1.5 Existence and Uniqueness of Solutions

6. Note that dy/dt = 0if y = 3. Hence, y1(¢1) = 3 for all ¢ is an equilibrium solution. By the
Uniqueness Theorem, this is the only solution that is 3 at r = 0. Therefore, y(t) = 3 for all ¢.

7. Because 0 < y(0) < 2 and y;(r) = 0 and y2(f) = 2 are equilibrium solutions of the differential
equation, we know that 0 < y(¢) < 2 for all 7 by the Uniqueness Theorem. Also, dy/dt > 0 for
0 <y < 2,s0dy/dt is always positive for this solution. Hence, y(t) — 2ast — oo, and y(t) — 0

as [ — —OQ.
17. (a) The equation is separable. Separating variables we obtain

f(y—2)dy=ffdt.

Solving for y with help from the quadratic formula yields the general solution

Vi) =12 \/IZ—H:.

To find ¢, we let 1 = —1 and y = 0, and we obtain ¢ = 3. The desired solution is therefore
y(t) =2 — /12 +3
(b) Since t2 + 2 is always positive and y(t) < 2 for all ¢, the solution y(#) is defined for all real
numbers.
(¢) Ast — +o0, t? 4+ 3 — oo. Therefore,

r—]:?oo Y. e

18. (a) The partial derivative with respect to v of dv/dt does not exist at v = 0. Hence the Uniqueness
Theorem tells us nothing about the uniqueness of solutions that involve v = 0. In fact, if we use
the techniques described in the section related to the uniqueness of solutions for dy/dt = 3 Y2/

we can find infinitely many solutions with this initial condition.

(b) Since it does not make sense to talk about rain drops with negative volume, we always have
v > 0. Once v > 0, the evolution of the drop is completely determined by the differential
equation.

What is the physical significance of a drop with v = 07 It is tempting to interpret the fact
that solutions can have v = 0 for an arbitrary amount of time before beginning to grow as a
statement that the rain drops can spontaneously begin to grow at any time. Since the model
gives no information about when a solution with v = 0 starts to grow, it is not very useful for
the understanding the initial formation of rain drops. The safest assertion is to say is the model

breaks down if v = O.

1.6 Equilibria and the Phase Line

2. The equilibrium points of dy/dt = f(y) are
the numbers y where f(y) = 0. For |

S. The equilibrium points of dw /dt = f(w) are
the numbers w where f(w) = 0. For f(w) =
(w—1) sin w, the equilibrium points are w = 1
and w = nm, where n = 0, £1.42 ...
The sign of (w — 1) sinw alternates between

f=y>-6y-T=H -1+,

the equilibrium points are y = —land y = 7.

Since f(y) is positive for y < —1, negative for

—1 < y < 7, and positive for y > 7, the equi-

librium point y = —1 is a sink and the equilib-

positive and negative at successive zeros. It is

positive for -7 < w < 0 and negative for
0 < w < 1. Therefore, w = 0 is a sink,

and the equilibrium points alternate between

rium point y = 7 is a source. sources and sinks.

A " w=nm sink
y =7 ® source
Y
w =1 source

y=—1 ¢ sink

A ' w =10 Siﬂk

8. The equilibrium points of dw /dt = f(w) are
the numbers w where f(w) =0. For f(w) = 14. 4
3w’ — 12w?2, the equilibrium points are w = 0
and w = 4. Since f(w) < 0 for w < 0 and
O <w < 4,and f(w) > 0 forw > 4, the
equilibrium point at w = 0 is a node and the
equilibrium point at w = 4 is a source.

17.

30. The function f(y) has three zeros. We denote them as Y1, ¥2, and ys,
where y1 < 0 < y» < y3. So the differential equation t-fl’y/df = (v
has three equilibrium solutions, one for each zero. Also, f(y) - 0 if
Y= /) =0ify1 =y <y and £(y) >0if v <y = y; orif
y > y3. Hence y) is a sink, y» is a source, and y3 is a node.

37. (a) This phase line has three equilibrium points, y = 0, 1. Only equations (vii) and (viii) have
three equilibria. For this phase line, dy/dt < 0 for 0 < y < 1. Only equation (vii) satisfies this
property. Consequently, the phase line corresponds to equation (Vvii).

(b) This phase line has two equilibrium points, y = 0 and y = 1. Equations (i), (ii), (iii), and (1v)
have f:-,xactly these equilibria. For this phase line, dy/dt > 0 for y = 0 OnI}j equ;ttions (1)
f{nd ({{) satisty this property. Moreover, for this phase line, dy /dt < O for y < 0. Only equa-
tion (11) satisfies this property. Consequently, the phase line cérre&;ponds to equatic;n (11).

(¢) This phase line has two equilibrium points, y = Oand y = 2. Equations (v) and (vi) have
exa}ctly these equilibria. For this phase line, dy/dt > 0 for 0 < y < 2. Only equation (vi)
satisfies this property. Consequently, the phase line corresponds to equation (vi).

(d) This phase line has two equilibrium points, y = 0 and y = 1. Equations (i), (ii), (iii), and (1v)
hax:'e exactly these equilibria. For this phase line, dy/dt < 0 for 0 < y.< I, Onlyj equ:;tion (111)
satisfies this property. Consequently, the phase line corresponds to equation (iii).



