Modern Physics Car HW due 25 Jan 2007 El Ha Denve 7, #8, 44, 49-50 Denve T for Lorentz transformation he husen x-coordinate in vest frame S and x' coordinate in frame S' moving with greed v in x direction (1-13)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-14)

(1-1 First, solve (1-13) and (1-14) for t' by lliminating x': $x = \mathcal{J}\left[\mathcal{J}(x-y+1) + y + y'\right] = \mathcal{J}^{2}(x-y+1) + \mathcal{J}'y + y'$ $\mathcal{J}' + y' + y' + y'$ $t' = -\mathcal{J}'(x-y+1) + x$ $t' = -\mathcal{J}'(x-y+1) + x$ $\sqrt{y'} + x' + y' + y'$ $\sqrt{y'} + x' + y' + y'$ $\frac{(1-15)}{t} = \frac{1}{2} \left[\frac{1-3}{2} + \frac{1}{2} + \frac{1}{2} \right]$ This transformation must work for a flash of Right at the origin in either the (1-12) norma frame x2+y2+Z2=c2+2 or the (1-17) moring frame x'2+y12+212=c2+22 (notey'=y, Z'=2) Substitute (1-13) and (1-15) into (1-17): $\frac{1}{y^{2} + y^{2} + 2^{2}} = c^{2} \int_{0}^{2} \left[t + \frac{x}{y} \left(\frac{1-x^{2}}{2^{2}} \right) \right]^{2}$

(1) 12(x=-2xv++12t2)+y2+22=C272(t2+x2/2)2 + 2 t x (1- x2)] (2) This must from form to (1-16) x2+y2+22 = c2+2 Let's just match the x2 terms in (1) and (2) (1) (2) $\chi^{2} = \chi^{2} \chi^{2} - c^{2} \chi^{2} \chi^{2} \left(\frac{1-7^{2}}{7^{2}}\right)^{2}$

the	Consider two ' contain the forence frames. When an observer in each frame it easure following quanti	3
(a)	ne results? Explai The distance be	an
(c)	The value of the The speed of lig	થ્
(e)	The time interv Newton's first k The order of the	ged -
	The value of the	re not
of the	H. A. Lorentz suggested 15 years before Einstein's 1905 paper that the null effect Michelson-Morley experiment could be accounted for by a contraction of that arm e interferometer lying parallel to Earth's motion through the ether to a length	Lp: proper lagh
L = abou	$L_p(1-v^2/c^2)^{-M^2}$. He thought of this, incorrectly, as an actual shrinking of matter. By thow many atomic diameters would the material in the parallel arm of the interferer have had to shrink in order to account for the absence of the expect d shift of 0.4 tringe width? (Assume the diameter of atoms to be about 10^{-10} m.)	L= Lp = contracted
	DL = 4p-L = 4p - 4p = 4p (1- x)	
	Bruomiel expansion: $r = \sqrt{1 - \frac{V^2}{C^2}} = (1 - \frac{V^2}{C^2})^2$	
···	= 1 + 2 (- 12	$+\frac{1}{2}(-\frac{1}{2})\frac{1}{2}(-\frac{V^2}{6^2})^2+\cdots$
	$= 1 - \frac{1}{2} \frac{V^2}{C^2}$	- 1 V4 8 C4 +
	Since Vonto La C approximate fra	$1 - \frac{1}{2} \frac{V^2}{C^2}$
	Since Vearty 2 C, approximate 2 2 then (1- 1/2)=	(-(1-1 V2)=
p,12	Length of interferements arms 4 =	_м
p.9	Speed of Earth "twongh etnor" v=	W _S
	(1- jr) =	
	11=	
	"Shrinkese" = _DL =	atomic diany
	"Shrinkage" = _SL = 10-10 / atomic diameter	

Modern Agrico G2 - Relativity I = 13,35,48

314	The to	tal energy t its mome	of a pe	rticle is	twice	its rest	energy.	(a) P	ind w/a	for th	e particle
	now the	t its mome	ntum is	given b	y _P = q	(3) ^{1/2} #	C.	.)	;		

	Tool the radius and g for HOLE PE, F= Catellife Earth M D V Eliminate V from Q &	<u>Gull = m</u> r ² = <u>21</u> tr T	V ² → V	b,6: 7=/ D
	Satellise Earth DV	<u>Gull = m</u> r ² = <u>21</u> tr T	V ² → V	0,13.7.7
5	Helper Fig F= Satellike Earth M D V Eliminate V from D &	Gull = M r ² = 2xr T	V ² → V	D / Z =
	Eliminate V from Q &	$\frac{GuM}{r^2} = \frac{M}{r^2}$ $= \frac{2\pi r}{T}$	V ² → V	/ 2 =
	Eliminate V from Q &	= 27Tr T		
	Eliminate V from Q &	= <u>27</u> T		
	Eliminate V from Q &	T (2) 20%		
	Eliminate V from Q &	(a) Dadie		
	Eliminate V from Q &	(2) rode		
		V, 0000	for r=	Catellite orb
				rad
+				
			a fall de	
	Then you can find all	at the a	rbitratius 1	rong Gull =
	Then you can find gir, where M: manes Ea	# 6-	nav constr	et rz
	100000000000000000000000000000000000000	<u> </u>	, , , , , , , , , , , , , , , , , , , ,	
+				1974
1,	De us have as he	00 1100	4 . 0000	mal mala di
+-	Inco you have ger, you frequercy shift of =	(au use	The gener	1 (2)
	brequery shift Of =	to-1 =	togh	(2-45)
_	, v	<u></u>	CZ	
	Where h = eltitude = r -	Reach		
-		-cur/7		
\dashv				

248. In a simple thought experiment, Rinstein showed that there is mass associated with electromagnetic radiation. Consider a box of length L and mass M resting on a frictionless surface. At the left wall of the box is a light source that emits radiation of energy S , which is absorbed at the right wall of the box. According to classical electromagnetic theory, this radiation carries momentum of magnitude $p = Elc$. (a) Find the recoil velocity of the box such that momentum is conserved when the light is emitted. (Since p is small I ad M is large, you may use classical mechanics.) (b) When the light is absorbed at the right wall of the box, the box stops, so the total momentum remains zero. If we neglect the very small velocity of the box, the time it takes for the radiation to travel across the box is $\Delta t = Llc$. Find the distance moved by the box in this time. (c) Show that if the center of mass of the system is to remain at the same place, the radiation must carry mass $m = Elc^2$.
a Paget = E Prox = WV - V =
$\triangle DX = V\Delta t$, $\Delta t = \frac{1}{C}$
$\Delta \chi =$
O Say radiation of mass in is emitted from the left side
O Say radiation of mass in is emitted from the left side of the box at x = - \frac{1}{2}. Then the center of mass
of the box is at
$X_{cm} = \overline{Z_{mixi}} = M_{0} + m(\frac{L}{z}) = \overline{Z_{mixi}} = M_{+m}$
When the radiation is absorbed on the right side of the box. The box has moved a bit, and the center of man is
The box has moved a bit, and the center of man is
nav at
X cuy =
Since this is an internal process the confer of man
Since this is an internal process, the confer of mass Council move: x cm = x cm, Solve for m: