Since the puck is frictionless, the net force on it is zero, and, as een from theground, it travels in a straight line through the center O, as shown in the left picture. It starts from the point A at t=0, travels "due west" with constant speed v_0 , and falls onto the ground at point C after a time $T=2R/v_0$ (where R is the radius of the turntable).

Now imagine an observer sitting on the turntable near A. As seen from the ground, he is traveling north with speed ωR . Therefore, as seen by the observer, the puck's initial velocity has a sideways (southerly) component ωR , in addition to the westerly component v_0 ; that is, the puck moves initially west and south, as shown in the right picture. (The magnitude of the southerly component depends on the table's rate of rotation ω .) As the puck moves in to a smaller radius r, the sideways component ωr gets less, so the puck's path curves to the right. Continuing to curve, its passes through O and eventually reaches the edge of the turntable at point B. The left picture shows the point B of the table at time t=0. The position of B is determined by the following consideration: In the time $T=2R/v_0$ for the puck to cross the table, point B of the

table must move around to point C where we know the puck falls to the ground. Thus the angle BOC is equal to ωT . The faster the table rotates, the larger the angle BOC and the more sharply the puck's path (as seen from the table) is curved.

1.45 ** Since the magnitude of $\mathbf{v}(t)$ is the same as $\sqrt{\mathbf{v}(t)\cdot\mathbf{v}(t)}$, the magnitude is constant if and only if $\mathbf{v}(t) \cdot \mathbf{v}(t)$ is. Since

$$\frac{d}{dt}[\mathbf{v}(t)\!\cdot\!\mathbf{v}(t)] = 2\mathbf{v}(t)\!\cdot\!\dot{\mathbf{v}}(t),$$

this implies that the magnitude of $\mathbf{v}(t)$ is constant if and only if $\mathbf{v}(t) \cdot \dot{\mathbf{v}}(t) = 0$; that is, $\mathbf{v}(t)$ is orthogonal to $\dot{\mathbf{v}}(t)$

- 1.46 ** (a) As seen in the inertial frame ${\cal S}$ the puck moves in a straight line with ϕ and $r=R-v_ot$
- (b) As seen in S', $r' = r = R v_0 t$ and $\phi' = \phi \omega t = -\omega t$. This path is sketched in the swer to Problem 1.27. Initially, the puck moves inward with speed v_0 but also downward with speed ωR . It curves to its right, passing through the center and continuing to curve to the right until it slides off the turntable.
 - **2.2** * According to Stokes's law $f_{\rm lin}=(3\pi\eta D)v$, which has precisely the form $f_{\rm lin}=bv$ if we define $b=\beta D$ and $\beta=3\pi\eta=3\pi(1.7\times 10^{-5}~{\rm N\cdot s/m^2})=1.6\times 10^{-4}~{\rm N\cdot s/m^2}$.
- 2.3 \star (a) From (2.84) and (2.82), $f_{\rm quad}/f_{\rm lin}=(\kappa\varrho Av^2)/(3\pi\eta Dv)$. With $\kappa=1/4$ and $A=\pi D^2/4$, this becomes $\varrho Dv/(48\eta)$ or R/48, with R given by (2.83). (b) With the given numbers, $R=1.1\times 10^{-2}$ and it is very safe to neglect the quadratic days.
- 2.4 ** (a) In a short time dt the projectile moves a distance vdt, and the front sweeps out a cylinder of volume Avdt. Therefore the mass of fluid encountered is $\varrho Avdt$, and the rate at which mass is swept up is ϱAv .
- (b) If a mass ρAvt is accelerated from 0 to v in time dt, the rate of change of its momentum is ρAv^2 . This is, therefore, the forward force on the fluid and, hence, the backward
- force on the projectile.

 (c) Since $A \propto D^2$, it follows that $f_{\rm quad} = \kappa \varrho A v^2 = c v^2$, where $c = \kappa \varrho A \propto D^2$. For a sphere in air, $\kappa = 1/4$, $A = \pi D^2/4$, and $\varrho = 1.29 \text{ kg/m}^3$, so $f_{\rm quad} = (\kappa \varrho \pi D^2/4) v^2 = c v^2$, where $c = \gamma D^2$ and

$$\gamma = \kappa \varrho \pi/4 = \frac{1}{4} \times (1.29 \text{ kg/m}^3) \times \pi/4 = 0.25 \text{ N} \cdot \text{s}^2/\text{m}^4.$$

2.5 ★ With $v_y > v_{\rm ter}$, the drag force is greater than the weight, and the net force is upward. Thus the projectile slows down, with v_y approaching $v_{\rm ter}$ as $t \to \infty$. This is clear from Eq.(2.30), as shown in the plot.

