Physics lab # 1. Spring quarter.

ROTATIONAL DYNAMICS

Objectives

Study the relationship between force, lever arm, and torque; study how torques add

Study the conditions for static equilibrium of a rigid body
Study the concept of “center of gravity”
PART A. Static Equilibrium of Rigid Bodies: The Roman balance
Introduction 

The torque ( created by a force F with respect to a certain axis of rotation is

( = F x d

where d is the lever arm, which is the perpendicular (shortest) distance between the axis 
of rotation and the line of force. 

Static Equilibrium: In order for a rigid body to stay in equilibrium, the net force and the net torque on the object must both be zero. We usually only deal with motion of objects in two dimensions, in which case the conditions for static equilibrium are

( Fx = 0,  ( Fy = 0,  (( = 0

Center of Gravity:  For a rigid body with finite size, the force of gravity acts on all parts of the body. But for the purpose of studying the translational motion of the body as a whole or the static equilibrium of the body, we can assume that the entire weight of the body acts at a single point. This point is the center of gravity. When we draw the force diagram for a rigid body, we can put a single force of gravity at the center of gravity.

Experimental Setup

Equipment: torque apparatus, hangers, weights

The apparatus consists of a meter stick suspended from a fulcrum. Weights may be hung from the meter stick at various positions along the stick by means of hangers in order to apply torques.

A steelyard balance is a straight-beam balance with arms of unequal length. It incorporates a counterweight which slides along the calibrated longer arm to counterbalance the load and indicate its weight. A steelyard is also known as a steel-yard, steel yard, common steelyard, Roman steelyard, or Roman balance.





A 19th-century steelyard.

The steelyard is comprised of a balance beam which is suspended from a pivot (or fulcrum) which is very close to one end of the beam. The two parts of the beam which flank the pivot are the arms. The arm from which the object to be weighed (the load) is hung is short and is located close to the pivot point. The other arm is longer, is graduated and incorporates a counterweight which can be moved along the arm until the two arms are balanced about the pivot, at which time the weight of the load is indicated by the position of the counterweight.

The steelyard exemplifies the law of the lever, wherein, when balanced, the weight of the object being weighed, multiplied by the length of the short balance arm to which it is attached, is equal to the weight of the counterweight multiplied by the distance of the counterweight from the pivot.

The steelyard was independently invented by the Romans and the Chinese around 200 B.C.E. Steelyards dating from 100 to 400 A.D. have been unearthed in Great Britain. The Oxford English Dictionary suggests that the name "steelyard" is derived from the name of the courtyard of a community of German merchants living in London in the 14th-century.

Steelyards of different sizes have been used to weigh loads ranging from ounces to tons. A small steelyard could be a foot or less in length and thus conveniently used as a portable device that merchants and traders could use to weigh small ounce-sized items of merchandise. In other cases a steelyard could be several feet long and used to weigh sacks of flour and other commodities. Even larger steelyards were three stories tall and used to weigh fully laden horse-drawn carts.

Experimental Procedure and Data Analysis

1. Attach the meter stick to the pivot using a pin. The position of the fulcrum will be at the center of gravity of the meter stick plus the masses. 

2. Hang a 100-g mass on the short side of the stick (19-20 cm from the fulcrum). Calculate the position and mass you should put in the right (or long) side of the fulcrum so that the meter stick is again in equilibrium in a horizontal position.  There are many possible solutions, depending on the mass you use as a counterweight (50-100 g).

3. Repeat step 2, using 150, 200, 250, 300 and 350-g masses in the short side. 

4. Place pieces of masking tape with the numbers 150, 200, 250, 300 and 350-g at the various positions you calculated. That will be your scale.

5. Compare your analytical results with the experimental values. Is your balance in equilibrium (horizontal)? If not, what are the possible sources of error? Adjust if necessary.

6. Record your data in a table (m1, m2, m3, d1, d2, d3, etc.)

7. Draw a free-body force diagram for the torque apparatus for the experiment.

Remember that you need to include the mass of the hangers and meter stick! 
8. Show your table and data to the professor or assistant before moving to the next experiment

PART B. Static Equilibrium of Rigid Bodies: 
This experiment is very similar to PART A.  

1. A meter stick rests horizontally on two supports placed on two tared balances.

2. Find the mass of the meter stick.

3. Place three different masses (between 50 and 200 g) on three different places along the meter stick.

4. Record your data (masses and distances from one end of the meter stick).

5. Draw a free-body diagram and calculate the forces in the 2 supports.

6. Compare your analytical results with the experimental values.

7. Repeat the procedure twice changing the location of the supports and the masses.

This experiment can also be set using spring scales hanging from 2 supports.

PART C.  Rotational Kinetic Energy.

This experiment is very similar to the experiment from the previous quarter.  A solid sphere is rolling down the ramp.

Use the Principle of Conservation of Energy (including Rotational Energy) to predict how far from the table the sphere will fall.

mgh + (1/2) mv2 + (1/2) I2 = mgho + (1/2) mvo2 + (1/2) Io2

This experiment is very similar to example 13, page 271 of the textbook.

Experimental Procedure and Data Analysis

1. Find the mass and radius of the metal sphere, used to calculate the Moment of Inertia (I) of the sphere. Measure the height of the ramp. Remember that v =r
2. Calculate v. That will be the velocity at the end of the ramp.

3. Find the range (using equations of projectile motion). Compare the analytical with the experimental results.

4. Show your calculations to the professor or assistant before moving to the next experiment.

PART D.  Rotational Kinetic Energy, part 2.

This experiment is very similar to the experiment in PART C.  Solid spheres, hollow cylinders, solid cylinders and cylinders composed of 2 materials are rolling down the ramp.

Use the Principle of Conservation of Energy (including Rotational Energy) to predict which object has the greatest translational speed (“final velocity”) upon reaching the bottom.

mgh + (1/2) mv2 + (1/2) I2 = mgho + (1/2) mvo2 + (1/2) Io2

Experimental Procedure and Data Analysis

1. Since you will perform the same calculation several times, write a general equation with initial velocity and final height equal to zero, having v as the unknown.

2. Predict which object will reach the bottom of the ramp first. This experiment helps you compare 2 objects of same mass and radius but different moments of inertia. Large solid cylinder (#1) and metal ring (#3). Explain your prediction.
3. Find the mass and radius of each object. Measure the height of the ramp. Calculate final velocity for each object. Compare the results with your predictions. 

4. Repeat steps 2 and 3 for two spheres (similar to part C): small metal sphere and small green plastic sphere. This experiment helps you compare 2 objects of same radius but different masses and moments of inertia. Explain your prediction. Then calculate and compare.
5. Compare step 4 with a larger metal sphere (small versus large metal sphere). This experiment helps you compare 2 objects of same shape but different radii, masses and moments of inertia. Explain your prediction. Then calculate and compare.
6. Repeat steps 2 and 3 for two cylinders (#12 and #14, maybe.) This experiment helps you compare 2 objects of same radius and lengths but different moments of inertia. Explain your prediction. Then calculate and compare.
7. Repeat steps 2 and 3 for two cylinders (#9 and #11, maybe.) This experiment helps you compare 2 objects of same radius and masses but different lengths and moments of inertia. Explain your prediction. Then calculate and compare.

8. Create a table with your results.
