Physical Systems — spring 2007
QM HW 6a, L and Spherical coordinates, Tues.8 May 2007
Shankar 12.3.1, 12.5.3 (i-iii), 12.5.12, 12.5.13, 12.6.1, 12.6.2

The fact that complex cigenvalues enter the éﬁs;ver, signals tilat we ar:: \'
overlooking the Hermiticity constraint. Let us impose it. The condition

<y | L, I’P2> = {y, f L, ’ p* (12.3.4)
becomes in the coordinate basis £ (v . it S% . t
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If this requirement is to be satisfied for all N and Ya, one can show (upon

integrating by parts) that each g must obey
Vorn "4 ey pered o™ 0y, 0) — yig, 20) (1236)
/ If we impose this constraint on the L, eigenfunctions, Eq. (12.3.3), we find
/ 2% 1 = g2milam ' (12.3.7)
| This forces /, not merely to be real, but also an integral multiple of #:
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One calls m the magnetic quantim number. Notice that {, = mh implies
that y is a single-valued function of 4.

# ) Exercise 12.3.1. Provide the steps linking Eq. (12.3.5) to Eq. (12.3.6).

L Exercise 12.5.3.* (1) Show that (J,) = J,> = 0 in a state | jm).
(ii) Show that in these states '

A = D = LG+ 1) — m]

(use symmetry arguments to relate (J,®> to (J,2).
(iii) Check that AJ, - AJ, from part (ii) satisfies the inequasgity imposed by
the uncertainty principle [Eq. (9.2.9)). (33,22 59y =2 V<V " >

Exercise 12.5.12.% Smoe L?* and L, commute with 77, they should share a
basis with it. Verify that’ Y,"‘—» (—1»Y,»/(Firstshowthat® - n — 0,¢ - d+ 7

under parity. Prove the resulf for Y. Verify that L. does not alter the parity,
thereby proving the result for all ¥,».)




Exercise 12.5.13.* Consider a particle in a state described by Y7
y=Nx+y+ 22)8_{.. ¥y 2500 tw
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where N is a normalization factor.
(i) Show, by rewriting the Y,*!° functions in terms of X, ¥, z, and r, that
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(ii) Using this result, show that for a particle described by y above, P(I, = 0)
=2/3; P(l,= +H) =1/6 =P(l, = —h). ..t Expaad N0 wrenms of b
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Here are the first few Y™ functions:

U=l Y = @y
V¥ = F(3/8xn)%sin O etie
L_:.}" -1 Y° = (3/4n)2cos 6

Yyt = (15/327)2 sin® § e%ié (12.5.39)
, Y 1 — 42(15/8::)”2 sin 6 cos § exid
Lgﬁ T Y0 = (5/162)V%(3 cost O — 1)
Note that
/ Y™ = (—I)m(Ylm)s / (12.5.40)

41 Exercfsp”fz.di.f.‘ﬂ% A particle is described by the wave function
I
ve(r, 8, ) = Ae "% (a, = const)

(i) What is- t.he angular momentum content of the state?
(ii) Assuming wg is an eigenstate in a potential that vanishes as r — oo,
find E. (Match leading terms in Schrédinger’s equation.) - % et
(ili) Having found E, consider finite » and find ¥(r). b
V = / /ﬁ L



Exercise 12.6.2.* Provide the steps connecting Eq. (12.6.3) and Eq. (12.6.5).

e
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12.6. Solution of Rotationally Invariant Problems 5/&#;@4; <
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We now consider a class of problems of great practical interest: prob-
lems where V(r, 6, ¢) = V(r). The Schrodinger equation in spherical coor-

di]:lates b&ﬂ}mﬁs ,{-\{ v Fﬁ- e r— » e A o
_ﬁ' l a a l a ) a I a:
2u (‘F -a?rlTr-!-r’sinﬂ' Tﬁsmﬂ a0 + r2sin? @ a¢:)+ V(")]
s 0. 8) = Bpulrn 0.9) (1261)

Since [H, L] = 0for a spherically symmetric potential, we seek simultancous
eigenfunctions of H, L and L,: J G TS

Vin(r: 6, $) = Ry (Y0, ) (12.6.2)

Feeding in this form, and bearing in mind that the angular part of F*
is just the L® operator in the coordinate basis [up to a factor (—#%®)7,
see Eq. (12.5.36)), we get the radial equation . 324
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Notice that the subscript m has been dropped: neither the energy for the
radial function depends on it. We find, as anticipated earlier, the (27 + 1)-
fold degeneracy of H.

At this point it becomes fruitful to introduce an auxiliary function Ug;
defined as follows:
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and which obeys the equation
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