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Biological remediation technologies offer the
advantage of partial or complete destruction of
contaminants within a site. The ultimate goal
of remediation is conversion of toxic organic
contaminants to simple, less-toxic constituents,
although for some chemicals, incomplete con-
version occurs and stable intermediates are
formed. The effectiveness of remediation
strategies is traditionally evaluated from the
disappearance of the chemical of interest. This
approach does not consider that end products
or intermediates produced during remediation
may be toxic. Furthermore, the potential exists
that remediation may result in products for
which the toxic response is greater than for the
parent compound or for which the target of
toxicity is different, and these possibilities
would not be detected. Accordingly, from the
standpoint of assessing risk, it is important to
understand the biological activity or toxicity of
the end products and stable intermediates.
Thus, the question becomes, Are the products
or intermediates of bioremediation less toxic
than the starting materials? 

The anticipated answer to this question is
yes; however, there is a dearth of evidence to
support this assumption, particularly with
respect to effects on mammalian systems.
There are some reports of decreased toxic

effects after remediation of contaminants,
using mammalian systems to evaluate toxicity
(Mousa et al. 1996, 1998; Quensen et al.
1998). On the other hand, some evidence sug-
gests that products formed during remediation
or breakdown of environmental chemicals
have greater biological activity than the starting
materials. For example, DDE [1,1-dichloro-
2,2-bis(p-chlorophenyl)ethylene], a major
environmental transformation product of
DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)
ethane], is a more potent androgen receptor
antagonist than its parent compound (Kelce
et al. 1995). In addition, products of microbial
reductive dechlorination of polychlorinated
biphenyls (PCBs) are more effective than par-
ent PCB mixtures at stimulating uterine con-
tractions in vitro (Bae et al. 2001). Similarly,
chemical remediation may result in products
with increased biological activity. For example,
pyrene, a four-ringed polycyclic aromatic
hydrocarbon, can be degraded with ozone.
This ozonation results in the formation of at
least 10 major products, some of which are
more mutagenic than pyrene itself (Sasaki et al.
1995). The initial products formed from
ozonation of a variety of polycyclic aromatic
hydrocarbons in aqueous solution cause greater
inhibition of the ability of mammalian cells to

communicate through gap junctions compared
with the parent compounds (Upham et al.
1997; Weis et al. 1998). These reports empha-
size the need for investigators to consider the
biological activity not only of the parent conta-
minants, but also of their stable transformation
products produced during remediation. 

Bioassays Commonly Used 
to Assess Effectiveness 
of Remediation
Investigators have not ignored the question of
whether loss of biological activity accompa-
nies remediation. The approaches used
include bioassays using organisms representa-
tive of those we expect to find in the affected
environment or surrogate organisms or
plants. For example, the survival, growth, and
reproduction of a variety of marine organisms
exposed to sediments or soil collected from
contaminated sites before and after remedia-
tion have been used to assess effectiveness of
some remediation strategies [Deanovic et al.
1999; Kemble et al. 2000; McGann et al.
2003; Tabak et al. 2003; U.S. Environmental
Protection Agency (EPA) 1989]. Toxicity to
earthworms has been used to evaluate the
effects of methods of removal of contami-
nants from soil (Chang et al. 1997; Maenpaa
et al. 2002; Saterbak et al. 1999; U.S. EPA
1988). Luminescent bacterial assays such as
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the commercially available Microtox assay
have also been used widely (Ahtiainen et al.
2002; Dorn and Salanitro 2000; Frische and
Hoper 2003; Kemble et al. 2000; Layton
et al. 1999). This technique is based on the
observation that some bacteria (e.g., Vibrio fis-
cheri) luminesce in proportion to cellular
metabolism; accordingly, toxicity to the
microorganisms is detected as a decrease in
the intensity of luminescence. A solid-phase
application of this method offers an advan-
tage in that it permits exposure of bacteria to
sediment-bound contaminants (Kemble et al.
2000). An integrated approach to ecotoxico-
logic evaluation involves combinations of
these methods (Frische 2003).

These approaches yield valuable informa-
tion regarding effectiveness of remediation and
help focus additional remediation strategies.
As with all bioassays, each has advantages and
disadvantages, some of which relate to sensi-
tivity, cost, versatility of application, reliabil-
ity, rapidity, reproducibility, and relationship
to health risk. A comprehensive discussion of
these is not within the scope of this work.
However, none of these bioassays addresses
the potential biological activity of products of
remediation in mammalian systems that may
represent more specific and/or integrated
functions relevant to human health. In the
remainder of this article, we review an
approach to the evaluation of toxicity of prod-
ucts of remediation in mammalian systems.

