PYTHON LAB 2
Calculated Fiction

1/16/08

1.
This exercise will introduce the basics of defining functions.

(a) Get function_example.py from the program webpage; it’s right by the link for the Lab 2 handout. Save a copy of it to your lab2 directory.

(b) Open the file in IDLE. Now run it. What does it do?

(c) Read the code in function_example.py. Notice that the code that was executed in (b) is inside two different functions.

(d) Restart the shell (look in the “Shell” menu of the shell window). In the shell window, type

import function_example

and hit enter. This probably results in an error message; that’s normal. The problem here is that Python doesn’t know where to find the file function_example.py.

(e) From the editing window, run function_example.py. Now, back in the shell window, type

import function_example

and hit enter. This time, hopefully, you won’t get an error message. (If you do, try closing the shell window and starting again. If that doesn’t work, try some other stuff. If you still can’t get import to run without generating an error message, ask for help.) In essence, once you’ve run the file in the shell window, Python knows where to find it, so the import statement works this time.

(f) In the shell window, type

function_example.main()

and hit enter. What happens? (If you get an error, close the shell window and go back to the beginning of (e). If you can’t get this to run without generating an error message, ask for help.)

(g) In the shell window, type

function_example.function2()

and hit enter. What happens? (If you get an error, ask for help.) Now type it again and hit enter. What happens?
You’ve just seen how to define a function – which for now we’ll think of just as a way to organize our code into easy-to-test sections – and how to import it into Python, as well as how to run a function once it’s been imported. Now if, say, I want to test the code in function2() a bunch of times, I can call it from inside the shell window instead of running it from the editing window (which requires the execution of everything in the file, not just the function I’m interested in). This is An Improvement. From now on, we’ll put our code into functions; for a while, we’ll usually just have a main() function, which will contain all of the code in a given program.
2.
For this activity, you need to know the relationship between Celsius and Fahrenheit temperatures. To turn a given Celsius temperature into the corresponding Fahrenheit temperature, you multiply it by 9/5 and add 32. So, for example, 100 degrees Celsius is the same as (9/5)*100 + 32 = 180 + 32 = 212 degrees Fahrenheit. (These are both the boiling point of water at sea level.)

(a) Get tempconv.py from the program webpage. Save a copy of it to your lab2 directory. Don’t forget to put your name in the header.

(b) Without changing what it does, make tempconv.py a more readable program: give the variables meaningful names, put each command on its own line, add some blank lines to break up the code, and replace simple print statements with \ns.

(c) Run tempconv.py. What happens?

(d) Fix the errors in tempconv.py until Python will execute it without generating error messages. (You may want to refer to adding10.py from Monday’s lecture, since many of the same considerations are relevant.)

(e) Now design a collection of at least three test cases for your program, values that you can input in order to check whether the program is working properly. When designing such a “test suite”, it’s a good idea to choose test cases that produce as wide a range of outputs as possible. In this case, you should have at least one test value that will produce an integer output, at least one that will produce a float output, and at least one that will produce a negative output. Can you think of any other relevant kinds of output? If so, add test cases for the ones you think of.

(f) Add a “Test data” section to the comments section at the beginning of the file; in it, indicate the test values you’ll enter and what the output should be for each of the values you’ve selected.

(g) Test tempconv.py using the test cases you chose. Does the program produce the correct results? If not, find the problem and fix it. What is the problem? (Hint: there is a problem; if your test cases didn’t show you that there was a problem, then your test suite is flawed or incomplete, so you should go back and fix it.)
From now on, test every program you write. More specifically, test each part as you write it; that way if an error comes up, you’ll know that it’s most likely in the part you just changed.
3.
Call this program lab2.1.py. Note that you have considerable freedom here to determine how the user interface looks and what exactly the program says to the user; think about how you can make your program easy and appealing to use.

(a) Write a program that prompts the user to enter the name of a category of objects. The program should then prompt the user to enter the names of two things in that category, and it should then print out the name of a new thing in that category by joining the two entered names together. Put your code inside a main() function.

(b) Now add code to the program so that it also prints the name of the new thing in all caps.

(c) Now add code to the program so that it also prints the name of the new thing with all occurrences of the five usual vowels removed. (Hint: Something discussed in the reading allows you to do this. If you’re stuck, start by figuring out how to remove all occurrences of the letter ‘a’.)
SUBMISSION

Programs to submit by the end of lab:

tempconv.py

lab2.1.py
Credits

Many of the exercises from this quarter’s labs and homework assignments are taken or adapted from John Zelle’s excellent Python Programming: An Introduction to Computer Science; some others come from our textbook.
