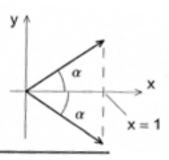
1.6 \star b·c = 1 - s², which is zero if and only if $s = \pm 1$. The vectors b and c make equal angles, α , above and below (or below and above) the x axis. The angle between them can be 90° only if $\alpha = 45^{\circ}$.



1.10 \star The particle's polar angle is $\phi = \omega t$, so $x = R\cos(\omega t)$ and $y = R\sin(\omega t)$ or

$$\mathbf{r} = \hat{\mathbf{x}} R \cos(\omega t) + \hat{\mathbf{y}} R \sin(\omega t).$$

Differentiating, we find that $\dot{\mathbf{r}} = -\hat{\mathbf{x}} \omega R \sin(\omega t) + \hat{\mathbf{y}} \omega R \cos(\omega t)$ and then

$$\ddot{\mathbf{r}} = -\hat{\mathbf{x}}\omega^2 R \cos(\omega t) - \hat{\mathbf{y}}\omega^2 R \sin(\omega t) = -\omega^2 \mathbf{r} = -\omega^2 R \hat{\mathbf{r}}.$$

That is, the acceleration is antiparallel to the radius vector and has magnitude $a = \omega^2 R = v^2/R$, the well known centripetal acceleration.

- 1.18 ** (a) $|\mathbf{a} \times \mathbf{b}| = ab\sin \gamma = bh$, where $h = a\sin \gamma$ is the height of the triangle ABC. Therefore $|\mathbf{a} \times \mathbf{b}| = 2$ (area of triangle), which is the required first result. The other two follow in the same way.
- (b) By part (a), |c × a| = |b × c| or ca sin β = bc sin α, whence a/ sin α = b/ sin β, as required. The third expression follows in the same way.
 - 1.30 ★ Since mass 2 is at rest, the initial total momentum is just P_{in} = m₁v. The final total momentum is P_{fin} = (m₁ + m₂)v'. Equating these two and solving for v', we find that v' = vm₁/(m₁ + m₂).
 - 1.35 ★ In the absence of air resistance, the net force on the ball is $\mathbf{F} = m\mathbf{g}$, and with the given choice of axes, $\mathbf{g} = (0, 0, -g)$. Thus Newton's second law, $\mathbf{F} = m\ddot{\mathbf{r}}$, implies that $\ddot{\mathbf{r}} = \mathbf{g}$, or $\ddot{x} = 0$, $\ddot{y} = 0$, and $\ddot{z} = -g$.

The initial velocity has components $v_{ox} = v_o \cos \theta$, $v_{oy} = 0$, and $v_{oz} = v_o \sin \theta$, and we can choose the initial position to be the origin. The first of the above equations can be integrated once to give $\dot{x} = v_{ox}$, and again to give $x(t) = v_{ox}t$. In the same way, the y equation gives y(t) = 0, and the z equation gives $z(t) = v_{oz}t - \frac{1}{2}gt^2$. The ball returns to the ground when z(t) = 0 which gives $t = 2v_{oz}/g$. Substituting this time into the expression for x(t) gives the range, range $= 2v_{oz}v_{oz}/g$.

- 1.36 ★ (a) During the flight the only force on the bundle is its weight, and Newton's second law reads m\vec{r} = F = mg, or \vec{r} = g. If we choose the origin at sea level directly below the plane at the moment of launch and measure x in the direction of flight and y vertically up, then the solution is x = v_ot, y = h ½gt², and z = 0.
- (b) The time for the bundle to drop to sea level (y = 0) is $t = \sqrt{2h/g}$ and the horizontal distance traveled in this time is $x = v_0 t = v_0 \sqrt{2h/g}$. With the given numbers this is about 220 m.
- (c) If the drop is delayed by a time Δt, the bundle will overshoot by a distance Δx = v_oΔt, so Δt = Δx/v_o = 0.2 sec.