Introduction to Natural Science, Spring 2007 Chemistry Workshop - Week 1

1. A biology experiment requires the preparation of a water bath at $37^{\circ} \mathrm{C}$ (body temperature). The temperature of the cold tap water is $22.0^{\circ} \mathrm{C}$ and the temperature of the hot tap water is $55.0^{\circ} \mathrm{C}$. if a student starts with 90.0 g of cold water, what mass of hot water must be added to reach the desired temperature?
2. a 5.00 g sample of aluminum pellets (specific heat capacity $0.89 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1}$) and a 10.00 g sample of iron pellets (specific heat capacity $0.45 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1}$) are heated to $100{ }^{\circ} \mathrm{C}$. The mixture of hot iron and aluminum is then dropped into 97.3 g of water at $22.0^{\circ} \mathrm{C}$. Calculate the final temperature of the metal and water mixture assuming no heat loss to the surroundings.
3. A 0.1964 g sample of quinone $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ is burned in a bomb calorimeter that has a heat capacity of $1.56 \mathrm{~kJ}^{\circ} \mathrm{C}^{-1}$. The temperature of the calorimeter increases by $3.2^{\circ} \mathrm{C}$. Calculate the energy of combustion of quinone per gram and per mole.
4. Given the following data, calculate $\Delta \mathrm{H}$ for the reaction: $\mathrm{ClF}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClF}_{3}(\mathrm{~g})$

$$
\begin{array}{ll}
2 \mathrm{ClF}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{F}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=167.4 \mathrm{~kJ} \\
2 \mathrm{ClF}_{3}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{~F}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=341.4 \mathrm{~kJ} \\
2 \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~F}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-43.4 \mathrm{~kJ}
\end{array}
$$

4. The bombardier beetle uses an explosive discharge as a defensive mechanism. The chemical reaction involved is the oxidation of hydroquinone by hydrogen peroxide to produce quinone and water as given below.
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate $\Delta \mathrm{H}$ for the above reaction using the following information.

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=177.4 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) & \Delta \mathrm{H}=-191.2 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-241.8 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-43.8 \mathrm{~kJ}
\end{array}
$$

5. The Ostwald process for the commercial production of nitric acid from ammonia and oxygen involves the following steps. Calculate $\Delta \mathrm{H}^{0}$ for the following reactions using $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}$ data from standard tables.

- $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
- $3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$