2.6 \star (a) If we insert the Taylor series for $e^{-t/\tau}$ into (2.33), we get

$$v_y(t) = v_{ ext{ter}} \left[1 - e^{-t/ au}
ight] = v_{ ext{ter}} \left[1 - \left(1 - rac{t}{ au} + rac{t^2}{2 au^2} - \cdots
ight)
ight].$$

The first two terms on the right cancel, and, if t is sufficiently small, we can neglect terms in t^2 and higher. This leaves us with $v_y(t) pprox v_{\mathrm{ter}} t / au = g t$

$$v_y(t) \approx v_{\text{ter}} t / \tau = gt$$

where to get the second equality I replaced v_{ter} by $g\tau$ as in (2.34).

(b) Putting $v_{yo} = 0$ into (2.35) and then inserting the Taylor series for the exponential, we find:

 $y(t) = v_{\rm ter} t - v_{\rm ter} \tau \left[1 - e^{-t/\tau} \right] = v_{\rm ter} t - v_{\rm ter} \tau \left[1 - \left(1 - \frac{t}{\tau} + \frac{t^2}{2\tau^2} - \cdots \right) \right].$

On the right side, the second and third terms cancel, as do the first and fourth. If we neglect all terms beyond t^2 , this leaves us with $y(t) \approx v_{\rm ter} t^2/(2\tau) = \frac{1}{2}gt^2$, since $v_{\rm ter} = g\tau$.

$$\begin{array}{ll} {\bf 2.8} \star & t = m \int_{v_{\rm o}}^v \frac{dv'}{-cv'^{3/2}} = \frac{2m}{c} \left[v'^{-1/2} \right]_{v_{\rm o}}^v = \frac{2m}{c} \left(\frac{1}{\sqrt{v}} - \frac{1}{\sqrt{v_{\rm o}}} \right) \\ {\rm or, \ solving \ for \ } v, \ v = v_{\rm o}/(1 + ct\sqrt{v_{\rm o}}/2m)^2. \ \ {\rm Clearly, \ } v = 0 \ {\rm only \ when } \ t \to \infty. \end{array}$$

2.11 **

(a) Since we are now measuring y upward, the answers can be found from (2.30)and (2.35) by replacing v_{ter} with $-v_{\text{ter}}$:

$$v_y(t) = -v_{\text{ter}} + (v_{\text{o}} + v_{\text{ter}})e^{-t/\tau} \quad \text{ and } \quad y(t) = -v_{\text{ter}}t + (v_{\text{o}} + v_{\text{ter}})\tau(1 - e^{-t/\tau}).$$

- (b) Setting $v_y=0$ and solving for t, we find $t_{\rm top}=\tau \ln(1+v_{\rm o}/v_{\rm ter})$. Sustituting this time into y(t) we find $y_{\rm max}=[v_{\rm o}-v_{\rm ter}\ln(1+v_{\rm o}/v_{\rm ter})]\tau$.
- (c) In the vacuum $v_{\rm ter}=\infty$. Letting $v_{\rm ter}\to\infty$ in $y_{\rm max}$ and using the suggested approximation for the log term, we find

$$y_{\rm max} \rightarrow \left\{v_{\rm o} - v_{\rm ter} \left[\frac{v_{\rm o}}{v_{\rm ter}} - \frac{1}{2} \left(\frac{v_{\rm o}}{v_{\rm ter}}\right)^2\right]\right\} \tau = \frac{v_{\rm o}^2}{2g}$$

since the first two terms in the middle expression cancel each other and $v_{\text{ter}} = g\tau$.

2.16 * As usual, $x=(v_0\cos\theta)t$ and $y=(v_0\sin\theta)t-\frac{1}{2}gt^2$. The time to reach the plane of the wall (x=d) is $t=d/(v_0\cos\theta)$ and the ball's height at that time is $y=d\tan\theta-\frac{1}{2}gd^2/(v_0\cos\theta)^2$. Notice that this height decreases monotonically as v_0 decreases. Thus there is indeed a minimum speed v_0 (min) for which the ball clears the wall. Putting y = h and solving for v_0 we find that

$$v_{
m o}({
m min}) = \sqrt{rac{g d^2}{2(d an heta - h)\cos^2\! heta}}\,.$$

If $\tan\theta < h/d$, the argument of the square root is negative and there is no real $v_{\rm o}({\rm min})$; physically, the ball's initial velocity is aimed below the top of the wall, so the ball cannot possibly clear the wall whatever its speed. With the given numbers, $v_{\rm o}({\rm min}) = 26.4$ m/s or roughly 50 mi/hr.