CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY

[n S, meanwhile, it has moved a distance
di = y(dx — vdt),

as we see from (1), in a time given by (iv):
df =y (dt — %dx) .
c

. dx y(dx — vdt) (dx/dt —v) w—v
= = = ) (12.20}
di — y{dt—v/tdx) 11— vje2dxjdt | —uvjc?

The velocity in & is therefore

This is Einstein’s velocity addition rule. To recover the more transparent notation of Eq. 12.3,
let A be the particle, B be S, and C be S:thenu = vqp, it = vac,and v = vCp = —UBCH
so Eq. 12.20 becomes ’
pac = vap 1+ YBC ’
1+ (vapvpc/c?)

as before.

Problem 12.12 Sclve Eqs. 12.18 for x, ¥, z, t in terms of X, ¥, z, I, and check that you recover
Eqs. 12.19.

Problem 12.13 Sophie Zabar, clairvoyante, cried out in pain at precisely the instant her twin |
brother, 500 km away, hit his thumb with a hammer. A skeptical scientist observed both events
(brother’s accident, Sophie’s cry) from an airplane traveling at %c to the right (see Fig. 12.19).

Which event occurred first, according to the scientist? How much earlier was it, in seconds?

Problem 12.14

(a) In Ex. 12.6 we found how velocities in the x direction transform when you go from Sto |
§. Derive the analogous formulas for velocities in the y and z directions.

{b) A spotlight is mounted on a boat 50 that its beam makes an angle & with the deck (Fig. 12.20).
If this boat is then set in motion at speed v, what angle # does an observer on the dock say the
beam makes with the deck? Compare Prob. 12.10, and explain the difference. :

Problem 12.15 You probably did Prob. 12.4 from the point of view of an observer on the |
ground. Now do it from the point of view of the police car, the outlaws, and the bullet. That §
is, fill in the gaps in the following table: '

speed uf — .
peec o Ground | Police | Outlaws
T

elative to |

| Ground 0 e ic

Police e

Outlaws
Bullet

Bullet

Do they escape?

—
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which is the inescapable conclusion. There cannot be a law of contraction (or expansion)
of perpendicular dimensions, for it would lead to irreconcilably inconsistent predictions.

Problem 12.9 A Lincoln Continental is twice as long as a VW Beetle, when they are at rest.
As the Continental overtakes the VW, going through a speed trap, a (stationary) policeman
observes that they both have the same length. The VW is going at half the speed of light. How
fast is the Lincoln going? (Leave your answer as a multiple of ¢.)

Problem 12.10 A sailboat is manufactured so that the mast leans at an angle 8 with respect to
the deck. An observer standing on a dock sees the boat go by at speed v (Fig. 12.14). What
angle does this observer say the mast makes?

Figure 12.14 Figure 12.15

Problem 12,11 A record turntable of radius R rotates at angular velocity « (Fig. 12.15). The
circumference is presumably Lorentz-contracted, but the radius (being perpendicular to the
velocity) is rot. What's the ratio of the circumference to the diameter, in terms of w and R?
According to the rules of ordinary geometry, that has to be r. What’s going on here? [This
is known as Ehrenfest’s paradox; for discussion and reterences see H. Arzelies, Relativistic
Kinematics, Chap. IX (Elmsford, NY: Pergamon Press, 1966} and T. A. Weber, Am. J. Phys.
65, 486 (1997).]

12.1.3 The Lorentz Transformations

Any physical process consists of one or more events. An “event” is something that takes
place at a specific location (x, y, z), at a precise time (). The explosion of a firecracker,
for example, is an event; a tour of Europe is not. Suppose that we know the coordinates
(x, ¥, z) of a particular event E in one inertial system S, and we would like to calculate the
coordinates (X, ¥, z, t) of that same event in some other inertial system S. What we need

is a “dictionary” for translating from the language of S to the language of S.
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Depending on the two events in question, the interval can be positive, negative, or zero:

1. If I < 0 we call the interval timelike, for this is the sign we get when
the two occur at the same place (d = 0), and are separated only temporally. ’

2. 1f I = 0 we call the interval spacelike, for this is the sign we get when |, .7
the two occur at the same time (t = 0), and are separated only spatially.

3. If I = 0 we call the interval lightlike, for this is the relation that holds
when the two events are connected by a signal traveling at the speed of light.

If the interval between the two events is timelike, there exists an inertial system (accessible
by Lorentz transformation) in which they occur at the same point. For if I hop on a train
going from (A) to (B) at the speed v = d/t, leaving event A when it occurs, I shall be
just in time to pass B when ir occurs; in the train system, A and B take place at the same
point. You cannot do this for a spacelike interval, of course, because v would have to be
greater than ¢, and no observer can exceed the speed of light (y would be imaginary and the
Lorentz transformations would be nonsense). On the other hand, if the interval is spacelike,
then there exists a system in which the two events occur at the same time (see Prob. 12.21).

Problem 12.2¢
{a) Event A happens at point (x4 = 5. y4 = 3,24 = 0} and at time 14 given by cig = I3;
event B occurs at (10, 8, 0) and crg = 5, both in system &.

