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In other words_u—(l) in Eq. (7.3.16) grows as yme?" 0 that p(y) >~ ymeve—u*2
= yme+¥*'2 which is the rejected solution raising its ugly head! Our predic-
ament is now reversed: from finding that every ¢ is allowed, we are now
led to conclude that no ¢ is allowed. Fortunater there is a way out. If ¢

is one of the special values
{’\P’U

-
e, — 2”;' . n=0.12, ... (7.3.18)

the coefficient C,,, (and others dependent on it) vanish. If we choose

C, = 0 when »n is even (or C, = 0 when » is odd) we have aﬁmteﬁpoly- 4

nomial of order » which satisfies the differential equation and behaves as
¥*as y - co:

Cot Cay® + Cpt ot oo 4
v() = u(y)e ¥ = or - e'2 (7.3.19)
Coy G+ GyP + - - Gy

Equation (7.3.18) tells us that energy is quantized: the only_allowed values
Jor E = ¢hw (that is, values that vield solutions in the physical Hilbert
space) are

/ E,=(n+ o, [ n=01,2 .. (7.3.20)

For each value of n, Eq. (7.3.15) determines the corresponding polynomials
of nth order, called Hermite polynomials, H,(y):

Hy(y) =1
Hi(y) =2y
Hy(y} = =2(1 — 2p%) (7.3.21)

Hy(yy = —12(y — 3%
Hy(p) = 12(1 — 4p* + 4%

The arbitrary initial coefficients Cy and C, in H, are chosen according to a
standard convention. The normalized solutions are then

wi‘(Y) " Wins 1/2)ﬁw(x) TI')n(x)

] UL ] menx2 pren 3172
:(TﬁEW) exp(“ T )Hn[( : ) x] (7.3.22)
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We can rearrange th{is/ecﬁ.i,z;tion to the form P .
d? 2m 1
o (E - mmﬂxﬂ)w =0 (7.3.3)

We wish to find all solutions to this equation that lie in the physical Hilbert
space (of functions normalizable to unity or the Dirac delta function).
Follow the approach closely—it will be invoked often in the future.

The first step is to write Eq. (7.3.3) in terms of dimensionless variables.
We look for a new variable y which is dimensionless and related to x by

x =bhby (7.3.4)

where b is a scale factor with units of length. Although any length b (say
the radius of the solar system) will generate a dimensionless variable y,
the idea is to choose the natural length scale generated by the equation
itself. By feeding Eq. (7.3.4) into Eq. (7.3.3), we arrive at

& 2mED? miwb*
d;ﬁ tg v Y =0 (7.3.5)

The last terms suggests that we choose

ﬁ 1/2
b — (——) (7.3.6)
mw
Let us also define a dimensional variable & corresponding to E:
mEb? E

(We may equally well choose & = 2mEb?/#2. Constants of order unity are
not uniquely suggested by the equation. In the present case, our choice of
¢ is in anticipation of the results.) In terms of the dimensionless variables,
Eq. (7.3.5) becomes

=7

y
Sy Qe —yp =0 (1.3.8)

where the prime denotes differentiation with respect to y.

Not only do dimensionless variables lead to a more compact equation,
they also provide the natural scales for the problem. By measuring x and £
in units of (/mw)"* and fiw, which are scales generated intrinsically by the
parameters entering the problem, we develop a fecling for what the words
“small” and “large” mean: for example the displacement of the oscillator




Sec. 7.3 e Quantization of the Oscillator 203

where u approaches A - ¢y (plus higher powers) as y — 0, and ™ (plus
lower powers) as y — oo, To determine u(y) completely, we feed the above \
ansatz into Eq. (7.3.8) and obtain - s e

W' — 2y + Qe — Du =0 (7.3.11)

This equation has the desired features (to be discussed in Exercise 7.3.1)
that indicate that a power-series solution is possible, i.e., if we assume

u(y) = Z} G (13.12)  ~.

the equation will determine the coefficients. [The series begins with n = 0,
and not some negative n, since we know thatasy — 0, u — 4 + ey + 0(»%).]
Feeding this series into Eq. (7.3.11)} we find

o

Y Culn(n — U2 — 2nyn (26 — 1)y"] = 0 (7.3.13)

n=0Q

Consider the first of three pieces in the above series:

8

Z Cnn(n - l)yn—z

Due to the r(r — 1) factor, this series also equals

Can(n — Dy 2

2

18

In terms of a new variable m — n — 2 the series becomes

oo

Z Consa(m + 2)(m + L)y = 2 Coreln + 2)(n + 1)y

since m is a dummy variable. Feeding this equivalent series back into Eq.
(7.3.13) we get

3 P [Crasln + D+ 1) + Cue — 1 — 200} =0 (7.3.14)

Since the functions ™ are linearly independent (you cannot express ™
as a linear combination of other powers of ) each coefficient in the linear
relation above must vanish. We thus find

€y, Qnt1—20)

(?.3.15)

(n+2)n+1




(7.3.23)
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n =
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is rather tedious and will not be discussed here in view of a shortcut to be

H'(y) = 2nH, (7.3.24)
Hoin(y) = 201, nH, (7.3.25)

a5 is the integra]

f N Ho(P)H, . (p)e-v? dy = a,l;,(nlfzznn!) (7.3.26)

which is just the Qg_hg_r;qg_maligi condition of the eigenf'unctip_gs Ynlx) and
V() written ip terms of p — (mawftyvey
We can now €xpress the Propagator ag

Ulx, t; %', 47y — mAn (__'_"_C‘i 2)Hn A4, (Hﬂ‘_"_ ,2)
{(x, 1, %, 1) ﬂZﬂ exp 55X {(x)4, exp X
X Ho(x'y exp[—i(n 1 | Do - 1)) (7.3.27)

Evaluation of this sum is 5 highly formidable task. We will not attempt it
here since we will find an extremely simple way for calculating {/ in Chapter
. 8, devoted to the path integra] formalism, The resyft happens to be

: s ) e imo  (x2 L x'?) cos T 2xx!
; Ven 65,0 = (2m‘ﬁ sin wT) e"p( A 2sin w7 ]

(7.3.28)

where 77— , _ .
o This concludes the solution of the eigenvalye problem. Before analyzing
P our results Jet yg recapitulate oyr Strategy.

J' Step 7 Introduce dimensjon]ess vartables natyraj to the probiem,
i Step 2 Extract the asymptotic (y - “2 ¥ — 0) behavior of g,

i Step 3: Write y as 5 Product of the asymptotic form and an yp-
; known function 4, The function 4 wil] usually be easjer to

Step 4 Try a power series to see jf it will yield a recursion relation
of the form Eq. (7.3.15).
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