Introduction to Natural Science, Spring 2007 Chemistry Workshop – Week 1

- 1. A biology experiment requires the preparation of a water bath at 37 °C (body temperature). The temperature of the cold tap water is 22.0 °C and the temperature of the hot tap water is 55.0 °C . if a student starts with 90.0 g of cold water, what mass of hot water must be added to reach the desired temperature?
- 2. a 5.00 g sample of aluminum pellets (specific heat capacity 0.89 J $^{\circ}C^{-1}$ g⁻¹) and a 10.00 g sample of iron pellets (specific heat capacity 0.45 J $^{\circ}C^{-1}$ g⁻¹) are heated to 100 $^{\circ}C$. The mixture of hot iron and aluminum is then dropped into 97.3 g of water at 22.0 $^{\circ}C$. Calculate the final temperature of the metal and water mixture assuming no heat loss to the surroundings.
- 3. A 0.1964 g sample of quinone ($C_6H_4O_2$) is burned in a bomb calorimeter that has a heat capacity of 1.56 kJ °C⁻¹. The temperature of the calorimeter increases by 3.2 °C. Calculate the energy of combustion of quinone per gram and per mole.
- 4. Given the following data, calculate ΔH for the reaction: ClF (g) + F₂ (g) \rightarrow ClF₃(g)

$$\begin{array}{ll} 2 \ ClF(g) &+ \ O_2(g) \to Cl_2O(g) + \ F_2O(g) & \Delta H = 167.4 \ kJ \\ \\ 2 \ ClF_3(g) &+ 2 \ O_2(g) \to Cl_2O(g) + 3 \ F_2O(g) & \Delta H = 341.4 \ kJ \\ \\ 2 \ F_2(g) &+ \ O_2(g) \to 2 \ F_2O(g) & \Delta H = -43.4 \ kJ \end{array}$$

4. The bombardier beetle uses an explosive discharge as a defensive mechanism. The chemical reaction involved is the oxidation of hydroquinone by hydrogen peroxide to produce quinone and water as given below.

$$C_6H_4(OH)_2(aq) + H_2O_2(aq) \rightarrow C_6H_4O_2(aq) + 2 H_2O(l)$$

Calculate ΔH for the above reaction using the following information.

$C_6H_4(OH)_2(aq) \rightarrow C_6H_4O_2(aq) + H_2(g)$	$\Delta H = 177.4 \text{ kJ}$
$\mathrm{H}_{2}(\mathrm{g}) + \mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{H}_{2}\mathrm{O}_{2}(\mathrm{aq})$	ΔH = - 191.2 kJ
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$	$\Delta H = -241.8 \text{ kJ}$
$H_2O(g) \rightarrow H_2O(l)$	$\Delta H = -43.8 \text{ kJ}$

- 5. The Ostwald process for the commercial production of nitric acid from ammonia and oxygen involves the following steps. Calculate ΔH^0 for the following reactions using ΔH_f^0 data from standard tables.
 - $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$
 - $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$
 - $3 \operatorname{NO}_2(g) + \operatorname{H}_2O(l) \rightarrow 4 \operatorname{HNO}_3(aq) + \operatorname{NO}(g)$