(1) What is the invariant interval between A and B?

(ii) Is there an inertial system in which they occur simultaneously? If so, find its velocity
(magnitude and direction) relative to S.

(iii) Is there an inertial system in which they occur at the same point? If so, find its velocity
relative to &

(b} Repeat part (a) for A = (2.0.0), ¢t = l;and B = (5,0,0), ct = 3.

Problem 12.21 The coordinates of event A are (x4, 0, 0), t 4, and the coordinates of event B
are (xg,0,0), rg. Assuming the interval between them is spacelike, find the velocity of the
system in which they are simultaneous.

(iii) Space-time diagrams. If you want to represent the motion of a particle graphically,
the normal practice is to plot the position versus time (that is, x runs vertically and ¢
horizontally). On such a graph, the velocity can be read off as the slope of the curve. For
some reason the convention is reversed in relativity: everyone plots position horizontally
and time (or, better, x° = ¢r) vertically. Velocity is then given by the reciprocal of the
slope. A particle at rest is represented by a vertical line; a photon, traveling at the speed of
light, is described by a 45° line; and a rocket going at some intermediate speed follows a
line of slope ¢/v = 1/8 (Fig. 12.21). We call such plots Minkowski diagrams.

The trajectory of a particle on a Minkowski diagram 1s called a world line. Suppose
you set out from the origin at time + = (. Because no material object can travel faster
than light, your world line can never have a slope less than 1. Accordingly. your motion is

/o
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Finally, conservation of energy says that

Eg+mc? = E+E.= E +Jm2ct + pic?

E+ \/mzc"’ + E% —2EgE cos@ + EZ.

Solving for E, I find that
1

E= . 12.57
(1 cos8/mc?) + (1/ Eq} ¢ )
The answer looks nicer when expressed in terms of photon wavelength:
h
E—=hv=—,
A
80 L
A =hig+ —(1 —cosd). (12.58)
mco

The quantity (h/mc) is called the Compton wavelength of the electron.

Problem 12.31 Find the velocity of the muon in Ex. 12.8.

Problem 12.32 A particle of mass m whose total energy is twice its rest energy collides with
an identical particle at rest. If they stick together, what is the mass of the resulting composite
particle? What is its velocity?

Problem 12.33 A neutral pion of (rest) mass m and (relativistic) momentum p = %mc decays
into two photons, One of the photons is emitted in the same direction as the original pion, and
the other in the opposite direction. Find the (relativistic) energy of each photon.

Problem 12.34 In the past, most experiments in particle physics involved stationary targets:
one particle (usually a proton or an electron) was accelerated to a high energy E, and collided
with a target particle at rest (Fig. 12.2%9a). Far higher relative energies are obtainable (with
the same accelerator) if you accelerate both particles to energy E, and fire them at each other
(Fig. 12.29b). Classically, the energy E of one particle, relative to the other, is just 4E (why?}—
not much of a gain (only a factor of 4). But relativistically the gain can be enormous. Assuming
the two particles have the same mass, m, show that
2
B=2E a2 (12.59)

m(.‘2

o-— O o— 0

Target E E

Figure 12.29
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as one would certainly expect (after all, the loop as a whole is not moving). But relativistically
p = ¥ Mu, and we get

Ml
pP=yeMNiuy —y-MN_u_ = —Q'(V+ — ¥

which is not zero, because the particles in the upper segment are moving faster.

In fact, the gain in energy (y M 2y, as a particle goes up the left segment, is equal to the work
done by the electric force, @ Ew, where w is the height of the rectangle, so
_ QEw
V+ Y* - MC2 *
and hence
HHEw
7

p=
C

But /{w is the magnetic dipole moment of the loop; as vectors, m points into the page and p
is to the right, so

1
= —(m x E).
p=3l )

Thus a magnetic dipole in an electric field carries linear momentum, even though il is rot
moving! This so-called hidden momentum is strictly relativistic, and purely mechanical; it
precisely cancels the clectromagnetic momentum stored in the fields (see Ex. 3.3; note that
both results can be expressed in the form p = 1/ V/cz).

Problem 12.36 In classical mechanics Newton's law can be written in the more familiar form
F = ma. The relativistic equation. F == dp/dt, cannor be so simply expressed. Show, rather,

that
+ "("'a}], (12.73)

Vv : [
a
I —uZ/e2 2 —u?

where a = du/dt is the ordinary acceleration.

F=

Problem 12.37 Show that it is possible to outrun a light ray, if you're given a sufficient head
start, and your feet generate a constant force.

Problem 12.38 Define proper acceleration in the obvious way:

gt AR

at =" = 7 (12.74)

(a) Find 2% and & in terms of u and a (the ordinary acceleration).
(b) Express oot in terms of u and a.
(c) Show that n#a;, = 0.

(d) Write the Minkowski version of Newton's second law, Eq. 12.70, in terms of at. Evaluate
the invariant product K#n,,.
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Problem 12.39 Show that

=Py cost e

K K"
# 1 —u?fe?
where @ is the angle between m and F.

