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Exercise 7.3.1.* Consider the question why we tried a power-series solution
for Eq. (7.3.11) but not Eq. (7.3.8). By feeding in a series into the latter, verify
that a three-term recursion relation between Crni2, Cu, and C,_, obtains, from
which the solution does not follow so readily. The problem is that v has two
powers of y less than 2ey, while the —y* piece has two more powers of y. In Eq.
(7.3.11) on the other hand, of the three pieces &', —2yu’, and (2¢ — 1)y, the last
two have the same powers of y.

Exercise 7.3.2. Verify that Hy(y) and Hy) obey the recursion relation,
Eq. (7.3.15).

Exercise 7.3.3. If y(x) is even and ¢(x) is_odd under x — —x, show that

r POB) dx — 0 / -

Use this to show that ,(x) and »,(x) are orthogonal. Using the table of Gaussian
integrals in Appendix A.2 verify that v:(x) and w.(x) are orthogonal.

Exercise 7.3.4.* Using Egs. (7.3.23)-(7.3.25), show that

A 12 /
Al X|ny = (Tm—u:-) [8ur sl -+ 1V2 £ 8,0 i) /
/2 ;
| P|n = (mTwﬁ) il8w na(n + 1)M8 — 8,0, 1] ,/ :

Exercise 7.3,5.* Using the symmetry arguments from Exercise 7.3.3 show /
that <n | X [n> = <n | P|n> = 0 and thus that (¥?®> = (4X)* and {P*> = (AP)*

in these states. Show that <1 [ X2 1> = 38/2mw and 1 | P*| 1) = $mwh. Show

that y,(x) saturates the uncertainty bound AX - AP > #/2.

Exercise 7.3.6.* Consider a particle in a potential 5/ )M o 4
V{x) = tmwix®, x>0 9 q - 167 ! ‘ b

What are the boundary conditions on the wave functions now? Find the eigen-
values and eigenfunctions.

We now discuss the eigenvalues and .eigenfunction of.the_oscillator.
The following are the main features:

(i) The energy is quantized. In contrast to the classical oscillator whose
energy is continuous, the quantum osciliator has a discrete set of levels
given by Eq. (7.3.20). Note that the quantization emerges only after we
supplement Schridinger’s equation with the requirement that » be an
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Given the commutation relations between X and P, the ones among
dependent operators follow from the repeated use of the relations

[Q AT = AR, I'} + [, A"

and
(A, ' = Q[4, ' + [£, N4

Since PB obey similar rules (Exercise 2.7.1) except for the lack of emphasis
on ordering of the classical variables, it turns out that if

{w(x, p), Ax, p)} = y(x, p)
then
[(X, P), A(X, P)] = ih['(X, P) (7.4.40)

except for differences arising from ordering ambiguities; hence the formal
similarity between classical and quantum mechanics, first encountered in
Chapter 6.

Although the new form of postulate I provides a general, basis-
independent specification of the quantum operators corresponding to
classical variables, that is to say for “quantizing,” in practice one typically
works in the X basis and also ignores the latitude in the choice of P; and
sticks to the traditional one, P; = —i# 8/0x;, which leads to the simplest
differential equations. The solution to the oscillator problem, given just
the commutation relations (and a little help from Dirac) is atypical.

Exercise 7.4.1.* Compute the matrix elements of X and P in the | n) basis

and compare with the result from Exercise 7.3.4. )l p N
oL e = 77
Esercise 7.4.2.* Find <X, P>, <(X*, (P¥, AX - __AP__/in the state | nD.
e i ’ f"f}p?’, oy

Exercise 7.4.3* (Virial Theorem). The virial theorem in classical mechanics
states that for a particle bound by a potential ¥(r) = ar*, the average (over the
orbit) kinetic and potential energies are related by

T =e(k)V
when e(k) depends only on k. Show that (k) = k/2 by considering a circular
orbit. Using the results from the previous exercise show that for the oscillator

k= 2)
T =<V

in the quantum state |nd.

Exercise 7.4.4. Show that <n | X* | n> = (B2mw)*[3 + 6n(n + 1)1

by
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By projecting the equation
@y Lt

> = gy 107

onto the X basis, we get the normalized eigenfunctions

B It = T )

W ! - L B (757)

A comparison of the above result with Eq. (7.3.22) shows tha
{ - H,(y) = y“fﬁ(y — i)ne—y% (7.5.8)
n dy

We now conclude our rather lengthy discussion of the oscillator. If you
understand this chapter thoroughly, you should have a good grasp of how
quantum mechanics works.

Exercise 7.5.1. Project Eq. (7.5.1) on the P basis and obtain w.(p).

