Vector calculus HW #6 due Tues.6.March: Ch.1.6 # 49, 52, 53, 56

Problem 1.49

(a) Let $\mathbf{F}_1 = x^2 \hat{\mathbf{z}}$ and $\mathbf{F}_2 = x \hat{\mathbf{x}} + y \hat{\mathbf{y}} + z \hat{\mathbf{z}}$. Calculate the divergence and curl of \mathbf{F}_1 and \mathbf{F}_2 . Which one can be written as the gradient of a scalar? Find a scalar potential that does the job. Which one can be written as the curl of a vector? Find a suitable vector potential.

(b) Show that $\mathbf{F}_3 = yz\,\hat{\mathbf{x}} + zx\,\hat{\mathbf{y}} + xy\,\hat{\mathbf{z}}$ can be written both as the gradient of a scalar and as the curl of a vector. Find scalar and vector potentials for this function.

Problem 1.52

- (a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a scalar? Find a scalar function that does the job.
- (b) Which can be expressed as the curl of a vector? Find such a vector.

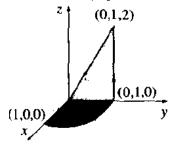
Problem 1.15 Calculate the divergence of the following vector functions:

(a)
$$\mathbf{v}_a = x^2 \,\hat{\mathbf{x}} + 3xz^2 \,\hat{\mathbf{y}} - 2xz \,\hat{\mathbf{z}}.$$

(b)
$$\mathbf{v}_h = xy\,\hat{\mathbf{x}} + 2yz\,\hat{\mathbf{y}} + 3zx\,\hat{\mathbf{z}}$$
.

(c)
$$\mathbf{v}_C = y^2 \,\hat{\mathbf{x}} + (2xy + z^2) \,\hat{\mathbf{y}} + 2yz \,\hat{\mathbf{z}}.$$

Problem 1.53 Check the divergence theorem for the function


$$\mathbf{v} = r^2 \cos \theta \,\hat{\mathbf{r}} + r^2 \cos \phi \,\hat{\boldsymbol{\theta}} - r^2 \cos \theta \sin \phi \,\hat{\boldsymbol{\phi}},$$

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure you include the entire surface. [Answer: $\pi R^4/4$]

Problem 1.56 Compute the line integral of

$$\mathbf{v} = (r\cos^2\theta)\,\hat{\mathbf{r}} - (r\cos\theta\sin\theta)\,\hat{\boldsymbol{\theta}} + 3r\,\hat{\boldsymbol{\phi}}$$

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coordinates). Do it either in cylindrical or in spherical coordinates. Check your answer, using Stokes' theorem. [Answer: $3\pi/2$]

