Problem 12.41 Why can't the electric field in Fig. 12.35b have a z component? After all, the *magnetic* field does.

Problem 12.43

- (a) Check that Gauss's law, $\int \mathbf{E} \cdot d\mathbf{a} = (1/\epsilon_0)Q_{\rm enc}$, is obeyed by the field of a point charge in uniform motion, by integrating over a sphere of radius R centered on the charge.
- (b) Find the Poynting vector for a point charge in uniform motion. (Say the charge is going in the z direction at speed v, and calculate S at the instant q passes the origin.)

Problem 12.44

- (a) Charge q_A is at rest at the origin in system S; charge q_B flies by at speed v on a trajectory parallel to the x axis, but at y = d. What is the electromagnetic force on q_B as it crosses the y axis?
- (b) Now study the same problem from system \bar{S} , which moves to the right with speed v. What is the force on q_B when q_A passes the \bar{y} axis? [Do it two ways: (i) by using your answer to (a) and transforming the force; (ii) by computing the fields in \bar{S} and using the Lorentz force law.]

Problem 12.45 Two charges $\pm q$, are on parallel trajectories a distance d apart, moving with equal speeds v in opposite directions. We're interested in the force on +q due to -q at the instant they cross (Fig. 12.42). Fill in the following table, doing all the consistency checks you can think of as you go along.

	System <i>A</i> (Fig. 12.42)	System B (+q at rest)	System C ($-q$ at rest)
E at $+q$ due to $-q$:			
B at $+q$ due to $-q$:	<u> </u>		
F on $+q$ due to $-q$:			

Problem 12.43

(a) Check that Gauss's law, $\int \mathbf{E} \cdot d\mathbf{a} = (1/\epsilon_0)Q_{\rm enc}$, is obeyed by the field of a point charge in uniform motion, by integrating over a sphere of radius R centered on the charge.

(12,92)
$$E = \frac{1}{4\pi E_0} \frac{3(1-\frac{v^2}{E^2})}{(1-\frac{v^2}{C^2}Sin^2\theta)^2/2} \frac{R^2}{R^2} \int E \cdot d\vec{a} = \int \frac{R^2 \sin^2\theta d\theta d\theta}{R^2 \sin^2\theta} d\theta d\theta$$

$$= 2\pi \int E \sin^2\theta d\theta d\theta$$

$$= \int \frac{V^2}{C^2}Sin^2\theta = \int \frac{V^2}{C^2}(1-u^2) = \int \frac{V^2}{C^2} + \frac{v^2}{C^2}u^2 = \int \frac{Sin^2\theta}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C^2} = \int \frac{du}{C^2} + \frac{v^2}{C^2} + \frac{v^2}{C$$

$$where = \frac{C^2}{\sqrt{2}-1} \cdot \sqrt{\frac{u^4}{(a^2+u^2)^2/2}} =$$

(b) Find the Poynting vector for a point charge in uniform motion. (Say the charge is going in the z direction at speed v, and calculate S at the instant q passes the origin.)

(12.11) Example 12.14
$$B = \frac{M_0}{4\pi} \frac{9V(1-\frac{V^2}{c^2}) \sin \theta}{[1-\frac{V^2}{c^2} \sin^2 \theta]^{\frac{3}{2}} R^2} \hat{\theta}$$

(12.92) Example 12.13
$$\bar{E} = 4\pi \epsilon_0 f \left(1 - \frac{\sqrt{2}}{\epsilon^2}\right)$$
 \hat{R}
 $\rho = 627 - 8$ $\left[1 - \frac{\sqrt{2}}{\epsilon^2} 8 \dot{m}^2 b \right]^{3/2} R^2$

- (a) Charge q_A is at rest at the origin in system S; charge q_B flies by at speed v on a trajectory parallel to the x axis, but at y = d. What is the electromagnetic force on q_B as it crosses the y axis?
- (b) Now study the same problem from system \bar{S} , which moves to the right with speed v. What is the force on q_B when q_A passes the \tilde{y} axis? [Do it two ways: (i) by using your answer to (a) and transforming the force; (ii) by computing the fields in \bar{S} and using the Lorentz force law.]

Force on go is F = 9 E, =

In Now that g_A is moving, its field at y=d if g_1 was by (12.12) f_A $f_$

Simplify Ex=

What is By? Is I sero? It not, what will be the magnetic force on go?

Fa=

Problem 12.46

- (a) Show that (E · B) is relativistically invariant.
- (b) Show that $(E^2 c^2 B^2)$ is relativistically invariant.
- (c) Suppose that in one inertial system $\mathbf{B} = 0$ but $\mathbf{E} \neq 0$ (at some point P). Is it possible to find another system in which the electric field is zero at P?

For motion along x with speed v,

(12.08)

 $\overline{E}_{n} = E_{x}$ $\overline{E}_{y} = \gamma'(E_{y} - VB_{z})$ $\overline{E}_{z} = \delta'(E_{z} + VB_{y})$

 $B_n = B_n$ $B_y = \gamma'(B_y + c_z E_z)$ $B_z = \gamma'(B_z - c_z E_y)$

E.B) = ExBx + EyBy + EzBz. (In the frame of rest) In the moning frame,

E.B=

Problem 12.47 An electromagnetic plane wave of (angular) frequency ω is traveling in the x direction through the vacuum. It is polarized in the y direction, and the amplitude of the electric field is E_0 .

- (a) Write down the electric and magnetic fields, E(x, y, z, t) and B(x, y, z, t). [Be sure to define any auxiliary quantities you introduce, in terms of ω , E_0 , and the constants of nature.]
- (b) This same wave is observed from an inertial system \bar{S} moving in the x direction with speed v relative to the original system S. Find the electric and magnetic fields in \bar{S} , and express them in terms of the \bar{S} coordinates: $\bar{E}(\bar{x}, \bar{y}, \bar{z}, \bar{t})$ and $\bar{B}(\bar{x}, \bar{y}, \bar{z}, \bar{t})$. [Again, be sure to define any auxiliary quantities you introduce.]
- (c) What is the frequency $\tilde{\omega}$ of the wave in \tilde{S} ? Interpret this result. What is the wavelength $\tilde{\lambda}$ of the wave in \tilde{S} ? From $\tilde{\omega}$ and $\tilde{\lambda}$, determine the speed of the waves in \tilde{S} . Is it what you expected?

For motion in the 2 direction

(9.48) $E(2,t) = E_0 \cos(kz \cdot \omega t) \hat{x}$ $B(2,t) = \frac{E_0}{c} \cos(kz \cdot \omega t) \hat{y}$ $k = \frac{\omega}{c}$ A 376

For a wave traveley in the x direction: E(x,t) = B(x,t) = C(x,t) = C

Transform the fields with (12.08) as usual; let $\alpha = \pi(1-\frac{1}{2}) = \sqrt{\frac{1-\frac{1}{2}}{1+\frac{1}{2}}}$ $\overline{E}_{x} = \overline{E}_{y} = \overline$

Inverse Lovertz fransformation (12.19) x=8(x+v+), t=8(++=x)

ky-wt=

 $\bar{E}(\bar{x},\bar{g},\bar{z},\bar{t})=$

B(x, y, z, t)=