1.27 xx Since the puck is frictionless, the net force on it is zero, and, as seen from the
ground, it travels in a straight line through the center O, as shown in the left picture. It
starts from the point A at ¢ = 0, travels “due west” with constant speed v,, and falls onto
the ground at point C after a time T' = 2R/v, (where R is the radius of the turntable).

Now imagine an observer sitting on the turntable near A. As seen from the ground, he is
traveling north with speed wR. Therefore, as seen by the observer, the puck’s initial velocity
has a sideways (southerly) component wR, in addition to the westerly component vo; that
is, the puck moves initially west and south, as shown in the right picture. (The magnitude
of the southerly component depends on the table’s rate of rotation w.) As the puck moves
in to a smaller radius r, the sideways component wr gets less, so the puck’s path curves to
the right. Continuing to curve, its passes through O and eventually reaches the edge of the
turntable at point B. The left picture shows the point B of the table at time ¢ = 0. The
position of B is determined by the following consideration: In the time T' = 2R /v, for the
puck to cross the table, point B of the

table must move around to point C where B B

we know the puck falls to the ground. o @A @A
Thus the angle BOC is equal to wT. The

faster the table rotates, the larger the angle

BOC and the more sharply the puck’s seen from ground seen from tumtable
path (as seen from the table) is curved.

1.45 xx Since the magnitude of v(t) is the same as \/v(t)-v(t), the magnitude is constant
if and only if v(t)-v(¢) is. Since

2OV = 20900,

this implies that the magnitude of v(t) is constant if and only if v(t)-V(t) = 0; that is, v(¢)
is orthogonal to v(t)

1.46 »x (a) As seen in the inertial frame § the puck moves in a straight line with ¢ = 0
and 7 = R — vt

(b) Asseenin &', 7' =r = R—v,t and ¢ = ¢ — wt = —wt. This path is sketched in the
answer to Problem 1.27. Initially, the puck moves inward with speed v, but also downward
with speed wR. It curves to its right, passing through the center and continuing to curve to
the right until it slides off the turntable.

2.2 % According to Stokes’s law fi, = (377 D)v, which has precisely the form fi, = bv if
we define b = 8D and § = 377 = 3n(1.7 x 107° N's/m?) = 1.6 x 10~* N-s/m?.

2.3 x (a) From (2.84) and (2.82), fouaa/fin = (K0Av?)/(3mnDv). With k = 1/4 and
A = 7D?/4, this becomes pDv/(48n) or R/48, with R given by (2.83).

(b) With the given numbers, R = 1.1 x 102 and it is very safe to neglect the quadratic
drag.

2.4 % (a) In a short time dt the projectile moves a distance vdt, and the front sweeps out
a cylinder of volume Avdt. Therefore the mass of fluid encountered is pAvdt, and the rate
at which mass is swept up is pAv.

(b) If a mass pAvdt is accelerated from 0 to v in time dt, the rate of change of its mo-
mentum is pAv?. This is, therefore, the forward force on the fluid and, hence, the backward
force on the projectile.

(c) Since A « D?, it follows that foq = koAv? = cv?, where ¢ = KpA o< D?. For a
sphere in air, k = 1/4, A = mD?/4, and ¢ = 1.29 kg/m?, 50 fouaa = (kowD?/4)0* = cv?,
where ¢ = yD? and

5= kor/4=1x (1.29 kg/m®) x 7/4 = 0.25 N - s /m?*.

2.5 x With vy > ¥ier, the drag force is greater than the
weight, and the net force is upward. Thus the projectile
slows down, with v, approaching vier as ¢ — co. This

is clear from Eq.(2.30), as shown in the plot.

2.6 « (a) If we insert the Taylor series for e™*/" into (2.33), we get

t
Vy(t) = Vher [1 = €™7] = ther [1— (1—;4‘%—"')]-

The first two terms on the right cancel, and, if ¢ is sufficiently small, we can neglect terms
in t and higher. This leaves us with
vy(t) = Viect /T = gt

where to get the second equality I replaced vier by g7 as in (2.34).

(b) Putting vy, = 0 into (2.35) and then inserting the Taylor series for the exponential,

we find: t 12
Y(t) = Viert = VherT [1— €™/ = pert — Ve |1 = (1= = 4 o= — - ).
7 22
On the right side, the second and third terms cancel, as do the first and fourth. If we neglect
all terms beyond ¢, this leaves us with y(£) & veert?/(27) = 3gt?, since v = g7.
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or, solving for v, v = v,/(1 + ct\/v, /2m)?. Clearly, v = 0 only when ¢ — co.

2.11 xx (a) Since we are now measuring y upward, the answers can be found from (2.30)
and (2.35) by replacing vier With —ve;:

Uy (t) = —Vrer + (Vo + Vier)e™™  and  y(t) = —viert + (Vo + vher)T(1 — €7H7).

(b) Setting v, = 0 and solving for ¢, we find tiop = 7 In(1+ vo/Vter). Sustituting this time
into y(t) we find Ymax = [Vo — Vter IN(1 + Vo/Vier)]7-

(c) In the vacuum v, = 00. Letting vger — 00 in Ymax and using the suggested approxi-
mation for the log term, we find

B g Yo _1(% ! '1'—1}-‘z
Ymax ° er Uter 2 \ Vter 2g9

since the first two terms in the middle expression cancel each other and vie, = g7.

2.16 x  As usual, z = (vocos6)t and y = (vosin6)t — 3gt>. The time to reach the plane
of the wall (z = d) is t = d/(v,cosf) and the ball’s height at that time is y = dtan —
3942/ (vo cos 9)2. Notice that this height decreases monotonically as v, decreases. Thus there
is indeed a minimum speed v,(min) for which the ball clears the wall. Putting y = h and
solving for v, we find that

ia gd?
vo(min) = \/ 2(dtan6 — hycos?d "

If tan# < h/d, the argument of the square root is negative and there is no real Uo(min);
physically, the ball’s initial velocity is aimed below the top of the wall, so the ball cannot
possibly clear the wall whatever its speed. With the given numbers, ¥ (min) = 26.4 m/s or
roughly 50 mi/hr.



