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velocity v. The fluid equation is obtained simply by multiplying Eq. [3-29] 59

: . Plasmas

by the density n: A Fliids
mn édtg =gn{E+uXxB) [3-30]

This is, however, not a convenient form to use. In Eq. [3-29], the time
derivative is to be taken at the position of the particles. On the other hand,
we wish to have an equation for fluid elements fixed in space, because it
would be impractical to do otherwise. Consider a drop of cream in a
cup of coffee as a fluid element. As the coffee is stirred, the drop distorts
into a filament and finally disperses all over the cup, losing its identity.
A fluid element at a fixed spot in the cup, however, retains its identity
although particles continually go in and out of it.

To make the transformation to variables in a fixed frame, consider
G(x, t) to be any property of a fluid in one-dimensional x space. The
change of G with time in a frame moving with the fluid is the sum of two
terms:

dGx,t) 3G 0Gdx_9G 3G [8-31)
dt ot ox dt ot " ox

The first term on the right represents the change of G at a fixed point i
in space, and the second term represents the change of G as the observer
moves with the fluid into a region in which G is different. In three
dimensions, Eq. [3-31] generalizes to

dG oG
e E-+(u -G [3-32]

|

l

This is called the convective derivative and is sometimes written DG/Dt, I
. Note that (u- V) is a scalar differential operator. Since the sign of this |
- term is sometimes a source of confusion, we give two simple examples.
Figure 3-1 shows an electric water heater in which the hot water

has risen to the top and the cold water has sunk to the bottom. Let & (x, )
be the temperature 7"; VG is then upward. Consider a fluid element
L near the edge of the tank. If the heater element is turned on, the fluid
 element is heated as it moves, and we have dT/dt > 0. If, in addition, a
i paddle wheel sets up a flow pattern as shown, the temperature in a fixed
fluid element is lowered by the convection of cold water from the bottom.
In this case, we have 87/0x > 0 and u, >0, so that uw-V7T > 0. The
temperature change in the fixed element, 8T/dt, is given by a balance
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As a second example we
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is normally a gradient of S such that 5/9x < 0. When the tide comes

in, the entire interface between salt and fresh water moves upstream,
and u, > 0. Thus

—=—u,—>0 [3-34]
X

meaning that the salinity increases at any given point. Of course, if it
rains, the salinity decreases everywhere, and a negative term dS/dt is to
be added to the middle part of Eq. [3-34].

As a final example, take G to be the density of cars near a freeway
entrance at rush hour. A driver will see the density around him increasing
as he approaches the crowded freeway. This is the convective term
{u - V}G. At the same time, the local streets may be filling with cars that
enter from driveways, so that the density will increase even if the observer
does not move. This is the dG/at term. The total increase seen by the
observer is the sum of these effects.

In the case of a plasma, we take G to be the fluid velocity u and
write Eq. [3-30] as

]
mn[s? +{u- V)u] =gn(E+ ux B) [3-35)
where du/dt is the time derivative in a fixed frame.

The Stress Tensor

When thermal motions are taken into account, a pressure force has to
be added to the right-hand side of Eq. [3-35]. This force arises from the

~
rd
i | rd
, / /
xo-Ax X x0+Ax

O

Origin of the elements of the stress tensor.
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FIGURE 3-3
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