Introduction to Natural Science, Fall 2006
 Chemistry Workshop - Week 10

1. Determine the pH of the following solutions.

- $\quad 0.010 \mathrm{M} \mathrm{HCl}$
- $0.234 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
- $0.1465 \mathrm{M} \mathrm{HNO}_{3}$
- $0.4305 \mathrm{M} \mathrm{HClO}_{4}$

2. Determine the H^{+}ion concentration in the following solutions.

- $\mathrm{pH}=4.23$
- $\mathrm{pH}=6.21$
- $\mathrm{pH}=8.03$

3. What volume of 0.0200 M calcium hydroxide is required to neutralize 35.00 mL of 0.0500M nitric acid?
4. A student conducted an acid/base titration in the lab to determine the strength of antacid tablets. He weighed out 1.3560 g of Tums (active ingredient is calcium carbonate) and added 35 mL of 1.00 M HCl to it. He let the solution come to a gentle boil. Removed from heat, let it cool and then titrated the solution with 0.9853 M sodium hydroxide solution using phenolphthalein as the indicator. If the volume of sodium hydroxide required for this titration was 15.34 mL , determine the moles of calcium carbonate in the Tums sample. Determine the percentage by mass of calcium carbonate in Tums.
5. You can dissolve an aluminum soft-drink can in aqueous base such as potassium hydroxide.

$$
2 \mathrm{Al}(\mathrm{~s})+2 \mathrm{KOH}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{KAl}(\mathrm{OH})_{4}(\mathrm{aq})+3 \mathrm{H}_{2}(g)
$$

If you place 2.05 g of aluminum in a beaker wit6h 185 mL of 1.35 M KOH , will any aluminum remain? What mass of $\mathrm{KAl}(\mathrm{OH})_{4}$ is produced?

