1. A diagram of a manometer is shown below. What is the pressure of the gas inside the flask in mm Hg (the liquid in the manometer is mercury), psi, torr and Pascals?

2. How would you graphically represent Boyle's law, Charle's law, and Avogadro's hypothesis? If you can draw more than one graph for each law, include them all. What variables are held constant in each case?
3. The universal gas constant (R) is $0.08205 \mathrm{~atm} \mathrm{~L} \mathrm{~K}{ }^{-1} \mathrm{~mol}^{-1}$. Convert this to $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ units and cal K^{-1} mol^{-1} units.
4. A balloon is filled to a volume of $7.00 \times 10^{2} \mathrm{~mL}$ at a temperature of $20^{\circ} \mathrm{C}$. It is then cooled at a constant pressure to a temperature of $1.00 \times 10^{2} \mathrm{~K}$. what is the final volume of the balloon?
5. Consider the following chemical equation. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}$ (g)

If 25.0 mL of NO_{2} gas is completely converted to $\mathrm{N}_{2} \mathrm{O}_{4}$ under STP conditions, what volume will the $\mathrm{N}_{2} \mathrm{O}_{4}$ gas occupy?
6. A gas sample containing 1.50 mol at $25^{\circ} \mathrm{C}$ exerts a pressure of 400.0 torr. Some more gas is added to the same constant volume container and the temperature is increased to $50^{\circ} \mathrm{C}$. If the pressure increases to 800.0 torr, how many moles of gas were added to the container?
7. Consider the following reaction. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad$ It takes 2.00 L of pure oxygen gas at STP to react completely with a certain sample of aluminum. What is the mass of aluminum reacted?
8. Consider the reaction between 50.0 mL of liquid methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$ (density $=0.850 \mathrm{~g} / \mathrm{mL}$), and 22.8 L of O_{2} at $27^{\circ} \mathrm{C}$ and a pressure of 2.00 atm . The products of the reaction are $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Calculate the number of moles of $\mathrm{H}_{2} \mathrm{O}$ formed if the reaction goes to completion.
9. Helium gas is collected over water at $25^{\circ} \mathrm{C}$ and 1.00 atm total pressure. What total volume of gas must be collected to obtain 0.586 g of helium? (At $25^{\circ} \mathrm{C}$ the vapor pressure of water is 23.8 torr).
10. Ammonia gas is prepared by the Bosch-Haber process according to the following reaction.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If 3.00 L of N_{2} gas at 0.98 atm was mixed with 5.00 L of H_{2} gas at 1.25 atm at $25.0^{\circ} \mathrm{C}$ and the resulting ammonia gas was collected at atmospheric pressure at the same temperature, how many liters of ammonia will be collected?