Bioassays Employing
Mammalian Cell Systems 
The concept that products of remediation
may have biological activity in mammalian
systems has not been studied extensively.
Investigators associated with the Michigan
State University Superfund Program Project
began an effort a number of years ago as part
of a Bioremediation Product Evaluation Core
to address the issue. The working hypothesis
was that products of remediation have differ-
ent biological activities compared with those
of the starting compounds or mixtures. We
developed a list of assays of biological activity
that relied on the strengths and expertise of
the toxicologists within the group (Table 1).
Generally, criteria for useful bioassays include
sensitivity over a range of concentrations of

test chemical, low rate of false-positive and
false-negative responses, ease and rapidity of
the assay, reproducibility of results, and rea-
sonable cost. How well the end point being
measured reflects a biological response of
interest in humans or animals may also be
important. For purposes of using results from
an assay for risk assessment, it is helpful to
have a reference value for toxicity, namely, a
response known to be associated with toxicity
in whole organisms. Assays selected for use in
the Bioremediation Product Evaluation Core
met many of these criteria. Additional criteria
for inclusion in the Core were that assays were
performed routinely within a laboratory and
that the expected results were relatively
uncomplicated in interpretation. These latter
two criteria precluded the use of whole-animal
studies, so the assays selected involved in vitro
methodology. With this approach, the list
developed covers a variety of cellular functions
including intracellular signaling, intercellular
communication, proliferation and cell death,
gene expression, measures of integrated cellu-
lar function and integrated tissue function,
and aryl hydrocarbon (Ah) receptor function
(important for dioxin-like contaminants)
(Table 1). Accordingly, although the list is not
exhaustive, many possible responses to chemi-
cal insult are represented. Additional measures
not represented on this list that would be use-
ful include whole-animal assessments and
assays that measure endocrine disruption,
neurotoxicity, genotoxicity, or mutagenicity.

In evaluating remediation products, we
selected specific bioassays for initial examina-
tion on the basis of current knowledge of the
mechanism of action of the parent compound
of interest. For example, for dioxin-like chemi-
cals (e.g., PCBs) one of the first avenues of
investigation was the effects on cytochrome
P450 induction based on the known activity
of these compounds to increase cytochrome
P4501A. Similarly, for chemicals known to
disrupt intracellular signaling, such as some of
the polycyclic aromatic hydrocarbons
(Burdick et al. 2003; Patten Hitt et al. 2002),
first priority for analysis was given to examina-
tion of activation of mitogen-activated protein
kinases or alterations in neutrophil function.
Initial studies using this approach were aimed
at evaluation of products of bioremediation of

PCBs. One promising remediation technique
for PCBs is the removal of chlorines by
microorganisms. We review results of these
studies below. 

Evaluation of Products of
Reductive Dechlorination 
of PCBs
Polychlorinated biphenyls are among the most
widely distributed environmental contami-
nants. Commercial PCB mixtures were manu-
factured in the United States between 1929
and 1978 and used for a variety of industrial
purposes. An estimated 1.4 billion pounds of
PCBs have been produced worldwide and
approximately several hundred million pounds
have been released into the environment.
Commercial PCBs (e.g., Aroclors) typically
consist of 60–90 of the 209 possible con-
geners, each of which differs in the positions
and/or numbers of chlorines on the biphenyl
ring. Several characteristic PCB mixtures differ
in the extent of chlorination and specific con-
gener composition. Common examples are
Aroclors 1242, 1248, and 1254, which con-
tain 42, 48, and 54% chlorine by weight,
respectively. Because of their lipophilic prop-
erties, PCBs tend to accumulate in biological
tissue and in environments rich in organic
matter, such as sediments.

PCB mixtures found in the environment
often do not match any of the known com-
mercial formulations because they have been
subjected to congener-selective environmental
processes, for example, reductive dechlorina-
tion by anaerobic bacteria (Bedard and
Quensen 1995; Quensen et al. 1988, 1990).
Reductive dechlorination is a microbially
mediated process that removes chlorine from
biphenyl with replacement by hydrogen,
resulting in a product mixture in which the
average number of chlorines is substantially
diminished. Chlorines substituted in the meta
and para positions are preferentially removed
by this process; ortho chlorines are rarely
removed. In situ reductive dechlorination has
been documented in anaerobic sediments at
numerous locations, and six distinct dechlori-
nation patterns have been observed, giving
rise to six recognizable profiles of congeners in
the dechlorination products (Bedard and
Quensen 1995). 

