3. (a) The equilibrium solutions correspond (o the values of P for which dP/dt = 0forall . For this
equation, d P /dt = Oforall t if P =0 or P = 230.

(b) The population is increasing if d P /d¢t > 0. That is, P(1 — P/230) > 0. Hence, 0 < P < 230.

(c) The population is decreasing if dP/dr < 0. Thatis, P(1 — P/230) < 0. Hence, P > 230 or
P < 0. Since this is a population model, P < 0 might be considered “nonphysical.”

4. (a) The equilibrium solutions correspond to the values of P for which dP/dt = 0 forall 7. For this
equation, dP/dt =Oforallzif P =0, P = 50, or P = 200.
(b) The population is increasing if d P/dt > 0. Thatis, P < 0or50 < P < 200. Note, P < 0

might be i nonphysical” for a population model.
(c) The population is decreasing if d P /dt < 0. That is,0.< P < S0or P > 200.

10. (a) The rate of change of the amount of radioactive material is dr/dt. This rate is proportional to
the amount r of material present at time r. With —1 as the proportionality constant, we obtain
the differential equation

dr .
al
Note that the minus sign (along with the assumption that A is positive) means that the material

decays.

(b) The only additional assumption is the initial condition r(0) = ro. Consequently, the corre-

sponding initial-value problem is
dr
dr
2. We note that dy/dt = 2¢% for y(t) = €. If y(t) = 2 is a solution to the differential equation,
then we must have

=-ar, r(0)=rp.

2¢% =2y() —t +g(y()
=2¢% — 1 +g(e).
Hence, we need
g(ez’) =t1.

This equation is satisfied if we let g(y) = (Iny)/2. In other words, y(1) = ¢? is a solution of the
differential equation
dy
dt

Iny
=2y—t+—.
Y, =+ 5

5. The constant function y(t) = 0 is an equilibrium solution.
For y # 0 we separate the variables and integrate

dy
l:frdr
v

2
In|y| = 5 +c
Iyl = cre™?
where ¢ = e€ is an arbitrary positive constant.
If y > 0, then |y| = y and we can just drop the absolute value signs in this calculation. If y < 0,
then |y| = —y, 50 —y = ¢/, Hence, y = —cje' /2. Therefore,
y = ke’/?

where k = %cj. Moreover, if k = 0, we get the equilibrium solution. Thus, y = ke'*/? yields all
solutions to the differential equation if we let k be any real number. (Strickly speaking we need a
theorem from Section 1.5 to justify the assertion that this formula provides all solutions.)
19. The function y(¢) = 0 for all 7 is an equilibrium solution.
Suppose y # 0 and separate variables. We get

/(\,Jridy:fe’dr
¥

y '
—+Inlyl=e€ +c,
Z+nm

where ¢ is any real constant. We cannot solve this equation for y, so we 1cavve the‘exprcs.siqn fof y
in this implicit form. Note that the equilibrium solution y = 0 cannot be obtained from this implicit
equation.
24, First we find the general solution by writing the differential equation as

dy 2
— = (t+2y",
o ¢ )y

separating variables, and integrating. We have

/dey=/(r+2)d1
b2

2
s
= +2t+c
_Ptdita
3 ,
where ¢; = 2c. Inverting and multiplying by —1 produces
o -2
e 2+4i4cr’
Setting
- 2
1=y(0)=—
1
and solving for ¢y, we obtain ¢; = —2. So
yo =
)= ey

35. (a) If we let k denote the proportionality constant in Newton’s law of cooling, the differential equa-
tion satisfied by the temperature 7' of the chocolate is

dT
— =k(T —70).
P ( )

‘We also know that T(0) = 170 and that dT /dt = —20 at r = 0. Therefore, we obtain k by
evaluating the differential equation at 1 = 0. We have

=20 = k(170 = 70),
50 k = —0.2. The initial-value problem is

fd—f— — =021 —170), “T(0)—170;

(b) We can solve the initial-value problem in part (a) by separating variables. We have

drT
0 =/—O.2dr

In|T — 70| = =0.2¢ + k
IT = 70| = ce™®.

Since the temperature of the chocolate cannot become lower than the temperature of the room,
we can ignore the absolute value and conclude

T(1) =70+ ce™0%.
Now we use the initial condition 7 (0) = 170 to find the constant ¢ because
170 = T(0) = 70 + ce 2@,
which implies that ¢ = 100. The solution is
T =70+ 100e™0%.
In order to find 7 so that the temperature is 110° F, we solve
110 = 70 + 100e ™%
for ¢ obtaining
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Ing=-02r
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