Introduction to Natural Science, Spring 2007 Chemistry Workshop – Week 5

1.	 What species are present when the following substances dissolve in water? HCl CH₃COOH NH₃ NaOH H₃PO₄
2.	Write a dissociation reaction and the expressions for K_a or K_b for the following in water. $ \qquad \left[Co(H_2O)_6 \right]^{3+} \\ \qquad $
3.	Identify the Bronsted acid, base and their corresponding conjugate acid and base for the following. • HF (aq) $+$ H ₂ O (l) \leftrightarrow H ₃ O ⁺ (aq) $+$ F ⁻ (aq) • HSO ₄ ⁻ (aq) $+$ H ₂ O (l) \leftrightarrow SO ₄ ²⁻ (aq) $+$ H ₃ O ⁺ (aq) • C ₆ H ₅ NH ₂ (aq) $+$ HOCl (aq) \leftrightarrow C ₆ H ₅ NH ₃ ⁺ (aq) $+$ OCl ⁻ (aq)
4.	Calculate the pH and pOH for the following solutions. Determine if the solutions are acidic or basic. • 0.250 M HNO ₃ • M CH ₃ CH ₂ COOH • 2.0 M hydrazine (H ₂ NNH ₂), K _b = 3.0 x 10 ⁻⁶
5.	A solution is prepared by mixing 90.0 mL of 5.00 M HCl and 30.0 mL of 8.00 M HNO ₃ . Water is then added to make the final volume to 500.0 mL. Calculate the pH, [H ⁺] and [OH ⁻] of this solution. Write balanced reactions to show the presence of all the ions in the above solutions.
6.	Consider this reaction $NO_{(g)} + CO_{(g)} \rightleftharpoons {}^{1/2}N_{2(g)} + CO_{2(g)}$ $\Delta H = -374 \text{ kJ}$ The conditions of temperature and pressure that favor the formation of CO_2 are
	(A) high T and high P . (B)high T and low P . (C) low T and high P . (D) low T and low P
7.	The value of the equilibrium constant K for a reaction at equilibrium is altered by
pro	(A)changing the effective concentration of reactants. (B)changing the effective concentration of educts. (C) changing the temperature. (D) adding a catalyst. (E) adding water.
8.	Into an empty vessel $COCl_{2(g)}$ is introduced at 1.0 atm pressure whereupon it dissociates until equilibrium is established: $2COCl_{2(g)} \rightleftarrows C_{(graphite)} + CO_{2(g)} + 2Cl_{2(g)}$
If x represents the partial pressure of $CO_{2(g)}$ at equilibrium, what is the value of the equilibrium constant, K_p ?	
(A)	$\frac{x \cdot 2x^2}{(1.0 - 2x)^2} \qquad (B) \qquad \frac{x \cdot x \cdot 2x^2}{(1.0 - 2x^2)} \qquad (C) \qquad \frac{x \cdot (2x)^2}{(1.0 - 2x)^2} \qquad (D) \qquad \frac{x \cdot (2x)^2}{(1.0 - x)^2}$