Exercise 7.5.2. Project the relation
alny=n"tln—15
on the X basis and derive the recursion relation
Hy'(y) = 2nHy ()
using Eq. (7.3.22). /
Exercise 7.5.3. Starting with
a - at =2V

and
(a—i—a'f)]n):nmln—1>+(n+l)“2{n+l>

and Eq. (7.3.22), derive the relation
Hn+1(y} = zyHn(y) — 2an—1(y)
Exercise 7.5.4* Thermodynamics of Oscillators. The Boltzman formula
P(!') — e—,&E(t)’,’Z

where

7 = Z g BEW
i



H

,‘y!' -

224 Chap, 7 « The Harmonic Oscillator

]

Lxercise 7.4.5.* At t = 0 a particle starts out in [ w(0)> = 1/2v2(] 05 + | D).
(i) Find | 9(r)>; (ii) find <X (0)> = <y(0) | X | w(0)>, <P©)>, <X(£)>, <P(1)>:
(iii) find <X(¢)> and <P(1)> using Ehrenfestl;s theorem and solve for <X(¢)> and

{P(r)> and compare with part (ii). / A

Exercise 7.4.6.* Show that <a(z)> = e-t9t{g(0)> and that <(at(r)> = etwt
X Lat{0)>.

Exercise 7.4.7. Verify Eq. (7.4.40) for the case
(i) 2=X, A=Xxt4 pe
(ii) =x: A=p

The second case illustrates the ordering ambiguity,

Exercise 7.4.8.* Consider the three angular momentum variables in classical
mechanics:

le = yp. — zp,
ly = Zpy — XP;
Iz = Xpy — Vp:z

(i) Construct L., L,, and Z,, the quantum counterparts, and note that there
are no ordering ambiguities.

(ii) Verify that {I,,{,} = I, [see Eq. (2.7.3) for the definition of the PBI.
(ili) Verify that [L,, L,] = iAL,.

Exercise 7.4.9 (Importanr). Consider the unconventional (but fully accept-
able) operator choice

X —x
L. od
P> —ifi— + f(x)
dx

in the X basis.

(i) Verify that the canonical commutation relation is satisfied.

(i) It is possible to interpret the change in the operator assignment as a
result of a unitary change of the X basis:

Lay — | 2> = etXum | x5 = gigtnin | i
where
&(x) = J- xf(x’) dx’
First verify that
ENX[F> = x8(x — x")
i.e.,

—_—— X
new X basis
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as it should be. But that’s not what we’re interested in right now. The momentum in the fields
is .
Pem = 10€0 f sar = 25 7 L s = P s,
472 2 2 2

This is an astonishing result. The cable is not moving, and the fields are static, and yet we are
asked to believe that there is momentum in the system. If something tells you this cannot be the
whole story, you have sound intuitions. In fact, if the center of mass of a localized system is at
Test, its total momentum st be zero. In this case it turns out that there is “hidden” mechanical
momentum associated with the flow of current, and this exactly cancels the momentum in the
fields. But locating the hidden momentum is not easy, and it is actually a relativistic effect,
so I shall save it for Chapter 12 (Ex. 12.12).

Suppose now that we tum up the resistance, so the current decreases. The changing magnetic
field will induce an electric field (Eq. 7.19):

This field exerts a force on 4-4;

wo dl N wo dl . poidl .
F=M|——1] Klz-M|z=-—Inb+K|z2=—-"—"—"In(b .
[2n ar e ]z [zn e e Tk

The total momentum imparted to the cable, as the current drops from I to 0, is therefore

ugrdl
T

Pmech = [th - In(h/a)Z,

which is precisely the momentum originally stored in the fields. (The cable will not recoil,
however, because an equal and opposite impulse is delivered by the simultaneous disappearance
of the hidden momentum.)

e -
Problem 8.5 Consider an infinite parallel-plate capacitor, with the lower plate (at z = —d/2)
camrying the charge density —o, and the upper plate (at z = +d/2) carrying the charge density
+o.
(a) Determine all nine elements of the stress tensor, in the region between the plates. Display
your answer as a 3 x 3 matrix:
Tix Txy Ty

Tyx Tyy Ty

Topx Ty Tz

(b) Use Eq. 8.22 to determine the force per unit area on the top plate. Compare Eq. 2.51.

(c) What is the momentum per unit area, per unit time, crossing the xy plane (or any other
plane parallel to that one, between the plates)?

(d) At the plates this momentum is absorbed, and the plates recoil (unless there is some
nonelectrical force holding them in position). Find the recoil force per unit area on the top
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Figure 8.6

plate, and compare your answer (o (b). [Note: This is not an additional force, but rather an
alternative way of calculating the same force—in (b) we got it from the force law, and in (d)
we did it by conservation of momentum.]

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field E = E z) is placed
in a uniform magnetic field B = B X, as shown in Fig. 8.6.3

(a) Find the electromagnetic momentum in the space between the plates.

(b} Now a resistive wire is connected between the plates, along the z axis, so that the capacitor
slowly discharges. The current through the wire will experience a magnetic force; what is the
total impulse delivered to the system, during the discharge?

(c) Instead of turning off the electric field (as in (b)), suppose we slowly reduce the magnetic
field. This will induce a Faraday electric field, which in turn exerts a force on the plates. Show
that the total impulse is (again) equat to the momentum originally stored in the fields.

8.2.4 Angular Momentum

By now the electromagnetic fields (which started out as mediators of forces between charges)
have taken on a life of their own. They carry energy (Eq. 8.13)

1
tHem = = (EOE2 + —I‘Bz) s (8.32)
2 o
and momentum (Eq. 8.30)
Pem = 10€0S = eo(E x B), (833) |

and, for that matter, angular momentum:

Lo =T X . = € [r x (E x B)]. (8.34)
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