As mentioned above, PCBs comprise 209
individual congeners, and a variety of toxic
effects mediated by multiple mechanisms
accompany this structural diversity. Effects
include neurotoxicity, induction of enzymes
involved in xenobiotic metabolism, alterations
in reproductive function, hepatotoxicity, car-
cinogenicity, and effects on cells that mediate
innate and specific immunity (Safe 1994). In
applying Occam’s Razor, one can think of
PCBs as falling into two groups in terms of
structure and mechanisms of action (Figure 1).
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Table 1. Examples of assays used to assess the biological activity of remediation products.

Assay Biological functions represented

Induction of cytochrome P450 enzymes Receptor-mediated activity (Ah receptor)
Activation of mitogen-activated protein kinases Intracellular signaling
Disruption of gap junctional intercellular communication Intercellular signaling, cell death
Activation of AP-1 transcription factor Gene expression
Alteration in neutrophil function Cellular function, cell death
Stimulation of insulin release Cellular function
Contraction of uterine muscle in vitro Integrated tissue function
Alteration in fertilization in vitro Integrated tissue/organ system function
Stimulation of lymphocyte proliferation Proliferation, cell death



Coplanar PCBs lack ortho substitution, bind
with high affinity to the Ah receptor, and
mediate many of their effects through changes
in gene expression initiated by binding to this
receptor. Noncoplanar PCBs, which contain
chlorine in one or more of the four ortho posi-
tions, are poor ligands for the Ah receptor. The
mechanisms of their biological effects are in
many cases unknown but often involve initial
changes in cell signaling (Fischer et al. 1998). 

Studies were undertaken to compare the
biological activity of Aroclor mixtures of
PCBs with the activity of products of their
reductive dechlorination. The dechlorination
process employed resulted in accumulation of
congeners substituted in only the ortho and
para positions and containing fewer chlorines
than the starting mixtures (Mousa et al. 1996;
Quensen et al. 1998). For example, 2,2´,4-
trichlorobiphenyl represented 4% (on a molar
basis) of the total mixture before dechlorina-
tion and 16% of the dechlorinated product.
For more detailed description of the congener
profile of the remediation products, the
reader is referred to Bae et al. (2001), Ganey
et al. (2000), and Mousa et al. (1998).

Table 2 is a summary of the results of
examination of biological activity. Coplanar,
dioxin-like PCBs induce cytochrome P4501A
through an Ah receptor–mediated mechanism
(Sanderson et al. 1996), and the potency for
this effect can be compared with the potency

of dioxin (2,3,7,8-tetrachlorodibenzo-
p-dioxin) to generate a toxic equivalency factor
(TEF) for individual congeners (Safe 1993).
TEF values can then be used to determine the
toxic equivalents (TEQs) for mixtures of
chemicals. This approach has been used for
risk assessment of dioxin-like compounds,
although it is not without limitation (Li and
Hansen 1996; Safe 1998). The ability of prod-
ucts of dechlorination of Aroclor mixtures to
induce cytochrome P4501A activity, moni-
tored as ethoxyresorufin-O-deethylase activity,
was examined in the rat liver hepatoma cell
line H4IIE. Parent Aroclors 1242 and 1254
were compared with products of their dechlo-
rination by microorganisms collected from
two different sites, Silver Lake, Massachusetts,
and River Raisin, Michigan. Aroclors were
evaluated at concentrations ranging from 0.04
to 2.5 µg/well (250 µL/well), and the dechlori-
nation products were used at molar equivalent
concentrations based on biphenyl concentra-
tion (biphenyl concentration is unaffected by
dechlorination). Both potency and efficacy of
induction of the Aroclor mixtures were dimin-
ished by dechlorination (Mousa et al. 1998;
Quensen et al. 1998). The decrease in potency
was dependent on the extent of removal of the
coplanar and mono-ortho-substituted PCBs,
consistent with the known mechanism of this
effect. For example, the TEQ for nondechlori-
nated Aroclor 1242 derived from the assay was
3.1, whereas the TEQ for the dechlorinated
mixture was below the limit of detection
(0.06). These values were in agreement with
TEQs calculated from the known composi-
tion of the nondechlorinated and dechlori-
nated mixtures, 5.7 and < 0.08, respectively. 

