QM 1b Physical Systems HW Thus.5.April 2007

Math review II: Ch.1.7 - 1.10

Do 1.8.1 (p.45), 1.8.3, 1.8.5, 1.9.2 (p.60), 1.10.1, 1.10.2

Exercise 1.8.1. (a) Find the eigenvalues and normalized eigenvectors of the matrix

$$\Omega = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

į.

(b) Is the matrix Hermitian? Are the eigenvectors orthogonal?

Exercise 1.8.2.* Consider the matrix

$$\Omega = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

- (a) Is it Hermitian?
- (b) Find its eigenvalues and eigenvectors.
- (c) Verify that $U^{\dagger}\Omega U$ is diagonal, U being the matrix of eigenvectors of Ω .

Exercise 1.8.3.* Consider the Hermitian matrix

$$\Omega = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

- (a) Show that $\omega_1 = \omega_2 = 1$; $\omega_3 = 2$.
- (b) Show that $\mid \omega = 2 \rangle$ is any vector of the form

$$\frac{1}{(2a^2)^{1/2}} \begin{bmatrix} 0 \\ a \\ -a \end{bmatrix}$$

(c) Show that the $\omega = 1$ eigenspace contains all vectors of the form

$$\frac{1}{(b^2+2c^2)^{1/2}}\begin{bmatrix}b\\c\\c\end{bmatrix}$$

either by feeding $\omega = 1$ into the equations or by requiring that the $\omega = 1$ eigenspace be orthogonal to $|\omega = 2\rangle$.

Exercise 1.9.2.* If H is a Hermitian operator, show that $U = e^{iH}$ is unitary. (Notice the analogy with c numbers: if θ is real, $u = e^{i\theta}$ is a number of unit modulus.)

Exercise 1.10.1.* Show that $\delta(ax) = \delta(x)/|a|$. [Consider $\int \delta(ax) d(ax)$. Remember that $\delta(x) = \delta(-x)$.]

Exercise 1.10.2.* Show that

$$\delta(f(x)) = \sum_{i} \frac{\delta(x_{i} - x)}{|df/dx_{i}|}$$

where x_i are the zeros of f(x). Hint: Where does $\delta(f(x))$ blow up? Expand f(x) near such points in a Taylor series, keeping the first nonzero term.