Introduction to Natural Science, Winter 2007 Chemistry Workshop – Week 6

1. Determine the lattice energy for lithium fluoride (LiF) using the following information.

Process	Energy (kJ/mol)
Sublimation energy for lithium	161
Ionization energy for lithium	520
Bond dissociation energy for fluorine gas	154
Electron affinity of fluorine	-328
Energy of formation of LiF (from its elements in their natural state)	-617

- 2. Draw a ladder type energy diagram to show the Born-Haber cycle for LiF using the above data.
- 3. Draw Lewis dot structures for the following.
 - HCN
 - HNC
 - PH₃
 - CHCl₃
 - NH₄⁺
 - SeF_2
 - \cdot CO₂
 - XeO₄
 - ClO₄
 - PO₃³
- 4. Use the following data to calculate the energy of formation of magnesium fluoride (MgF₂) from its elements in their natural state.

Process	Energy (kJ/mol)
Lattice energy	-3916
First ionization energy for magnesium	735
Second ionization energy for magnesium	1445
Electron affinity of fluorine	-328
Bond dissociation energy for fluorine	154
Sublimation energy for magnesium	150

5. Draw a ladder type energy diagram to show the Born-Haber cycle for MgF₂ using the above data.