In vitro fertilization is reflective of repro-
ductive capacity. Epidemiologic studies assess-
ing the effects of human exposure to PCBs on
fertility and reproduction have yielded various
results: some indicate a negative effect of PCBs
on fertility, whereas others report no associa-
tion (Axmon et al. 2001, 2002; Dallinga et al.
2002; Rozati et al. 2002; Yu et al. 2000). In
experimental animals dioxin-like chemicals,
including some PCBs, cause reproductive toxi-
city (Birnbaum and Tuomisto 2000; Peterson
et al. 1993; Petroff et al. 2001). For example,
administration of heavily chlorinated,

noncoplanar PCB congeners to male rats
decreases several markers of sperm function
(Hsu et al. 2003). Exposure of female mice to
the coplanar congener 3,3´,4,4´-tetrachloro-
biphenyl decreases reproductive capacity
(Huang et al. 1998a), and exposure of preg-
nant mice to Aroclor 1242 or to 3,3´,4,4´-
tetrachlorobiphenyl alters fertility in male
offspring (Fielden et al. 2001; Huang et al.
1998b). In addition, coplanar PCBs inhibit
in vitro fertilization of murine eggs (Huang
et al. 1998a). Products of dechlorination of
Aroclors 1242 and 1254 were compared with
the parent Aroclors for the ability to inhibit
in vitro fertilization of mouse gametes (Mousa
et al. 1996, 1998). Aroclor 1254 decreased the
percentage of fertilized eggs and increased the
percentage of degenerated eggs at 10 ppm and
20 ppm. The products of reductive dechlori-
nation used at equivalent molar concentra-
tions produced less of an adverse effect on
fertilization and did not cause gamete degener-
ation. Similarly, the negative effects of
Aroclor 1242 on fertilization were not
observed with its product of dechlorination.
Based on the observations that coplanar PCBs
and heavily chlorinated, noncoplanar PCBs
alter reproductive capacity, this result was con-
sistent with the loss of these congeners due to
dechlorination.

Environmental exposure to PCBs has
been associated with increased risk of cancer
in some but not all studies (Demers et al.
2002; Gammon et al. 2002; Kimbrough et al.
2003; Laden et al. 2002; Lucena et al. 2001;
Stellman et al. 2000; Woolcott et al. 2001).
The transcription factor activator protein-1
(AP-1) is a protein that regulates gene expres-
sion and has been implicated in tumori-
genesis. Using the rat liver epithelial cell line
WB-344, transfected with AP-1–binding
DNA and a luciferase reporter gene, the abil-
ity of remediation products of Aroclors to
induce AP-1 activity was determined. Native
Aroclors (2 µg/mL) caused a 2- to 3-fold
increase in induction of AP-1 transcription,
whereas dechlorinated products (equivalent
molar concentration) had no effect on
AP-1–mediated transcription (Mousa et al.
1998). Stimulation of AP-1–mediated tran-
scription is attributed to more heavily chlori-
nated, noncoplanar PCBs; thus, these results
are consistent with the loss of heavily chlori-
nated congeners upon dechlorination.

Exposure to PCBs has been associated with
decreased gestation length in several epidemio-
logic studies (Bercovici et al. 1983; Taylor
et al. 1989; Wassermann et al. 1982). Because
uterine contractions actuate parturition, the
effects of PCBs on contractility of pregnant rat
uteri were examined. Aroclor 1242 stimulated
contraction of uteri isolated from pregnant rats
in a concentration- and time-dependent man-
ner (Bae et al. 1999, 2001). A concentration of
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Table 2. Summary of effects of biological activity of dechlorinated PCBs.

Effect of parent Type of PCBs Effect of 
Biological activity Aroclor mediating effect dechlorinated products Reference

Cytochrome Induction Coplanar None Mousa et al. 1998;
P450 activity Quensen et al. 1998

In vitro fertilization Reduction Coplanar None Mousa et al. 1996, 1998
AP-1-mediated Induction More heavily chlorinated, None Mousa et al. 1998

transcription noncoplanar
Uterine Stimulation Less heavily chlorinated, Greater Bae et al. 2001

contraction noncoplanar stimulation
Neutrophil Activation Noncoplanar Same or greater Ganey et al. 2000

function activation
Insulin secretion Stimulation Noncoplanar Stimulation Ganey et al. 2000

