non-zero proportions of
both alleles in the population. If wy 4 = waq, then equal proportions of each will
occur in the long run, but more generally the allele with the greater homozygous
relative fitness is the more common.
The formula for mean fitness shows it is a weighted average of the relative
fitness parameters, weighted by the frequencies of the corresponding genotypes
in the population. The result that w,; > W, says that the mean fitness of a
population can only increase. This is a quantitative statement of “survival of
the fittest.”
For low population sizes, the graphs are quite jagged, and often result in the
fixation of one allele and elimination of the other. There is some tendency for
the initially more common allele to be fixed, but many exceptions occur. For
midsize populations, the size of the fluctuations (as a percentage of population)
is much smaller, and fixation/elimination occurs more rarely. For large popu-
lations, the fluctuations are quite small (though still present) and one rarely
observes fixation/elimination unless initially one allele was quite rare. Despite
the fluctuations, the overall trend for large populations is that the frequencies
remain roughly constant. This supports the idea that genetic drift is only a
significant factor for small populations (or rare alleles).
Introducing selection into the genetic drift model results in biasing the drift
along the trends that would occur in a selection model without drift. For ex-
ample, with dominant advantage, seldom does drift result in elimination of the
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dominant allele, although it does occasionally. An interesting case is homozy-
gous advantage, where the tendency of drift to lead to fixation/elimination is
tempered, so that both alleles persist for much longer.

By the definition of expected value, E = 0(.0625) + 1(.25) + 2(.375) + 3(.25) +
4(.0625) = 2, or, since the random variable has a binomial distribution, E =
4(1/2) = 2. This expected value is exactly the Hardy-Weinberg equilibrium.
Even in the presence of genetic drift, the idea of a Hardy-Weinberg equilibrium
is still valid for expected values of frequencies of alleles.

a. H should tend toward 0, regardless of which allele is fixed, since H = 2pq
and either p or ¢ approaches 0.

b. H declines to 0 exponentially. The larger the population size N, the slower
the decline. Varying the initial value of Hy does mean it may take more or
less time for H to reach any specified value, but does not affect the rate of
exponential decay.

C. Ht = (1 — ﬁ)tHo



