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what is the subsequent form, f(z, 1)? Evidently, the displacement at point z, at the later

time ¢, is the same as the displacement a distance vt to the left (i.e. at z — vr), back at time
t=0:

flz, 1) = flz—vt,0) = g(z — vr). (9.1)

That statement captures (mathematically) the essence of wave motion. It tells us that the
function f(z, t), which might have depended on z and ¢ in any old way, in fact depends on
them only in the very special combination z — v¢; when that is true, the function fz.n
represents a wave of fixed shape traveling in the z direction at speed v. For example, if A
and b are constants (with the appropriate units),

A

—biz—v 2 .
Az, 1) = AP g = Asin[b(z —vr)], f3(z,0) = b — v 1

all represent waves (with different shapes, of course), but

fa@. 1) = Ae7PETHD and £z 1) = Asinbz) cos(bur)?,

do not.

Why does a stretched string support wave motion? Actually, it follows from Newton’s
second law. Imagine a very long string under tension 7. If it is displaced from equilibrium,
the net transverse force on the segment between z and z + Az (Fig. 9.2) is

AF =Tsin8 — Tsind,

where ¢’ is the angle the string makes with the z-direction at point z + Az, and 6 is the
corresponding angle at point z. Provided that the distortion of the string is not too great,
these angles are small (the figure is exaggerated, obviously), and we can replace the sine

by the tangent:
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surprising is that the most general solution to the wave equation is the sum of a wave to the
right and a wave to the left:

fz 1) =gz —vt) + hiz + vr). (9.6)

(Notice that the wave equation is linear: The sum of any two solutions is itself a solution.)
Every solution to the wave equation can be expressed in this form.

Like the simple harmonic oscillator equation, the wave equation is ubiquitous in physics.
If something is vibrating, the oscillator equation is almost certainly responsible (at least,
for small amplitudes), and if something is waving (whether the context is mechanics or

acoustics, optics or oceanography), the wave equation (perhaps with some decoration) is
bound to be involved.

Problem 9.1 By explicit differentiation, check that the functions f1, f, and Jf3 in the text
satisfy the wave equation. Show that f4 and f5 do nor.

Problem 9.2 Show that the standing wave f(z, 1) = Asin(kz) cos(kur) satisfies the wave

equation, and express it as the sum of a wave traveling to the left and a wave traveling to the
right (Eq. 9.6),

9.1.2 Sinusoidal Waves

(i) Terminology. Of all possible wave forms, the sinusoidal one

f(z. 1) = Acoslk(z — vt) + 8] (9.7

is (for good reason) the most familiar. Figure 9.3 shows this function at time t = 0. A is
the amplitude of the wave (it is positive, and represents the maximum displacement from
equilibrium). The argument of the cosine is called the phase, and § is the phase constant
(obviously, you can add any integer multiple of 27 to § without changing f(z, 1); ordinarily,
| one uses a value in the range 0 < § < 2). Notice that at z = vt — 8/k, the phase is zero;
 let’s call this the “central maximum.” If § = 0, the central maximum passes the origin
'. at time = 0; more generally, §/k is the distance by which the central maximum (and

Central
maximum fz 0)
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Figure 9.7
Now there are, of course, rwo dimensions perpendicular to any given line of propagation,

Accordingly, transverse waves occur in two independent states of polarization: you can
shake the string up-and-down (“vertical” polarization—Fig. 9.8a),

fu(z,1) = Ae'ka=on g (9.34)
or left-and-right (“horizontal” polarization—Fig, 9.8b), T

fu(z,0) = Aeitheanr g (9.35)
or along any other direction in the xy plane (Fig. 9.8¢): ‘

f(z.1) = Aelke—on g (9.36) -

The polarization vector fi defines the plane of vibration.? Because the waves are transverse,
fi is perpendicular to the direction of propagation:
n-z=0. (9.37) ;
In terms of the polarization angle 6,

fi = cosAX + sinh §. (9.38)

Thus, the wave pictured in Fig. 9.8¢ can be considered a superposition of two waves—one
horizontally polarized, the other vertically:

f(z. 1) = (Acos0)e! %90 g 1 (A sing)elki-wn) §. (9.39)

Problem 9.8 Equation 9,36 describes the most general linearly polarized wave on a string,
Linear {or “plane™) polarization (so called because the displacement is parallel to a fixed
vector i) results from the combination of horizontally and vertically polarized waves of the
same phase (Eq. 9.39). If the two components are of equal amplitude, but out of phase by 96°
(say, 8y = 0, 8 = 90°), the result is a circularly polarized wave. In that case:

(a} At a fixed point z, show that the string moves in a circle about the 7 axis. Does it go
clockwise or counterclockwise, as you look down the axis toward the origin? How would you
construct a wave circling the other way? (In optics, the clockwise case is called right circular
polarization, and the counterclockwise, left circular polarization.)

(b) Sketch the string at time 7 = 0.

(¢) How would you shake the string in order to produce a circularly polarized wave?

ZNotice that you can always switch the sign of fi, provided you simultaneously advance the phase constant by
180, since both operations change the sign of the wave.