CI

CI

CI

CI

CI

CI

CI

CI

CI

PCBs are structurally distinct and have
 more than one mechanism of action

meta, para substituted

Bind with high affinity to
the Ah receptor

Mediate many effects through
changes in gene transcription

ortho substituted

Are not good ligands for
the Ah receptor

Mechanisms of action are
unknown but initiated by
changes in cell signaling

Coplanar PCBs Noncoplanar PCBs

Figure 1. Structure of coplanar and noncoplanar
PCBs. 3,3´,4,4´,5-Pentachlorobiphenyl is the repre-
sentative coplanar PCB depicted. 2,2´,4,4´-Tetra-
chlorobiphenyl is the representative noncoplanar
PCB depicted.



100 µM nondechlorinated Aroclor 1242
increased contraction frequency, whereas
smaller concentrations were without effect (Bae
et al. 2001). The potency of various Aroclor
mixtures to increase uterine contraction fre-
quency was inversely related to chlorine con-
tent, suggesting that this effect was mediated
by less heavily chlorinated congeners. Results
with native Aroclors were compared with the
effects of Aroclors that had been dechlorinated
by microorganisms collected from the
Hudson River basin. Compared with the
response to unaltered Aroclor 1242, the
dechlorinated mixture shifted the concentra-
tion–response curve to the left, such that
10 µM of the dechlorinated mixture caused an
increase in uterine contraction frequency.
Similarly, the cumulative concentration–
response curve of the dechlorinated
Aroclor 1254 was shifted to the left relative to
that of the unaltered Aroclor 1254. In fact,
parent Aroclor 1254 did not stimulate contrac-
tions with exposure up to 300 µM, yet the
dechlorinated mixture exerted a powerful
stimulatory response in terms of both effective
concentration range (30 µM increased
contraction frequency) and efficacy. Thus,
dechlorination produced a mixture with
uterine-stimulating activity from a relatively
nonactive Aroclor mixture. 

PCB exposure has been associated with
alterations in immune status in humans
(Belles-Isles et al. 2002; Van Den Heuvel
et al. 2002) and experimental animals (Arena
et al. 2003; De Krey and Kerkvliet 1995; De
Krey et al. 1994). In addition, cells of both
specific (e.g., lymphocytes) and innate (e.g.,
neutrophils) immunity are affected by PCBs
(Fernlof et al. 1997; Ganey et al. 1993; Suh
et al. 2003). For example, noncoplanar PCBs
stimulate neutrophils to produce reactive oxy-
gen species, specifically superoxide anion
(Ganey et al. 1993). In addition, PCBs
increase superoxide anion production in
response to subsequent stimulation with
phorbol myristate acetate (PMA). The ability
of Aroclor 1242 to cause generation of reac-
tive oxygen species in neutrophils was com-
pared with the ability of its products of
dechlorination by microorganisms from Silver
Lake or River Raisin (Ganey et al. 2000).
Exposure of rat neutrophils in vitro to
Aroclor 1242 at 10 µg/mL increased PMA-
stimulated superoxide anion generation.
Exposure of neutrophils to products of
dechlorination of Aroclor 1242 at equivalent
molar concentrations caused similar increases
in superoxide anion production (Ganey et al.
2000). Accordingly, dechlorination did not
diminish the ability of the mixtures to activate
neutrophils. On the other hand, parent
Aroclor 1254 did not increase superoxide
anion production in PMA-stimulated
neutrophils, but its dechlorination products

did. Thus, like the effects observed for stimu-
lation of uterine contractility, dechlorination
induced biological activity in a nonactive
Aroclor mixture. These results are consistent
with the accumulation of noncoplanar PCBs
in the dechlorination products. 

Increased incidence of diabetes has been
associated with high concentrations of PCBs
or other organochlorine chemicals in serum
(Glynn et al. 2003; Longnecker et al. 2001).
In addition, Aroclor mixtures of PCBs stimu-
late the release of insulin from the rat clonal
cell line RINm5F (Fischer et al. 1996). This
effect is mediated by noncoplanar PCBs
(Fischer et al. 1998). RINm5F cells were
exposed to Aroclor 1242 or 1254 (10 µg/mL)
or their products of dechlorination by River
Raisin or Silver Lake microorganisms (equiva-
lent molar concentrations), and insulin release
was examined. Both parent Aroclor mixtures
caused release of insulin within 30 min of
exposure. The magnitude of response to the
mixtures of dechlorinated Aroclors was simi-
lar or greater when compared with the non-
dechlorinated parent mixtures (Ganey et al.
2000). These results are consistent with the
observed accumulation of ortho-substituted,
noncoplanar PCBs in the mixtures produced
by reductive dechlorination.

