Physical Systems — spring 2007
EM HW 2a Tues.10 April 2007 Griffiths Ch.7 #34, 42, 53. Extra: 58 (a-c)

Problem 7.34 Suppose

1 ¢
E(r,t) = ———=0(vt — PF; )=
(r, ) PR (vt —)F; Br.) =0
(the theta function is defined in Prob. 1.45b). Show that these fields satisty all of Maxwell’s
equations, and determine p and J. Describe the physical situation that gives rise to these fields.

(b) Let 8(x) be the step function:

1, ifx >0
f(x) = . (195
0, ifx <0

Show that d8/dx = 8(x).

Problem 7.42 In a perfect conductor, the conductivity is infinite, so E = 0 (Eq. 7.3), and any
net charge resides on the surface (just as it does for an imperfect conductor, in electrostatics)

(a) Show that the magnetic field is constant (9B/9t = 0), inside a perfect conductor.

(b) Show that the magnetic flux through a perfectly conducting loop is constant.

‘ A superconductor is a perfect conductor with the additional property that the (constant) B
inside is in fact zero. (This “Aux exclusion” is known as the Meissner effect.!$)

(c) Show that the current in a superconductor is confined to the surface,

(d) Superconductivity is lost above a certain critical temperature (T,), which varies from one
material to another. Suppose you had a sphere (radius a) above its critical temperature, and
you held it in a uniform magnetic field ByZ while cooling it below 7. Find the induced surface
current density K, as a function of the polar angle 6.

Problem 7.53 Two coils are wrapped around a cylindrical form in such a way that the same
Jlux passes through every turn of both coils. (In practice this is achieved by inserting an iron
core through the cylinder; this has the effect of concentrating the flux.) The “primary” coil
has &) turns and the secondary has N7 (Fig. 7.54). If the current 7 in the primary is changing,
show that the emf in the secondary is given by
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where &) is the (back) emf of the primary. [This is a primitive transformer—a device for
raising or lowering the emf of an alternating current source. By choosing the appropriate
number of turns, any desired secondary emf can be obtained. If you think this violates the
conservation of energy, check out Prob. 7.54.]
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Problem 7.54 A wansformer (Prob. 7.53) takes an input AC voltage of amplitude Vi, and
delivers an output voltage of amplitude V,, which is determined by the turns ratio (V2/ V| =
Np/Ny). If Ny > Nj the output voltage is greater than the input voltage. Why doesn’t this
violate conservation of energy? Answer: Power is the product of voltage and current; evidently
if the voltage goes up, the current must come down. The purpose of this problem is to see
exactly how this works out, in a simplified model.
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(a) In an ideal transformer the same flux passes through all turns of the primary and of the
secondary. Show that in this case M2 = L, L5, where M is the mutual inductance of the coils,
and Ly, Ly are their individual self-inductances.

(b} Suppose the primary is driven with AC voltage Vi, = V] cos (wf), and the secondary is
connected to a resistor, . Show that the two currents satisfy the relations
dl dl> dl; dl
Li—+M—=YV, t); Lr—+M— =—-DOR.
Ry + I 1 cos {(w?) 2, -+ Tt hR |
(c) Using the result in (a), solve these equations for I1(t) and I(t). Assume I; has no DC
component.

(d) Show that the output voltage (Vou=I2R) divided by the input voltage (Vi) is equal to
the turns ratio: Vin/Vour = N2/N;.

(e) Calculate the input power (Pin = Vi, I1) and the output power (Pout = Vout I2) and show
that their averages over a full cycle are equal.

EXTRA:

Problem 7.58 A certain transmission line is constructed from two thin metal “ribbons,” of
width w, a very small distance # < w apart. The current travels down one strip and back
along the other. In each case it spreads out uniformly over the surface of the ribbon.

(a) Find the capacitance per unit length, C.
(b) Find the inductance per unit length, £.

{c) What is the product £C, numerically? [ and C will, of course, vary from one kind of
transmission line to another, but their product is a universal constant——check, for example, the
cable in Ex. 7.13—provided the space between the conductors is a vacuum, In the theory of
transmission lines, this product is related to the speed with which a pulse propagates down the

line: v=1/+/£L£C]
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Problem 8.1 Calculate the power (energy per unit time) transported down the cables of Ex. 7.13
and Prob. 7.58, assuming the two conductors are held at potential difference V, and carry current
I (down one and back up the other).

Example 7.13

A long coaxial cable carries current / (the current flows down the surface of the inner cylinder,
radius @, and back along the outer cylinder, radius &) as shown in Fig. 7.39. Find the magnetic
energy stored in a section of length /.
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Solution: According to Ampere’s law, the ficld between the cylinders is

uol -
B=—¢.
23’!.5‘¢

Elsewhere, the field is zero. Thus, the energy per unit volume is
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The energy in a cylindrical shell of length . radius s, and thickness ds, then, 1s at =~ ?KJ g ‘J 3
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Integrating from a 10 b, we have;
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By the way, this suggests a very simple way to calculate the self-inductance of the cable.
According to Eq. 7.29, the energy can also be written as %LI 2, Comparing the two expres-

sions,12
L=y (9) :
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This method of calculating self-inductance is especially useful when the currentis not confined
to a single path, but spreads over some surface or volume. In such cases different parts of the
current may circle different amounts of flux, and it can be very tricky to get L directly from

Eq. 7.25.