Problem 12.40 Show that the {ordinary) acceleration of a particle of mass m and charge g,
moving at velocity u under the influence of electromagnetic fields E and B, is given by

g 1
a " u=/c [ +u x Czu(u )]

[Hint; Use Eq. 12.73.]

12.3 Relativistic Electrodynamics

12.3.1 Magnetism as a Relativistic Phenomenon

Unlike Newtonian mechanics, classical electrodynamics is already consistent with special
relativity. Maxwell’s equations and the Lorentz force law can be applied legitimately in
any inertial system. Of course, what one observer interprets as an electrical process another
may regard as magnetic, but the actual particle motions they predict will be identical, To
the extent that this did nor work out for Lorentz and others, who studied the question in the
late nineteenth century, the fault lay with the nonrelativistic mechanics they used, not with
the electrodynamics. Having corrected Newtonian mechanics, we are now in a position
to develop a complete and consistent formulation of relativistic electrodynamics, But |
emphasize that we will not be changing the rules of electrodynamics in the slightest—
rather, we will be expressing these rules in a notation that exposes and illuminates their
relativistic character. As we go along, T shall pause now and then to rederive, using the
Lorentz transformations, results obtained earlier by more laborious means, But the main
purpose of this section is to provide you with a deeper understanding of the structure of
electrodynamics—Ilaws that had seemed arbitrary and unrelated before take on a kind of
coherence and inevitability when approached from the point of view of relativity.

To begin with I’d like to show you why there had to be such a thing as magnetism,
given electrostatics and relativity, and how, in particular, you can calculate the magnetic
force between a current-carrying wire and a moving charge without ever invoking the laws
of magnetism.'* Suppose you had a string of positive charges moving along to the right
at speed v. I'll assume the charges are close enough together so that we may regard them 3
as a continuous line charge A. Superimposed on this positive string is a negative one, —\
proceeding to the left at the same speed v. We have, then, a net current to the right, of
magnitude

[ =2, (12.75)

Y This and several other arguments in this section are adapted from E. M. Purcell’s Electricity and Magnetism,
2d ed. (New York: McGraw-Hill, 1985).
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RELATIVISTIC ELECTRODYNAMICS

Problem 12.41 Why can’t the electric field in Fig. 12.35b have a z component? After all, the
magnetic field does.

Problem 12.42 A parallel-plate capacitor, at rest in Sp and tilted at a 45° angle to the xg axis,
carries charge densities £og on the two plates (Fig. 12.41). System S is moving to the right
at speed v relative to S.

{a) Find Eg, the field in 5.
(b) Find E, the field in S.
(c) What angle do the plates make with the x axis?

(d} Is the field perpendicular to the plates in S?

Figure 12.41

Problem 12.43

{a) Check that Gauss’s law, [ E - da = (1/€p}Qenc, is obeyed by the field of a point charge in
uniform motion, by integrating over a sphere of radius R centered on the charge.

(b) Find the Poynting vector for a point charge in uniform motion. (Say the charge is going in
the z direction at speed v, and calculate § at the instant g passes the origin.)
Problem 12.44

(a) Charge g 4 is at rest at the origin in system &, charge g g flies by at speed v on a trajectory
parallel to the x axis, but at y = d. What is the electromagnetic force on ¢ g as it crosses the
v axis?

(b) Now study the same problem from system 5. which moves to the right with speed v. What
is the force on g when g 4 passes the ¥ axis? [Do it two ways: (i) by using your answer to (a)
and transforming the force; (ii} by computing the fields in & and using the Lorentz force law.]
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Figure 12.42

Problem 12.45 Two charges ¢, are on parallel trajectories a distance o apart, moving with
equal speeds v in opposite directions. We're interested in the force on +4g due to —g at the
instant they cross (Fig. 12.42}. Fill in the following table, deing all the consistency checks you
can think of as you go along.

System A System 8 System C
(Fig. 12.42) | (4q atrest) | (—q at rest)

E at +¢q due to —¢:
B at +g due to —¢q:
F on +¢ due to —g:

Problem 12.46

(a) Show that (E - B) is relativistically invariant.

(b) Show that (E2 — ¢? B?) is relativistically invariant.

(¢) Suppose that in one inertial system B = 0 but E 3 0 (at some point £). Is it possible to
find another system in which the electric field is zero at P?

Problem 12.47 An electromagnetic plane wave of (angular) frequency @ is traveling in the
x direction through the vacuum. It is polarized in the v direction, and the amplitude of the
electric field is Ep.

(a) Write down the electric and magnetic fields, E(x, y, z, ¢} and B(x, v, z,¢). [Be sure to
define any auxiliary quantities you introduce, in terms of w, Eg, and the constants of nature.]

{b) This same wave is observed from an inertial system § moving in the x direction with speed
v relative to the eriginal system 5. Find the electric and magnetic fields in &, and €xpress
them in terms of the § coordinates: E(x, %,z,7) and B(¥, ¥, z, F). [Again, be sure to define
any auxiliary quantities you introduce. ]

{c) What is the frequency @ of the wave in S7 Interpret this result. What is the wavelength
A of the wave in §? From & and X, determine the speed of the waves in §. Is it what you
expected?
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