Taken together, these results demonstrate
that a variety of responses can be observed
after exposure of mammalian cell systems to
products of remediation. In the case of the
studies described above for remediation of
PCBs, the responses followed what would be
expected based on structure and known bio-
logical activity of the chemicals. That is, Ah
receptor–mediated activities diminished
because of the removal of coplanar congeners
via meta and para dechlorination processes,
and biological activities mediated by non-
coplanar PCBs were enhanced or unchanged.
These studies were guided by knowledge of
some of the mechanisms of action of PCBs.
For remediation processes aimed at chemicals
for which less is known about effects in
mammalian systems, studies similar to those
described above may reveal unexpected results.

Summary and Future Needs

Several important aspects of evaluation were
not addressed in this series of experiments.
For this specific case of remediation of PCBs,
no measure of neurotoxicity was performed.
This is an important deficit because the
neurotoxic effects of PCBs have been demon-
strated experimentally and suggested by
results of epidemiologic studies (Schantz et al.
2001, 2003; Seegal 1996). Because many
neurotoxic effects are associated with non-
coplanar PCBs (Kodavanti and Tilson 1997;
Wong et al. 2001), one would expect effects
of the products of remediation to be similar
or greater than those of the parent Aroclors.

All the assays used were in vitro assays that
represent selected functions that occur within
a whole organism. This approach does not
address issues of exposure, including relevant
routes of exposure to environmental contami-
nants and their remediation products. In
addition, the duration of exposure during
in vitro assays is short and does not mimic
longer-term, often-repeated exposures that
occur naturally. Issues of bioavailability are
not considered when performing in vitro
assays. This includes bioavailability from an
environmental engineering point of view
(e.g., how much of the contaminant is not
bound to soil constituents) and from the per-
spective of toxicology (e.g., how much of the
exposure dose interacts with target tissue).
These issues can best be addressed using
whole-organism studies, which, as mentioned
above, are costly and inconvenient. In addi-
tion, biologically based toxicokinetic and toxi-
codynamic modeling could be used to address
issues of extrapolation to human risk. In the
future, approaches to include these considera-
tions must be developed. 

Thus, it should be emphasized that the
approach described above to evaluate effects of
products of remediation in a variety of in vitro
assays employing mammalian cells represents a
beginning. Using this approach, the biological
activity of remediation products is compared
with activity of the parent compound, such
that relative activity is assessed. Although this is
a useful component in determination of the
effectiveness of remediation, it stops short of
estimating potential health risk of the remedia-
tion products. Comprehensive evaluation of
the biological activity of remediation products
will necessitate far more extensive in vitro and
in vivo testing, the use of validated extrapola-
tion models to assess risk to people and
wildlife, and epidemiologic correlates. It seems
unlikely that this type of effort will arise from
any single institution. It is more likely to be
achieved through a consortium of institutions
or a government-based testing facility that can
amass the expertise and resources required.

Despite these limitations, several points
can be drawn from these remediation assess-
ment evaluations. First, the overarching mes-
sage is that it is important to evaluate the
biological activity of products of remediation
and also of stable intermediates produced
during remediation. As seen in the series of
experiments presented above, the products of
remediation are not necessarily devoid of bio-
logical activity. When compared with the par-
ent compound, activity of remediation
products may be decreased, unchanged, or
increased. It is also possible that biological
activity of remediation products may be
qualitatively different from the activity of the
starting compound. Furthermore, although
not observed in the studies described above,
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when bacteria are used in remediation
processes, it is possible that bacterial by-prod-
ucts unrelated to the chemical contaminant
itself are produced that have biological activ-
ity in some cellular systems. Another impor-
tant point to be made is that a better
understanding of the mechanisms of biologi-
cal effects of contaminants will permit a more
directed approach to evaluation of the activity
of the remediation products. The selection of
bioassays to be used as well as the specific
details of experimental design can be based on
known mechanisms of action of the parent
compounds. Finally, knowledge of the spec-
trum of biological activities associated with
remediated chemicals and their stable inter-
mediates will provide the basis for more accu-
rate risk assessment and guide remediation
needs and approaches.
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