
Physical Systems - spring 2007

EM HW 3a Tues. 17 April 2007 Griffiths Ch. 8.2 # 5

Froblem 8.5 Consider an infinite parallel-plate capacitor, with the lower plate (at z = -d/2) carrying the charge density $-\sigma$, and the upper plate (at $z=\pm d/2$) carrying the charge density

(a) Determine all nine elements of the stress tensor, in the region between the plates. Display your answer as a 3×3 matrix:

$$\begin{pmatrix}
T_{xx} & T_{xy} & T_{xz} \\
T_{yx} & T_{yy} & T_{yz} \\
T_{zx} & T_{zy} & T_{zz}
\end{pmatrix}$$

(8.19)

Maxwell stress tensor.

$$T_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2 \right).$$

are the same $(\delta_{xx} = \delta_{yy} = \delta_{zz} = 1)$ and zero otherwise $(\delta_{xy} = \delta_{xz} = \delta_{yz} = 0)$. Thus $T_{xx} = \frac{1}{2}\epsilon_0(E_x^2 - E_y^2 - E_z^2) + \frac{1}{2\mu_0}(B_x^2 - B_y^2 - B_z^2).$

$$T_{xy} = \epsilon_0(E_x E_y) + \frac{1}{\mu_0}(B_x B_y),$$

$$T_{NN} = \frac{1}{2} \epsilon_0 \left(0 - 0 - \left(\frac{-\nabla}{6\pi} \right)^2 \right) + \frac{1}{2 \mu_0} \left(0 \right) = \frac{\epsilon_0}{2} \frac{\sigma}{\epsilon_0} = \frac{-\sigma}{2\epsilon}$$

$$T_{xy} = G(0,0) + 0 = 0 = T_{yx}$$

(b) Use	Eq. 8.22 to	determine the	force per	unit area on the	e too niste.	Compane Ro	2 51
	 Teles L 		p		- wp paew.	Cornhaic Cd.	. Z.J1

$$(\nabla \cdot \overrightarrow{\mathbf{T}})_{j} = \epsilon_{0} \left[(\nabla \cdot \mathbf{E}) E_{j} + (\mathbf{E} \cdot \nabla) E_{j} - \frac{1}{2} \nabla_{j} E^{2} \right] + \frac{1}{\mu_{0}} \left[(\nabla \cdot \mathbf{B}) B_{j} + (\mathbf{B} \cdot \nabla) B_{j} - \frac{1}{2} \nabla_{j} B^{2} \right]$$

Thus the force per unit volume (Eq. 8.18) can be written in the much simpler form

$$\mathbf{f} = \mathbf{\nabla} \cdot \mathbf{\hat{T}} - \epsilon_0 \mu_0 \frac{\partial \mathbf{S}}{\partial t},\tag{8.21}$$

The total force on the charges in V (Eq. 8.15) is evidently

$$\mathbf{F} = \oint_{\mathcal{S}} \overrightarrow{\mathbf{T}} \cdot d\mathbf{a} - \epsilon_0 \mu_0 \frac{d}{dt} \int_{\mathcal{V}} \mathbf{S} d\tau. \tag{8.22}$$

(c) What is the momentum per unit area, per unit time, crossing the xy plane (or any other plane parallel to that one, between the plates)?

ductor, the dithe force (2.51) draw the erms of the
ductor, the dithe force (2.51)
(2.51)
draw the
(2.52)
